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Identifying communities within networks is a crucial and challenging problemwith
practical implications across various scientific fields. Existing methods often
overlook the heterogeneous distribution of nodal degrees or require prior
knowledge of the number of communities. To overcome these limitations, we
propose an efficient hypothesis test for community detection by quantifying
dissimilarities between graphs. Our approach centers around examining the
dissimilarity between a given random graph and a null hypothesis which
assumes a degree-corrected Erdös–Rényi type. To compare the dissimilarity,
we introduce a measure that takes into account the distributions of vertex
distances, clustering coefficients, and alpha-centrality. This measure is then
utilized in our hypothesis test. To simultaneously uncover the number of
communities and their corresponding structures, we develop a two-stage
bipartitioning algorithm. This algorithm integrates seamlessly with our
hypothesis test and enables the exploration of community organization within
the network. Through experiments conducted on both synthetic and real
networks, we demonstrate that our method outperforms state-of-the-art
approaches in community detection.
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1 Introduction

The theory of complex networks has emerged as a powerful tool for studying complex
systems. Networks represent interactions between units within a system, with vertices
denoting systematic units and edges capturing their interactions [1]. With the increasing
availability of real-world data, researchers have been able to conduct studies across various
fields. One crucial aspect in these studies is the identification of community structure, where
individuals or entities are organized into distinct groups. This task, commonly referred to as
community detection [2], shares similarities with graph clustering. Although numerous
algorithms have been proposed for community detection including clustering algorithms [3,
4], modularity-based algorithms [5, 6], and dynamic algorithms [7, 8], no single algorithm
performs well across all types of networks [9, 10]. Consequently, there is a persistent demand
for a general and efficient method for community detection.

From a probabilistic perspective, vertices belonging to the same community are more
likely to be connected compared to those in different communities. Therefore, the stochastic
block model (SBM) [11] has been widely employed for community detection. The SBM
offers a theoretical framework for studying detection thresholds and developing
corresponding algorithms. A notable contribution by Decelle et al. [12] introduced the
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concept of a phase transition for community detection at the
Kesten–Stigum threshold, leading to various investigations into
different transition thresholds under varying recovery conditions
[13, 14]. Furthermore, numerous algorithms have been proposed for
the SBM, often tailored to specific research questions or the
characteristics of the system under study. These algorithms
encompass spectral methods [15, 16], semi-definite programming
methods [17], profile-likelihood maximization [18], and pseudo-
likelihood maximization [19]. Of particular interest, Peixoto [20, 21]
approached the SBM from a microcanonical perspective, focusing
on the number of edges rather than their connection probabilities.
This alternative viewpoint offered valuable insights into the SBM.

The standard SBM assumes that vertices within the same
community are stochastically equivalent and possess the same
expected degree, which does not align with real-world networks
where the presence of prominent “hubs” is widespread. To tackle
this limitation, Karrer and Newman [22] introduced the degree-
corrected SBM (DCSBM) by incorporating vertex-specific “degree
parameters” that multiply the edge probability between vertices i
and j. Building upon this concept, numerous studies have focused on
utilizing the DCSBM for community detection. Zhao et al. [23]
established a comprehensive theory for assessing the consistency of
community detection in the context of the DCSBM. They also
compared various community detection criteria applicable to
both the SBM and DCSBM. Chen et al. [24] proposed a method
based on convex programming relaxation of modularity
maximization and developed a weighted ℓ1-norm k-medoids
algorithm within the DCSBM framework. In contrast, Gao et al.
[25] derived the misclassification proportion by evaluating
asymptotic minimax risks, which depend on the degree
parameter, community size, and connection parameter. It is
important to note that all of these algorithms presuppose prior
knowledge regarding the number of communities.

In practical scenarios, the only information available to us is the set
of vertices and the set of edges, indicating which vertices are connected
to each other and which are not. Consequently, determining the
appropriate number of communities becomes a challenging task. To
the best of our knowledge, existing approaches have primarily focused
on the SBM framework. One direction involves initially detecting the
optimal community structure for different numbers of communities
and then using methods such as minimum description length [26], the
Akaike information criterion [27], or the Bayesian information criterion
[28] to penalize the model parameters. Another direction involves
developing hypothesis tests to determine the number of communities,
considering aspects such as asymptotic consistency [29] or the principal
eigenvalue of a normalized adjacency matrix [30]. However, both of
these approaches suffer from certain limitations. They either require
considerable time for large networks or may underestimate or
overestimate the number of communities.

