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Multi-scroll attractors have attracted attention because of their more complex
topological structures and artificially controllable attractor structures. This paper
proposes a new nonvolatile magnetic-controlled memristor and uses it to
simulate the effect of membrane flux changes caused by neuronal exposure to
electromagnetic radiation. A series of complex chaotic phenomena are found by
plotting phase diagrams, bifurcation diagrams, attractor domains and 01 tests,
including multi-scroll chaotic attractors controlled by memristors, symmetric
bifurcation behavior, coexistence phenomena enhanced by initial offset. The
mechanisms behind them are explained through equilibrium point analysis. A
dual memristive HNN (MHNN) coupling synchronization model is proposed to
simulate the synchronization between regions within the human brain. The
Lyapunov function of the error is constructed to prove that this coupling
synchronization scheme is ultimately bounded. The feasibility of this
synchronization scheme is verified by establishing a Simulink model and
conducting simulation experiments.
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1 Introduction

Numerous neurophysiological and neuroanatomical studies have shown that human
brain activity is closely related to the dynamic behavior of biological neurons and neural
networks. In order to reveal the mystery of how the brain processes, manipulates and
accesses information, scientists have conducted long-term research on the structure and
working mechanism of biological neural networks and established various artificial neuron
and neural network models [1–10]. Hopfield neural networks (HNN) have been widely
studied for their simple mathematical form and rich dynamical behavior. Liang et al.
investigated the long time behavior of the mild solution to delayed reaction-diffusion HNNs
driven by infinite dimensional Wiener processes. They analyzed the existence, uniqueness,
and stability of this system under the local Lipschitz function by constructing an appropriate
Lyapunov-Krasovskii function and utilizing the semigroup theory. Pu et al. proposed to
introduce fractional calculus to implement HNN. They implemented the fractional HNN by
utilizing fractor in the form of an analog circuit and the fractional steepest descent approach.
In addition, they construct the Lyapunov function to prove the stability of fractional HNN
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and analyze its attractors [11]. Danca et al. unveiled the existence of
hidden chaotic sets in a simplified HNN with three neurons. They
proved that besides two stable cycles, the system also has hidden
chaotic attractors and hidden chaotic transients, which converge to
regular motions along the stable cycles after a relatively long lifetime
[12]. In order to make HNN generate more rich and complex brain-
like dynamical behaviors, more and more scholars introduce the
brain-like element memristor into them [13–19].

A memristor is a nonlinear circuit element whose resistance
changes in response to the current flowing through it or the voltage
at both ends [20–23]. This nonlinear behavior is very similar to the
plasticity of synapses in the human brain [24]. In the process of
transferring action potentials, the properties of synapses also change
dynamically. Therefore, in recent years, many scholars have used
memristors to replace the invariant synaptic weights in HNN and
proposed a series of memristive HNN (MHNN) [25–28]. For
example, Leng et al. proposed a new circuit to emulate the
Coupled Hyperbolic Memristors and utilized it to simulate the
synaptic crosstalk of a HNN. With various crosstalk strengths,
multi-stability, asymmetry attractors, and anti-monotonicity are
observed in this MHNN [29]. Dong et al. proposed a novel
memristive synaptic HNN with time delay, which used a
memristor synapse to simulate the electromagnetic induced
current caused by the membrane potential difference between
two adjacent neurons. By choosing time delay and the coupling
strength of memristors as bifurcation parameters, they obtained
sufficient conditions of zero bifurcation and zero-Hopf bifurcation
[26]. Besides simulating synapses, memristors are also used to
simulate the effects of electromagnetic radiation on neurons.
With the popularity of electronic products, electromagnetic
radiation fills people’s daily lives. In order to explore the
dynamical behavior of the human brain under electromagnetic
radiation, more and more scholars introduce magnetically
controlled memristors into HNN and propose a series of new
MHNN [30–32]. For instance, Lin et al. studied the chaotic
dynamics of a three-neuron HNN under electromagnetic
radiation stimulation, and found hidden extreme multistability
that includes hyperchaos and transient chaos. In addition, they
also designed a circuit based on HNN composed of commercially
available electronic components to verify the theoretical analysis
[33]. Wan et al. investigated the hidden multistability and parallel
bifurcation behaviors of a HNN under the simulation of external
electromagnetic radiation and dual bias currents. They also designed
an equivalent analog circuit and verified the numerical simulation
results by Multisim simulation and hardware experiment based on
discrete electronic components [34].

