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Power-law attenuation in elastic wave propagation of both compressional and
shear waves can be described with multiple relaxation processes. It may be less
physical to describe it with fractional calculus medium models, but this approach
is useful for simulation and for parameterization where the underlying relaxation
structure is very complex. It is easy to enforce a low-frequency limit on a relaxation
distribution and this gives frequency squared characteristics for low frequencies
which seems to fit some media in practice. Here the goal is to change the low-
frequency behavior of fractional models also. This is done by tempering the
relaxation moduli of the fractional Kelvin-Voigt and diffusion models with an
exponential function and the effect is that the low-frequency attenuation will
increase with frequency squared and the square root of frequency respectively.
The time-space wave equations for the tempered models have also been found,
and for this purpose the concept of the fractional pseudo-differential operator
borrowed from the field of Cole-Davidson dielectrics is useful. The tempering
does not remove the singularity in the relaxationmoduli of themodels, but this has
only a minor effect on the solutions.
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1 Introduction

In many complex elastic media, attenuation of compressional and/or shear waves often
follows a power-law. The amplitude as a function of distance, x, for a sinusoidal input of
frequency ω, is therefore:

|u x( )|∝ e−αk ω( )x, αk ω( ) � α0ω
α+1, (1)

where αk(ω) is the attenuation, u is particle displacement, and 0 < α ≤ 1. For many complex
media, the attenuation increases with a power close to unity, i.e. α is close to zero [1].

In recent years, it has been found that such power-law attenuation can be obtained as the
solution of fractional partial differential equations. These fractional wave equations build on
medium models where Newtonian viscosity has been substituted with a more general
fractional derivative relationship between stress and strain, see, e.g., Mainardi [2] and Holm
[3, Chap. 1].

Although these models may not describe the underlying physics of the wave medium
interaction, they are very useful for simulation of wave propagation [4]. Fractional models
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are also parsimonous descriptions of complex media where the
underlying physics is too complex to be described, e.g., in shear wave
elastography [5]. Fractional models may also shed light on desirable
properties of solutions based on criteria such as causality and
passivity of the medium [6].

A more physical model is based on multiple relaxation processes.
The elastic wave attenuation resulting from a relaxation process is:

αk ω( ) � Ω
ω2 + Ω2 ω2, (2)

where Ω = 1/τ represents a characteristic relaxation frequency and τ
is the relaxation time. This expression increases with ω2 in the most
important frequency region up to the relaxation frequency and levels
off asymptotically to a constant value above the relaxation
frequency. As an example, attenuation in seawater can be described
by a sum of three such relaxation processes, due respectively, to
structural relaxation of water molecules, and chemical relaxation of
boric acid and magnesium sulfate [7].

For more complex media, such a finite sum is generalized to an
integral over the whole frequency domain with a weighting
function A(Ω):

αk ω( ) � ω2∫∞

0

A Ω( )
ω2 +Ω2 dΩ. (3)

It can be shown that in order to achieve the power-law attenuation
of (Eq. 1) the following weighting function is required [8, 9], Holm
[3, Chap. 7]:

A Ω( ) � Ωα. (4)
This may readily be shown by solving (Eq. 3) as in [10] or by using
Gradshteyn and Ryzhik [11, integral 3.241.2].

Often in practice, there are limitations on the relaxation processes in
amedium. Themost important one is a low-frequency limit.Working in
the context of seismology, Futterman [12] analyzed attenuation which
increases linearly with frequency. This is also called constant-Q
attenuation. He found that in order to satisfy the Kramers–Kronig
relations dictated by causality, there has to be a low-frequency cutoff
below which attenuation increases faster with frequency. For instance in
sediment acoustics, the attenuation follows a steeper power law below a
few kHz, Williams et al. [13, Figure 6].

A multiple relaxation distribution may easily be limited so that it
has no contributions below a certain frequency ΩL:

αk ω( ) � ω2∫∞

ΩL

A Ω( )
ω2 +Ω2 dΩ. (5)

The effect of this limit is that attenuation follows frequency squared
below ΩL. This low-frequency limit is not present in the standard
fractional models, as they will describe power-law attenuation from
0 frequency to infinity.

Realistically, there is a high-frequency limit also, for instance due to
the continuummodel breaking down aswavelengths approachmolecular
dimensions making the distribution of mechanisms unpopulated above
some upper frequency limit. The relaxation frequency of structural
relaxation in water is near such a limit, see [14] and also the discussion
of “fast sound” in water in Holm [3, Section 4.1.3]. Another high-
frequency effect has to do with whether the model’s transient response
reaches all over themedium instantaneously or not. If it does, themodel
is weakly causal, if the transient only reaches the medium for t > 0, it is

strongly causal Holm [3, Section 4.2]. In this study, we will focus on this
causality property and not possible high-frequency limits.