The goal of this paper is to simultaneously uncover the number of
communities and the corresponding structure in heterogeneous networks
in an efficient way. To this end, we propose a novel hypothesis test based
on graph dissimilarity, which incorporates three distribution functions of
the vertex distance, clustering coefficient, and alpha-centrality. The null
hypothesis is assuming that the original network is a one-block DCSBM,
i.e., the degree-corrected Erdös–Rényi graph (DCERG), from which one
can estimate the connecting parameter and the degree parameter. Then,
we compute the dissimilarity between the original network and the

posterior DCERG and use the kernel density estimation (KDE) to
formulate the dissimilarity distribution among DCERGs generated by
the same parameters. If the hypothesis is rejected, we split the network by
the bipartitioning algorithm until each subgraph accepts the hypothesis.

2 Hypothesis test

The standard SBM finds its origins in the realms of machine
learning and statistics literature. Within theoretical computer
science, it is commonly referred to as a planted partition model
[31], and in mathematical contexts, it is acknowledged as an
inhomogeneous random graph model [32]. This probabilistic
generative model for random graphs with community structures
seamlessly blends the rigidity of a block model with a stochastic
component. It stands as a benchmark in the challenging task of
recovering community structures from network data.

To introduce the SBM, we begin with an unweighted and
undirected graph denoted as G, consisting of N-labeled vertices that
are organized into K blocks. The connections among these K nodes are
represented by the adjacency matrix A, where aij = 1 if there exists an
edge between nodes i and j, and 0 otherwise. It is important to note that
self-connections are not allowed, aii = 0. For each node i, we assign a
label bi to represent its membership in a particular community.
Consequently, each vertex i ∈ [N] belongs to a block determined by
the prior probability pj with j ∈ [K], and these probabilities satisfy the
normalization ∑K

j�1pj � 1. Additionally, we introduce W as a K × K
matrix, where each element wst represents the probability of
connectivity between one vertex in block s and the other in block t.
With these definitions, we can now express the conditional expectation
of the adjacency matrix A given the block assignments b as follows:

E aij|b( ) � wbi,bj. (1)

When all labels are identical, the model simplifies to the classic
Erdös–Rényi graph (ERG) [33], where meaningful reconstruction of
communities becomes unfeasible. In the context of real-world networks,
the model can be adjusted by maximizing this expectation concerning
vertex labels b. The primary objective of the community detection
problem is to accurately reconstruct these labels.

In the standard SBM, the connecting probabilities between any two
vertices within the same block are uniform. In such a configuration, the
emergence of “hubs” becomes unlikely, and maximizing the log-
likelihood function based on it tends to partition the graph into two
groups: one consisting of high-degree vertices and the other composed
of low-degree vertices. To overcome this limitation, Karrer and
Newman [22] introduced the DCSBM, which replaces Eq. 1 with
the following equation:

E aij|θ, b( ) � θiθjwbi,bj, (2)

where θi is a degree parameter. In contrast to the SBM, the DCSBM
modifies the edge probability between vertices i and j by multiplying it
with the product of θiθj. Notably, the DCSBM simplifies to the standard
SBMwhen θi = 1 is the same for every vertex i ∈ [N]. The value of θi plays
a crucial role in determining the degree of vertex i, enabling flexibility in
accommodating arbitrary degree variations within blocks. However, it is
essential to ensure that θi satisfies specific constraints. In this paper, we
impose the constraint that ∑ θiδbi ,s � 1 holds true for all blocks.