In recent years, various complex dynamical behaviors have been
found in both memristive synaptic weight HNN and HNN under
electromagnetic radiation, including multi-scroll or multistructure
chaotic attractors. Compared with general chaotic attractors, they
are more attractive for their more complex topological structure and
artificially controllable attractor structure. Zhang et al. introduced a
non-ideal magnetically controlled memristor model containing a
sign function into HNN, and constructed a memristive HNN model
with multiple double-scroll attractors. The odd and even numbers of
double scrolls can be flexibly controlled by the internal parameters of
the memristor. In particular, they found the coexisting behavior
induced by the initial state offset of the memristor, and the number

of coexisting attractors was closely related to the total number of
scrolls, and eventually tended to infinity as the total number of
scrolls increased [35]. Yu et al. proposed a locally active memristor
containing a smooth sign function and established a MHNN
satisfying the Lipschitz condition by replacing the synaptic
weights of HNN. From it, they found controllable multi-scroll
behavior and extreme multistability. In addition, they physically
implemented this multi-scroll MHNN using FPGA technology and
applied it to image encryption [36]. Lai et al. established a novel flux-
controlled memristor model using hyperbolic function series. By
taking the memristor as synapses in a HNN, they constructed three
MHNNs. These MHNNs can generate multi-double-scroll chaotic
attractors or grid multi-double-scroll chaotic attractors, and the
number of double scrolls in the attractors is controlled by the
memristor [37].

Inspired by the above research status, We propose a new model
of MHNN under electromagnetic radiation, from which we discover
the complex dynamic behavior. The main novelty and contributions
of this study are summarized as follows:

1) We propose a newmemristor model with controllable number of
power interruption steady states, whose memductance does not
contain any polynomials.

2) By using it to simulate the effects of membrane flux changes
caused by electromagnetic radiation, a new model of MHNN
under electromagnetic radiation is proposed

3) A series of complex chaotic phenomena are found, including
memristor-controlled multi-scroll attractors, symmetric
bifurcation behaviors, initial offset boosting coexistence.

4) Inspired by inter-brain region synchronization of the human
brain, we propose a dual MHNN coupling synchronization
model. Through Lyapunov function and Simulink
experiments, the feasibility of this synchronization scheme is
verified.

The rest of this article is organized as follows. In Section 2, the
memristor model is constructed. In Section 3, a MHNN under
electromagnetic are constructed and analyzed. In Section 4, The
dynamic numerical simulation is carried out. In Section 5, an dual
coupling synchronous model is designed and proved. Section 6
summarizes the paper.

2 Novel nonvolatile memristor

2.1 Construction of memristor model

Over the past few years, a number of memristor models that can
assist in the generation of multi-scroll attractors have been proposed
one after another, and they are summarized in Table 1. Based on the
general form of memristors, we propose a novel non-volatile
memristor model that can induce controllable multi-scrolls in
HNN. It can be expressed by the following equation:

im � W x( )vm
W x( ) � a − b

x

1 + x| |( )
_x � mvm − nh x( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)
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where W(x) is the memductance of the memristor. And h(x) is
the function of the internal state variable of the memristor,
which has two forms, h1(x) and h2(x), to choose from, as
follows:

h1 x( ) �
x,M � 0

x −∑M
i�1

sgn x + 2i − 1( )( ) + sgn x − 2i − 1( )( )( ),
M � 1, 2, 3,/

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

and

h2 x( ) �
x − sgn x( ), N � 0

x − sgn x( ) −∑N
j�1

sgn x + 2j( ) + sgn x − 2j( )( ),
N � 1, 2, 3,/

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

where sgn(x)is a symbolic function. By choosing different forms of
the internal state variable function of the memristor and changing
the parametersM,N, any odd or even number of scrolls can be easily
induced in HNN.