Frontiers in Physics frontiersin.org02

Xu et al. 10.3389/fphy.2023.1251319

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1251319


A challenge encountered in both the SBM and DCSBM is the
necessity of prior knowledge regarding the precise number of blocks in
the network. However, the use of hypothesis testing offers a potential
solution to mitigate this requirement. Essentially, the task of
determining whether a DCSBM consists of either K or K + 1 blocks
can be viewed as an inductive decision between one block or two. This
line of thinking leads us to the formulation of a null hypothesis: the
network follows a one-block DCSBM, i.e., the DCERG. The expected
adjacency matrix for the DCERG is expressed as follows:

E A( ) � DZD, (3)
withD = diag(θ1, θ2, . . . , θN) and Z =NweeT −wI, where e is a vector
with ei � 1/

��
N

√
for i ∈ [N] and I is the identity matrix. Assuming

that the graph is generated by the DCERG, we need to estimate θ and
w. The former is given by the following equation:

θ̂i � ki∑N
i�1ki

, (4)

with ki � ∑N
j�1aij being the degree of vertex i, while the later can be

written as follows

ŵ � ∑N
i�1,j�1eij

N N − 1( ) (5)

with eij � θ−1i aijθ
−1
j . Now, the problem becomes to distinguish the

DCSBM(N, p, W, θ) and DCERG(N, ŵ, θ̂). If they demonstrate a
significant dissimilarity, we reject the null hypothesis and partition
the community. This process continues until each subgraph
conforms to a DCERG, allowing us to determine the number of
communities in the network simultaneously.

In the realm of graph analysis, gauging the structural
dissimilarity of large graphs presents a formidable challenge due
to the frequently unwieldy computational complexity associated
with analysis techniques [34, 35]. Despite the abundance of
literature on this subject, the majority of studies have
traditionally focused on examining simple graphs, often
overlooking factors such as degree heterogeneity and community
structure. To surmount this limitation, Xu et al. [36] introduced a
precise and efficient method for quantifying dissimilarities between
graphs, denoted as G and G′. Their approach adopts a perspective
rooted in probability distribution functions:

D G,G′( ) � γ1

���������������
J Ql G( ), Ql G′( )( )

log 2

√
+ γ2

����������������
J Qc G( ), Qc G′( )( )

log 2

√
+γ3

����������������
J Qα G( ), Qα G′( )( )

log 2

√
,

(6)

where γ1, γ2, and γ3 are positive constants satisfying γ1 + γ2 + γ3 = 1.
The values of these three parameters reflect the influence of global
(first term), local (second term) features, and heterogeneity (third
term) on the dissimilarity measure. Ql(G) � {ql(i)} �
{∑N

i�1nik/N(N − 1)} denotes the average distance distribution, and
nik is the number of vertices at distance k from vertex i. Qc(G) �
{qc(i)} � {[πc;N −∑N

i�1πc(i)]/N} represents the average clustering
coefficient distribution, and πc is the clustering coefficient of vertex i
in an increasing order. Qα(G) � {qα(i)} � {[πα;N −∑N

i�1πα(i)]/N}
corresponds to the average centrality distribution, and πα is the α-
centrality of vertex i in an increasing order. J (q1, q2) �
1
2∑iq1(i) ln[2q1(i)/(q1(i) + q2(i))] + 1

2∑iq2(i) ln[2q2(i)/∑i(q1(i) +

q2(i))] is the Jensen–Shannon divergence. Defined in this way, D
captures both global and local dissimilarities of the two graphs.
Moreover, it is easy to confirm that D ∈ [0, 1). Looking at Eq. 6, it
becomes evident that D is a random variable. To derive the
probability distribution of D, we employ the KDE technique [37].
Given a collection of samples D1, D2, . . . , Dn, the KDE offers a
means to estimate the distribution as follows:

P D( ) � 1
n
∑n
i�1

κ D −Di( ), (7)

where κ(D −Di) � e−
‖D−Di‖2

2σ2 and σ is the bandwidth parameter to
control the smoothness of the estimate. In the present work, we set
σ = 0.34. Finally, we can calculate the p-value to accept or reject the
null hypothesis.

Building upon the aforementioned rationale, we propose a two-
stage hypothesis testing algorithm (see Algorithm 1). In the first stage,
we employ hypothesis testing to ascertain if the network is a single-
community network, specifically a DCERG. The detailed procedure is
outlined as follows: i) We begin by assuming that the target network G
adheres to the DCERG and proceed to estimate its degree parameter θ
and edge parameterw. ii) Utilizing the estimated θ̂ and ŵ, we generate n
DCERGs denoted as G1, G2, . . . , Gn. Subsequently, we compute the
dissimilarities D(G, Gi) and D(Gi, Gj), where i and j are distinct and
range from 1 to n. iii) Employing the KDE, we estimate the dissimilarity
distribution P between isomorphic single-community networks. iv)We
employ the disparity in average dissimilarity between the target network
G and all generated DCERGs, denoted as �D, as the test statistic.
Subsequently, we utilize the dissimilarity distribution P of
isomorphic single-community networks as the test distribution in
the application of hypothesis testing to ascertain whether G
constitutes a single-community network.

1: A ← adjacency matrix of G

2: θ̂i ← ki∑N

i�1ki

, ŵ ← ∑N

i�1,j�1Eij

N(N−1)
3: For i = 1, 2, . . . , 50

Gi ← DCERG(N, ŵ, θ̂)
�D � ∑D(G,Gi)/50

4: For all i ≠ j

Dij ← D(Gi, Gj)

5: P̂(D(G,DCERG(N, ŵ, θ̂))) ← KDE(Dij)
6: pval ← P̂(�D>D)
7: If pval < significant level α

i) For each edge eij
compute the edge betweenness Bij
compute the edge clustering coefficient Cij
Lij ← β1Bij − β2Cij
remove edge eij with L = max(Lij)

ii) If the graph is connected

go back to i)

Else

Output G′, G″
End if

Else

Output G

End if

Algorithm 1. Hypothesis test algorithm.

Frontiers in Physics frontiersin.org03

Xu et al. 10.3389/fphy.2023.1251319

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1251319


If the null hypothesis is rejected, the algorithm progresses to the
second stage, where the original target network undergoes division
into two distinct networks. In this phase, we enhance the
Newman–Girvan algorithm [18] by taking into consideration the
significance of edges with regards to network connectivity and the
local clustering of edges within the network. This approach
simultaneously incorporates both global and local information,
thereby augmenting the precision of community detection. The
specific procedure is delineated as follows: i) computing the edge
betweenness Bij and the edge clustering coefficient Cij for the target
network G; ii) defining Lij = β1Bij − β2Cij, where the values of β1 and
β2 represent the balance between connectivity and clustering, and
eliminating edge Eij associated with the maximum Lij; and iii)
cycling back to step i) and iterating until the network is no
longer connected. Consequently, the binary partitioning
algorithm yields the original G as two separate networks, denoted
as G′ and G″. However, following the split, these two networks may
not necessarily conform to the single-community assumption.
Consequently, the testing algorithm (Stage I) and partitioning
algorithm (Stage II) are iteratively applied until each network
ultimately embodies a single-community network.

The computational efficiency of our algorithm is characterized
by its polynomial time. Initially, the generation of an N-node
DCERG incurs a cost of O(N). The computation of dissimilarity
relies on the shortest path, a process that can be efficiently
implemented in O(M + NlogN) through the use of Fibonacci
heaps. In the present work, we generate C2

50 � 1225
dissimilarities. Generalizing to any value m, the generation of C2

m

dissimilarities results in a time complexity of O(m2), influencing the
overall cost of the KDE. During the edge removal of partitioning, the
time complexity associated with edge betweenness is O(NM), while
the time complexity of edge clustering is O(N +M). Finally, for a K-
communities network, the algorithm iterates k − 1 times,
contributing to the overall efficiency of the approach.

3 Application to block models

To assess the effectiveness of our algorithm, we initiate testing
on the balanced DCSBM, where each block is of identical size. In
particular, we fixed the parameters at N = 1000, K = 2, and w11 =
w22 = 0.2. The degree parameters, denoted as θi, are drawn from an
adjusted normal distribution characterized by
θ ~ (|Normal(0, 0.25)| + 1 − 1��

2π
√ ), which exhibits a right-skewed

profile. It should be noted that we also explore alternative
distributions, although those results are not presented here. To
maintain generality, we set the mean of this distribution to
E(θ) = 1. The process of generating the graph aligns with a
straightforward implementation of the block model. It involves
(i) drawing a Poisson-distributed number of edges between each
pair of blocks 1 and 2 with w12 = w21 (or w11/2 = w22/2 for intra-
block connections and (ii) probabilistically assigning each end of an
edge to a vertex within the respective block, guided by the
parameter θi.