2.2 Hysteresis characteristics and non-
volatility

For the proposed memristor model, we first need to verify
whether it satisfies the three fingerprints of a memristor [42]. Let
the parameters a, b, m and n in Eq. 1 be 2.1, 0.5, 4.5 and
1.9 respectively, and take h1(x) and M = 2 as an example.
Connect the memristor to an AC voltage source Vm � A sin(Ft).
The voltage across the memristor and the current through it form a
figure-eight-shaped pinched hysteresis loop (PHL) on the v-i plane.
We take the frequency F of the AC voltage source as 30, 90 and
150 respectively, and superimpose the PHLs that appear each time
on the same plane. The results are shown in Figure 1A. From the
final results, it can be seen that when the frequency of the voltage
source increases, the area enclosed by the PHL gradually shrinks.
And when F = 150, the PHL almost shrinks into a straight line. From
the test results of PHL, it can be seen that the model described by Eq.
1 is a memristor. To verify the non-volatility of the memristor, we
usually need to draw a power-off plot (POP) of the memristor.

TABLE 1 Summary of memristors helping construct multi-scroll attractor.

References Memristor Internal state variable function

Reference [14] im � sin(x)vm
dx

dt
� avm − bh(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −m[∑N

i�0
tanh(n(x − (2i + 1)m)) +∑N

i�0
tanh(n(x + (2i + 1)m))]

h2(x) � x −m[∑N
i�0

tanh(n(x − 2im)) +∑N
i�0

tanh(n(x + 2im)) − tanh(nx)]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [15] im � (a + bx2)vm

dx

dt
� cvm − dh(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −∑N

i�1
sgn(x − (2i − 1)) −∑N

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) −∑N
i�1

sgn(x − 2i) −∑N
i�1

sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [35] im � (a + bh(x))vm

dx

dt
� cvm − dh(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −∑N

i�1
sgn(x − (2i − 1)) −∑N

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) −∑N
i�1

sgn(x − 2i) −∑N
i�1

sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [36] im � (a + bh(x))vm

dx

dt
� cvm − dh(x)

⎧⎪⎨⎪⎩
h(x) �

h1(x) � x −∑M
i�1

s(n(x + 2i − 1)) −∑M
i�1

s(n(x − 2i + 1))

h2(x) � x − s(x) −∑M
i�1

s(n(x + 2i)) −∑M
i�1

s(n(x − 2i))

s(x) � x

1 + x| |

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Reference [38] im � h(x)vm

dx

dt
� −vm

⎧⎪⎨⎪⎩ h(x) �
h1(x) � −(2N − 1)kc − b + ∑4N−1

m�1
k(−1)m−1 x − (2N −m)c| |

h2(x) � −(2N − 2)kc − b + ∑4N−3

m�1
k(−1)m−1 x − (2N −m − 1)c| |

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [39] im � (p + qf2(x))vm

dx

dt
� vm − h(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x −∑N

i�1
sgn(x − (2i − 1)) −∑N

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) −∑N
i�1

sgn(x − 2i) −∑N
i�1

sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [40] im � kh(x)vm

dx

dt
� pvm

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x − ∑N−1

i�0
sgn(x − (2i − 1)) −∑M

i�1
sgn(x + (2i − 1))

h2(x) � x + sgn(x) − ∑N−1

i�0
sgn(x − 2i) − ∑N−1

i�0
sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Reference [41] im � (a + b x| |)v

dx

dt
� cv − d(x)

⎧⎪⎨⎪⎩ h(x) �
h1(x) � x − ∑N−1

i�0
sgn(x − (2i − 1)) −∑M

i�1
sgn(x + (2i − 1))

h2(x) � x − sgn(x) − ∑N−1

i�0
sgn(x − 2i) − ∑N−1

i�0
sgn(x + 2i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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When the voltage across the memristor disappears, i.e., vm = 0 in Eq.
1, the dynamic equation of the internal state variable of the
memristor is simplified as follows:

_x � mvm − nh x( ) (4)
Taking the internal variable x as the horizontal axis and _x as the
vertical axis, we can draw the POP of the memristor. Figure 1B
shows that there are five zeros in the POP of the memristor at this
time, and the slopes at these zeros are all negative, which means that
the memristor has five stable equilibrium points after power-off.
Since there are more than two steady states, the memristor described
by Eq. 1 has non-volatility.