To explore different levels of community structure within the
generated networks, we systematically increased the value of
w12(=w21) from 0.02 to 0.2 in increments of 0.02. We calculate
the error bars on p-values based on the outcomes of 100 random

runs. Essentially, a larger p-value suggests that the hypothesis test
perceives the graph as being closer to an ERG. As illustrated in
Figure 1A, we observed an increasing trend in the p-value as w12

increases, indicating a diminishing block structure in the network.
Figure 1B provides a visual representation of the adjacency matrix
for the case of w12 = 0.02. In this representation, rows and columns
are ordered based on the underlying community structure.
Importantly, the block structure detected by our algorithm
closely aligns with the intended model settings.

We proceed by applying our algorithm to the DCSBM with
unbalanced blocks. Specifically, we examine the scenario where the
two blocks have different sizes, denoted as n1 and n2, respectively. To
investigate the impact of community size, we set w12 = w21 = 0.02
and w11 = w22 = 0.2.

Figure 2A illustrates the behavior of the p-value as n1 increases
from 50 to 100. Notably, the p-value consistently decreases with the
growth of n1. This trend is straightforward to comprehend as the
detection of the planted block becomes increasingly easier with a
larger n1. In fact, the DCSBM demonstrates a clear block structure
when n1 ≥ 77. In contrast, in Figure 2B, we set n1 = 100 and plot the
p-value against the varying values of w12. Here, an interesting
observation emerges: the p-value displays a consistent rise with
an increase in w12. This outcome aligns with expectations since the
graph gradually loses its block structure, particularly noticeable
when w12 ≥ 0.068.

4 Application to empirical networks

We now apply our algorithm to real-world networks. The first
example we consider is the network of a karate club at an American
university. This network consists of 34 nodes, and the relationships
between these nodes were recorded by Zachary [38] over a span of
2 years. Due to a disagreement between an instructor (node 0) and
an administrator (node 33) regarding class fees, the club ultimately
split into two distinct groups. The knowledge of the members within
each group makes the karate club network an ideal benchmark for
studying community detection.

Upon applying our algorithm to this network, the results
obtained are shown in Figure 3A. In the figure, solid circles and
squares represent clusters corresponding to instructors and
administrators, respectively. Overall, our algorithm successfully
splits the vertices in accordance with the known communities,
aside from a misclassification of two vertices (nodes 8 and 9)
located on the boundary between the two groups. Furthermore,
Figure 3B presents a density image of the adjacency matrix, serving
as additional confirmation of the block structure within the network.

As a second real-world example, we turn our attention to the
American college football network [39]. This network is comprised
of teams within a league, with each node representing an individual
team. Nodes are connected if the corresponding teams played
against each other during a specific season. Specifically, our
dataset focuses on the 2000 season of the American College
Football Division 1-A and includes a total of 115 teams. These
teams are organized into 12 conferences, and it is worth noting that
games are more commonly played between members of the same
conference rather than between teams from different conferences,
resulting in a recognizable community structure.
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FIGURE 1
Simulation results of the hypothesis test algorithm for the balanced two-block DCSBM: p-value as a function of the connecting parameter w12 (A)
and the illustration of the adjacency matrix for w12 = 0.02 (B). Dashed line corresponds to the significant level α = 0.05.

FIGURE 2
p-value as a function of n1 (A) and w12 (B) for the unbalanced two-block DCSBM. The dashed lines correspond to the significant level α = 0.05.

FIGURE 3
Performance of the hypothesis test algorithm for the karate club: the illustration of the community division (A) and the density plot for the
network (B).
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In Figure 4A, we present the community structure obtained
through the application of our algorithm to this network. This
analysis reveals that the majority of teams have been accurately
grouped with other teams from their respective conferences.
However, there are a few independent teams that have been
assigned to conferences with which they share the closest
associations, demonstrating a high level of agreement between
the algorithm’s results and the ground truth community
structure. Furthermore, Figure 4B displays a density plot of the
adjacency matrix, providing further clarity on this phenomenon.