3 MHNN under electromagnetic
radiation

3.1 MHNN model construction

HNN has a simple mathematical form and complex dynamic
behavior. In the study of chaotic dynamics, the membrane
capacitance and membrane resistance of neurons are usually set
to 1 to further simplify the dynamic equation of HNN. At this time,
any HNN can be expressed by the following formula:

_X � −X +W tanh X( ) + I (5)

Where X is the neuron membrane potential vector, I is the external
stimulus current vector,W is the weight matrix between neurons. In
this paper, the weight matrix is:

W �
1.5 2.9 0.7
−2 1.2 0
3 −20 0.1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

The external stimulus current is uniformly set to zero. Let the initial
membrane potentials of neuron one and neuron three be 0.1, and let
the initial membrane potentials of neuron two be 1 and
-1 respectively. The three-dimensional HNN can exhibit complex
chaotic coexistence behavior at this time, and its phase diagram is
shown in Figure 2A. By continuously changing the initial membrane
potential of neuron 2, we can obtain the corresponding Lyapunov
exponent spectrum diagram. Figure 2B shows that when the initial
membrane potential of neuron 2 takes values in [-2, 2], it finally
corresponds to a chaotic attractor.With the development of
electronic products, people are exposed to electromagnetic
radiation more and more frequently. According to Maxwell’s
equations, the effect of electromagnetic radiation on a single
neuron can be described by the fluctuation of magnetic flux on
the cell membrane. The coupling between magnetic flux and
membrane voltage can be realized by a magnetically controlled
memristor [43]. Specifically for this paper, we add the memductance
term of the memristor described by Eq. 1 to the dynamic equation of
neuron 2 to simulate the effect of neuron 2 exposed to

FIGURE 1
PHL and POP of nonvolatile memristor: (A) PHL varying with F, (B) POP.

FIGURE 2
The coexistence (A) and the variation of Lyapunov exponent spectrum with the initial potential of neuron 2 (B) of the three-dimensional HNN.
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electromagnetic radiation. At this time, the dynamic equation of the
original three-dimensional HNN becomes:

_x1

_x2

_x3

_x4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

−x1

−x2

−x3

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +W

tanh x1( )
tanh x2( )
tanh x3( )
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

0

kx2 a − b
x4

1 + x4| |( )( )
0

mx2 − nh x4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where k represents the intensity of electromagnetic radiation,
a, b, m and n are memristor parameters. h(x4) is the internal
state variable function of the memristor, which includes
Eqs 2, 3.

3.2 Equilibrium analysis

Let the left side of Eq. 7 be zero, then we get the following system
of equations:

0 � −x1 + 1.5 tanh x1( ) + 2.9 tanh x2( ) + 0.7 tanh x3( )
0 � −x2 − 2 tanh x1( ) + 1.2 tanh x2( )

+ kx2 a − b
x4

1 + x4| |( )( )
0 � −x3 + 3 tanh x1( ) − 20 tanh x2( ) + 0.1 tanh x3( )
0 � mx2 − nh x4( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

After Gaussian elimination, it can be simplified to the following
form:

H1 � − x2 − 2 tanh x1( ) + 1.2 tanh x2( )
+ kx2 a − b

x4

1 + x4| |( )( ) � 0

H2 � − x3 + 3 tanh x1( ) − 20 tanh x2( )
+ 0.1 tanh x3( ) � 0

x1 � 0.5x3 + 12.9 tanh x2( ) + 0.65 tanh x3( )
x2 � nh x4( )

m

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

After eliminating x1 and x2, we can use the graphical method to solve
the equation. Let the roots obtained be (r1, r2, r3, r4). These roots are
the equilibrium points of the MHNN. Next, we linearize the MHNN
at the equilibrium points. The result of the Jacobian matrix for Eq. 7
is shown in Eq. 10.

J �

0.5 − 1.5tanh x1( )2 2.9 − 2.9tanh x2( )2 0.7 − 0.7tanh x3( )2 0

2tanh x1( )2 − 2 −1.2tanh x2( )2 + k a − bx4

x4| | + 1.0
( ) + 0.2 0 −kx2

b

x4| | + 1
− bx4sgn x4( )

x4| | + 1( )2( )
3 − 3tanh x1( )2 20tanh x2( )2 − 20 −0.1tanh x3( )2 − 0.9 0

0 m 0 −nh′ x4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

Substituting the equilibrium point (r1, r2, r3, r4), we can obtain the
eigenvalues of the Jacobian matrix. According to Shil’nikov’s
theorem, if there exists a real eigenvalue δ and two complex
conjugate eigenvalues α + βi and |α/δ|< 1 and δα < 0 are
satisfied, then the system will exhibit chaos at the equilibrium
point. In the following analysis, we will substitute specific values
for specific analysis.

4 Kinetic analysis of MHNN

Let the parameters a = 2.1, m = 2, n = 1.9. Taking h1(x) as the
internal state variable function of the memristor and M = 0 as an
example, the bifurcation behavior of the MHNN with respect to
parameters k and b is studied. The parameter k in Eq. 7 represents
the intensity of electromagnetic radiation. By continuously changing
it in the range of [-0.3, 0.3], we can obtain the bifurcation diagram
and the Lyapunov exponent spectrum diagram with respect to
parameter k, as shown in Figure 3. Combining the bifurcation
diagram and the Lyapunov exponent spectrum diagram, it can be
seen that the MHNN is very sensitive to parameter k. In the interval
(−0.3, −0.095), the system exhibits a period one. Near k = −0.095, the
system bifurcates from period one to period two. Then near
k = −0.065, the system evolves from period two to period four.
After that, with the acceleration of period doubling, the system goes

FIGURE 3
Bifurcation behavior of parameter k: (A) bifurcation diagram, (B)
Lyapunov exponential spectrum.

FIGURE 4
Bifurcation behavior of parameter b: (A) bifurcation diagram, (B)
Lyapunov exponential spectrum.
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to chaos. In the interval [-0.055, 0.235], chaos and periodicity
alternate. Finally, after k = 0.235, the system degenerates from
chaos to period one and no longer exhibits chaotic behavior.

In addition to parameter k, the bifurcation behavior of the
MHNN with respect to parameter b is more interesting.
Similarly, let parameter b continuously change in the interval
[-10, 10], we can obtain the bifurcation diagram and the
Lyapunov exponent spectrum diagram with respect to parameter
b, as shown in Figure 4. In the interval (−10, −9.7), the system
exhibits a period one. Near b = −9.7, the system bifurcates from
period one to period two. Then near b = −7.9, the system evolves
from period two to period four. Near b = −6.6, the system
degenerates from period two to period one. Until near b = −4.05,
the system again starts to change from period two to period four.
After that, with the acceleration of period doubling, the system goes
to chaos. In the interval [-3.85, 3.85], chaos and periodicity alternate.
Near b = 4.05, the system degenerates from period four to period
two. Near b = 6.6, the system evolves from period two to period four.
Then near b = 7.9, the system degenerates from period four to period
two, and finally degenerates to period one near b = 9.7. It is not
difficult to find that the system evolves and degenerates at almost
symmetrical positions. In addition, the Lyapunov exponent

spectrum in Figure 4 is almost symmetrical about the vertical
axis. In summary, the MHNN has a symmetrical bifurcation
behavior with respect to parameter b.

4.1 Bifurcation behavior

4.1.1 Multi-scroll chaotic attractor
Due to the introduction of the memristor, the MHNN can

exhibit multi-scroll behavior that does not exist in the general HNN.
Let the parameters a = 2.1, b = 0.1,m = 5, n = 1.9 and k = 0.2 and the
initial values be [0.1, 0.1, 0.1, 0.1]. First, we choose h1(x) as the
internal state variable function of the memristor. By setting the
parameter M = 0, M = 1, M = 2 respectively, the MHNN exhibits a
single scroll chaotic attractor, a three scroll chaotic attractor and a
five scroll chaotic attractor. Then we choose h2(x) as the internal
state variable function of the memristor. Similarly, by setting the
parameter N = 0, N = 1, N = 2 respectively, the MHNN exhibits a
double scroll chaotic attractor, a four scroll chaotic attractor and a
six scroll chaotic attractor. Their phase diagrams are plotted in
Figure 5. From the simulation results, it is easy to summarize the
control law of the memristor for the number of scrolls. When

FIGURE 5
Phase diagram of multi-scroll MHNN: h(x) = h1(x) (red), h(x) = h2(x) (blue).
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choosing h1(x) as the internal state variable function of the
memristor, the MHNN can easily induce 2M + 1 scrolls. And
when choosing h2(x) as the internal state variable function of
the memristor, the MHNN can easily induce 2N + 2 scrolls.