To quantitatively compare the results of our algorithm to the
ground truth and those of the state-of-the-art methods, we introduce
the following two measures: the adjusted Rand index SAR and F1
score. Given two kinds of classifications Pa and Pb, we denote the
count of node pairs that classified together in both partitions by q11,
classified together in Pa but different in Pb by q10, different in Pa but
classified together in Pb by q01, and different in both by q00. It is
worth noting that w11 + w10 + w01 + w00 � C2

n � M, and the
adjusted Rand index is defined as follows [40]:

SAR � w11 − 1
M w11 + w10( ) w11 + w01( )

1
2 w11 + w10( ) + w11 + w01( )[ ] − 1

M w11 + w10( ) w11 + w01( ).
(8)

Another measure comparing Pa and Pb is F1 score, defined as
follows [41]:

F1 � 2precision Pa, Pb( )recall Pa, Pb( )
precision Pa, Pb( ) + recall Pa, Pb( ), (9)

with precision(Pa, Pb) = |Pa ∩ Pb|/|Pb| and recall(Pa, Pb) = |Pa ∩ Pb|/|Pa|.
As depicted in Table 1, our method outperforms state-of-the-art

approaches in identifying communities for both real networks.
Specifically, we successfully identified two communities in the
karate club network and 11 communities in the football network,
surpassing the results obtained by other methods. Notably, our
approach yielded the highest values for SAR and F1, indicating a
superior alignment with the ground truth communities.

5 Conclusion

As a prominent model for the analysis of structural data, the SBM
and its variants, particularly the DCSBM, have garnered significant
attention in the realm of community detection within networks [42].
The DCSBM, in particular, stands out for its efficacy in handling
networks characterized by a highly skewed degree distribution. In this
paper, we introduced a novel hypothesis test designed for community
detection in complex networks, making dual contributions in terms of
bothmodel and algorithm.On themodeling front, we introduced a graph
dissimilarity measure that incorporates the vertex distance distribution,
clustering coefficient distribution, and alpha-centrality distribution.
Utilizing this dissimilarity measure between the DCSBM and DCERG,

FIGURE 4
Community division (A) and density matrix (B) for the American college football network.

TABLE 1 Comparison of the results of the hypothesis test algorithm to the ground truth and those of the state-of-the-art algorithms.

Karate club College football

Communities SAR F1 Communities SAR F1

Hypothesis test 2 0.7717 0.9410 11 0.8927 0.8697

Motif-based k-means 2 0.6682 0.9117 10 0.7939 0.8120

Modularity-based 3 0.5684 0.5189 6 0.4741 0.3711

Louvain 4 0.4646 0.3033 10 0.8035 0.6961

Infomap 3 0.5906 0.5666 10 0.8165 0.6940
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we proposed a hypothesis testing statistic. In the algorithmic domain, we
devised a two-stage algorithm. Initially, we determined whether the
original network adhered to the DCERG. If not, we iteratively
bipartitioned it until each subgraph conformed to the DCERG. A new
criterion for bipartitioning was introduced, integrating edge betweenness
and edge clustering coefficient. We applied the algorithm to both
synthetic and real networks. Overall, the proposed method marks a
significant advancement over existing state-of-the-art approaches. It
demonstrates feasibility in detecting communities within networks
characterized by broad degree distributions, even when the actual
number of communities is unknown.

There are several promising directions for future research in thisfield.
One key area involves exploring alternative approaches to measuring
graph dissimilarity, as it remains an open problem. Particularly, for
networks with higher-order architecture, it would be beneficial to
consider measures that go beyond pairwise interactions to enhance
the model’s capacity [43]. Additionally, while the Gaussian
distribution is commonly chosen for the kernel density distribution, it
may be valuable to explore other distributions, like the widely used
Epanechnikov distribution in financial data analysis, to cater to specific
interests. In terms of computational complexity, a crucial avenue would
involve determining the theoretical distribution for dissimilarity,
ultimately contributing to significant reductions in computational
overhead. Furthermore, the proposed framework can be extended to
incorporate more sophisticated block models, such as exponential [44],
multilevel [45], and dynamic [46]models, offering additional benefits and
insights.
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