With the help of Shil’nikov’s theorem, the law behind this can be
further explained. Taking the appearance of a five-scroll chaotic
attractor as an example, according to the idea provided in Section
3.2, all the equilibrium points of the system at this time can be
obtained. First, the graphical method is used to obtain the rough
values of the roots. Using all the intersections in Figure 6 as a guide,
numerical methods are used to obtain more accurate results of x3
and x4. Then the obtained results are substituted into Eq. 9 to obtain
all the roots. Next, QR decomposition is used to obtain the
eigenvalues corresponding to each equilibrium point, and the
final results are shown in Table 2. Table 2 shows that for the

MHNN that exhibits a five-scroll chaotic attractor, there are a
total of 15 saddle-focus points at this time. And according to
Shil’nikov’s theorem, there will be chaotic attractors near these
equilibrium points, which is consistent with the simulation
results in Figure 5. By observing the distribution of equilibrium
points in Figure 6 and Table 2, it is not difficult to summarize that as
the parameter M or N increases, the equilibrium points gradually
extend along the direction of x4. That is to say, by changing the form
of the internal variable function of the memristor and its parameters
M or N, the number of equilibrium points of the MHNN can be
easily controlled. And according to Shil’nikov’s theory, there will be
chaotic attractors near these saddle-focus type equilibrium points.
This directly makes the range of chaotic attractors of the MHNN
also increase accordingly, which is specifically manifested as an
increase in the number of scrolls in this section.

4.1.2 Initial offset boosting coexistence
In addition to having complex topological structures of multiple

scroll attractors, the MHNN also has complex coexistence behavior.
Let the parameters of the MHNN be a = 2.1, b = 0.1, m = 2, n =
1.9 and k = 0.2. First, we choose h1(x) as the internal state variable
function of the memristor, and takeM = 2 as an example. The initial
membrane potentials of neurons 1, 2, and 3 are all set to 0.1, while
the initial values of the internal state variable of the memristor
are −4, −2, 0, 2 and 4 respectively. By superimposing the phase
diagrams corresponding to each initial value together, we obtain the
situation of five attractors coexisting as shown in Figure 7A.
Observing these five coexisting attractors, it is not difficult to
find that their shapes and sizes are highly similar, and they only
shift by a fixed distance in the x4 direction. Figure 7B shows the

FIGURE 6
Trajectory diagram of the equation in Eq. 9.

TABLE 2 Equilibrium point analysis results of MHNN when h(x)= h1(x) and M = 2.

Equilibrium points Eigenvalues Type

x1 x2 x3 x4

−0.0718 −0.2331 4.4648 −4.6135 −1.9002 −0.9984 0.5322 ± 2.3371i Saddle focus

0.0000 0.0000 0.0000 −4.0000 2.4764 −1.9000 −1.1202 ± 2.6998i Saddle focus

0.0717 0.2331 −4.4655 −3.3865 −1.8997 −0.9984 0.5315 + 2.3373i Saddle focus

−0.0716 −0.2332 4.4662 −2.6136 −1.9004 −0.9984 0.5313 ± 2.337i Saddle focus

0.0000 0.0000 0.0000 −2.0000 2.4758 −1.9000 −1.1212 ± 2.7003i Saddle focus

0.0713 0.2332 −4.4682 −1.3862 −1.8991 −0.9984 0.5293 ± 2.3377i Saddle focus

−0.0708 −0.2333 4.4710 −0.6140 −1.9019 −0.9984 0.5287 ± 2.3364i Saddle focus

0.0000 0.0000 0.0000 0.0000 −1.9000 2.4728 −1.1264 ± 2.7026i Saddle focus

0.0691 0.2336 −4.4819 0.6148 −1.8981 −0.9984 0.5193 ± 2.3385i Saddle focus

0.0684 0.2338 −4.4868 2.6151 −1.8996 −0.9984 0.5167 ± 2.3379i Saddle focus

0.0000 0.0000 0.0000 2.0000 2.4698 −1.9000 −1.1316 ± 2.7049i Saddle focus

−0.0687 −0.2337 4.4848 1.3850 −1.9009 −0.9984 0.5187 ± 2.3372i Saddle focus

0.0000 0.0000 0.0000 4.0000 2.4692 −1.9000 −1.1326 ± 2.7054i Saddle focus

0.0000 0.0000 0.0000 4.0000 2.4692 −1.9000 −1.1326 ± 2.7054i Saddle focus

−0.0683 −0.2338 4.4875 3.3848 −1.9003 −0.9984 0.5165 ± 2.3376i Saddle focus
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FIGURE 7
Initial offset boosting coexistence when h1(x) is selected andM = 2: (A) Phase diagram, (B) Attraction of basin, (C) Bifurcation diagram, (D) Result of
0–1 test.

FIGURE 8
Initial offset boosting coexistence when h2(x) is selected and N = 2: (A) Phase diagram, (B) Attraction of basin, (C) Bifurcation diagram, (D) Result of
0–1 test.
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basins of attraction corresponding to these attractors. These basins
of attraction have the characteristics of clear boundaries and similar
shapes, and their positions are very regular, that is, they shift by a
fixed distance in the x4 direction. By plotting the bifurcation diagram
and 01 test results with respect to the initial value of the internal
variable of the memristor, we obtain Figures 7C, D, which further
verify the results in Figures 7A, B.

In addition, h2(x) is chosen as the internal state variable
function of the memristor, and N = 2 is taken as an example.
The initial membrane potentials of neurons 1, 2, and 3 are all set to
0.1, while the initial values of the internal state variable of the
memristor are −5, −3, −1, 1, 3 and 5 respectively. Similarly, by
superimposing the phase diagrams corresponding to each initial
value together, six attractors coexisting can be obtained as shown in
Figure 8A. Observing these six coexisting attractors, it is not difficult
to find that their shapes and sizes are highly similar, and they only
shift by a fixed distance in the x4 direction. Figure 8B shows the
basins of attraction corresponding to these attractors. These basins
of attraction have the characteristics of clear boundaries and similar
shapes, and their positions are very regular, that is, they shift by a
fixed distance in the x4 direction. By plotting the bifurcation diagram
and 01 test results with respect to the initial value of the internal
variable of the memristor, Figures 8C, D are obtained, which further
verify the results in Figures 8A, B.

From the analysis results of the previous section, it can be known
that by choosing the form of the internal variable function of the
memristor and its parameters M or N, the number of equilibrium
points of the MHNN can be easily controlled. And there will be
chaotic attractors near these saddle-focus type equilibrium points.
Different from the previous section, the MHNN does not exhibit
multi-scroll phenomena, but manifests as coexistence induced by
initial position offset. By analogy with the change law of the number
of scrolls of multi-scroll attractors, it can be inferred that when
choosing h1(x) as the internal state variable function of the
memristor, there are 2M + 1 coexisting attractors in the MHNN.
And when choosing h2(x) as the internal state variable function of
the memristor, there are 2N + 2 coexisting attractors in the MHNN.

5 Coupling synchronization of MHNN

5.1 Dual coupling synchronous model

Studies have shown that synchronization plays an important
role in memory processing. Synchronization between brain regions
supports working memory and long-term memory by facilitating
communication between neurons and enhancing neuronal plasticity
[44]. Brain regions are synchronized through the connection of
some neurons to form inter-regional neural networks, and thus
complete the information transmission between different brain
regions. Designing a suitable controller is one of the most
fundamental methods for controlling complex systems to achieve
synchronization, and many scholars have proposed different control
strategies [45–55]. In this paper, we use two bounded sub-MHNNs
to represent different brain regions. By coupling these two sub-
neural networks with a single neuron, a dual-MHNN coupling
model is established:

_x1 � − x1 + 1.5 tanh x1( ) + 2.9 tanh x2( )
+ 0.7 tanh x3( ) + p x1 − y1( )

_x2 � − x2 − 2 tanh x1( ) + 1.2 tanh x2( )
+ kx2 a − b

x4

1 + x4| |( )( )
_x3 � − x3 + 3 tanh x1( ) − 20 tanh x2( ) + 0.1 tanh x3( )
_x4 � mx2 − nh1 x4( )
_y1 � −y1 + 1.5 tanh y1( ) + 2.9 tanh y2( )

+ 0.7 tanh y3( ) − p x1 − y1( )
_y2 � −y2 − 2 tanh y1( ) + 1.2 tanh y2( )

+ ky2 a − b
y4

1 + y4

∣∣∣∣ ∣∣∣∣( )( )
_y3 � −y3 + 3 tanh y1( ) − 20 tanh y2( ) + 0.1 tanh y3( )
_y4 � my2 − nh2 y4( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where p represents the coupling strength of the sub-neural
networks. To make the two sub-neural networks successfully
synchronized, the difference between their outputs needs to be
zero, that is:

lim
t→∞

e1 � lim
t→∞

xi − yi � 0 (12)

where i = 1, 2, 3. To prove the validity of the above equation, the
following Lyapunov function can be constructed:

V � 1
2

e1
2 + e2

2 + e3
2( ) (13)

Then its derivative with respect to time is:

_V � e1 _e1 + e2 _e2 + e3 _e3
� 2p − 1( )e12 − e2

2 − e3
2

+ 1.5e1 − 2e2 + 3e3( ) tanh x1( ) − tanh y1( )( )
+ 2.9e1 + 1.2e2 − 20e3( ) tanh x2( ) − 2.9 tanh y2( )( )
+ 0.7e1 + 0.1e3( ) tanh x3( ) − tanh y3( )( )
− bke2

x2x4

1 + x4| | −
y2y4

1 + y4

∣∣∣∣ ∣∣∣∣( )
≤ 2p − 1( )e12 − e2

2 − e3
2

+ 2 1.5e1 − 2e2 + 3e3| |
+ 2 2.9e1 + 1.2e2 − 20e3| |
+ 2 0.7e1 + 0.1e3| |
− bke2

x2x4

1 + x4| | −
y2y4

1 + y4

∣∣∣∣ ∣∣∣∣( )

(14)

Since −1< x
1+|x|< 1 and both x2 and y2 are bounded, there exists a

sufficiently large constant c, satisfying:

x2x4

1 + x4| | −
y2y4

1 + y4

∣∣∣∣ ∣∣∣∣< c (15)

Therefore, Eq. 14 can be further relaxed as:

_V≤ 2p − 1( )e12 − e2
2 − e3

2

+ 2 1.5e1 − 2e2 + 3e3| |
+ 2 2.9e1 + 1.2e2 − 20e3| |
+ 2 0.7e1 + 0.1e3| |
+ cbke2| |

≤ 2p − 1( )e12 − e2
2 − e3

2

+ 10.2 e1| | + 6.4 + cbk| |( ) e2| | + 46.2 e3| |
≤ 2p − 1( ) e1| | − 5.1

1 − 2p
( )2

− 5.12

2p − 1

− e2| | − 6.4 + cbk| |
2

( )2

+ 6.4 + cbk| |
2

( )2

− e3| | − 23.1( ) + 23.12

(16)
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Therefore, when 2p − 1 < 0 holds, Eq. 13 is ultimately uniformly
bounded.

5.2 Simulink simulation

The schematic diagram of Simulink experiment is shown in
Figure 9 and let the system parameters be a = 2.1, b = 0.1,m = 2, n =
1.9, k = 0.1. By building a Simlulink model, the coupling
synchronization model described by Eq. 11 can be easily
simulated. When the coupling strength p = −1, the simulation
results are shown in Figures 10, 11. Figure 11 shows that after
the two sub-memristive HNNs are coupled, the difference between
the potentials on the corresponding neurons quickly drops to near
zero. Figure 10 is the time domain diagram of the potentials on
neuron 1 of the two sub-networks, which shows that they
match well.

6 Conclusion

This paper has investigated the nonlinear dynamics and
applications of a new non-volatile magnetic-controlled
memristor. It is demonstrated that the memristor can
simulate the effect of electromagnetic radiation on neuronal
membrane flux. By introducing this memristor to a 3D HNN, a
4D MHNN under electromagnetic radiation is constructed. By
plotting phase diagrams, bifurcation diagrams, basins of
attraction and 01 tests, a series of complex chaotic

phenomena are found, including memristor-controlled multi-
scroll chaotic attractors, symmetric bifurcation behaviors,
initial offset boosting coexistence. Through equilibrium point
analysis, the mechanisms behind them are explained. Finally, a
dual MHNN coupling synchronization model simulating the
inter-brain region synchronization of the human brain is
proposed. By constructing a Lyapunov function for the error,
this coupling synchronization scheme is proved to be ultimately
bounded. By building a Simulink model, we verify the feasibility
of this synchronization scheme by simulation experiments. This
study contributes to the understanding of memristive systems,
synchronization of brain regions and their potential
applications in engineering.
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