The purpose of this paper isfirst to give a brief reviewof present linear
viscoleasticity models, both ordinary and in particular fractional ones,
focusing on how they behave for low and high frequencies. The topics of
weak and strong causality are of importance here. Second, the purpose is
to contribute to better modeling of the band-limited response of Eq. 5 for
fractional models. A low-frequency limit can be superimposed on the
model by introducing tempering of the medium’s relaxation response,
and the effect of that is analyzed.

2 Mechanical medium models

2.1 Standard models

The most general standard model in linear viscoelasticity is the
Zener model. The relationship between stress, σ(t), and strain, ϵ(t), is
Tschoegl [15, Section 3.4], Mainardi [2, Chap. 2]. Here the
terminology follows Holm [3, Chap. 3]:

σ t( ) + τσ
∂σ t( )
∂t

� Ee ϵ t( ) + τϵ
∂ϵ t( )
∂t

[ ]. (6)

The two time constants given by the parameters of Figure 1C are:

τσ � η

Ee
≤ τϵ � E + Ee

Ee
τσ , (7)

where Ee is the equilibrium value for the relaxationmodulus, τσ is the
relaxation time constant, and τϵ is the retardation time constant. The
Zener model’s stress response to a unit-step excitation in strain, the
relaxation modulus, G(t), is given in Table 1.

The wave equation for the Zener model can be found by
combining the principles of linearized conservation of
momentum and linearized conservation of mass with the
linearized stress-strain relation for the medium. It can then be
shown that the dispersion relation is, Holm [3, Section 3.5]:

k2 ω( ) � ρ0ω
2

iωG ω( ). (8)

Here k is wavenumber, ρ0 is density, and G(ω) is a complex
frequency-dependent relaxation modulus which is the Fourier
transform of the step response of the model. For the Zener
model, it is:

G ω( ) � Ee

iω
1 + iωτϵ
1 + iωτσ

. (9)

This will lead to the following wave equation for the Zener
model, as given in, e.g., [16]:

∇2u − 1
c20

∂2u

∂t2
+ τϵ

∂

∂t
∇2u − τσ

c20

∂3u

∂t3
� 0, (10)

corresponding to the following dispersion relation:

k2 � ω2

c20

1 + iωτσ
1 + iωτϵ

, c20 �
Ee

ρ0
. (11)

It can be solved for attenuation, αk(ω) and phase velocity, cph(ω) by
solving first for the complex wave number:
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k � k′ + ik″ � ω

cph ω( ) − iαk ω( ). (12)

The asymptotes of the attenuation and phase velocities are also given in
Table 1. Note that thismodel has three distinct frequency regions, defined
by the two time constants. The low frequency region is for ωτσ ≪ 1 and
ωτϵ ≪ 1, the high-frequency region is when both ωτσ ≫ 1 and ωτϵ ≫ 1,
and the mid-frequency region is between the two time constants.

It is common in realistic media that the two time constants are
almost the same, τσ ≲ τϵ. In that case the medium frequency region
vanishes and the attenuation follows the relaxation response of Eq. 2.

The Kelvin-Voigt model of Figure 1A can be found by setting
τσ = 0 and this will result in a singularity in the relaxation modulus,
as well as removal of the high-frequency region of the Zener model.
Thus, there will only be two frequency regions for the asymptotes,
[17]. Finally, in the diffusion model of Figure 1B, the spring is also

removed, Ee = 0. The results for both these models are also given in
Table 1.

2.1.1 Singularity in the relaxation modulus
Two of the standard models, the Kelvin-Voigt model and the

diffusion model, both have an impulse in the relaxation modulus,
and thus a singularity. The same is the case for their fractional
versions. Whenever there is such a singularity in the relaxation
modulus, it is evident from Table 1 that the asymptotic phase
velocity will also approach infinity. This is the reason why in the
linear viscoelasticity literature it is said that the Kelvin-Voigt model
“cannot represent viscoelastic behavior adequately” and that it is
“physically unrealistic” Tschoegl [15, Sections 3.3, 3.4]. This may be
too harsh a judgement as the Kelvin-Voigt model, which is also
called the viscous model, is important in many applications and is

FIGURE 1
Spring-damper representations of constitutive models for viscoelastic media: (A) Kelvin-Voigt, (B) diffusion, and (C) the Zener model.

TABLE 1 Relaxation responses for t ≥ 0 with H(t) the Heaviside step function, asymptotes of attenuation and of phase velocity of standard and fractional linear
viscoelasticity models. Attenuation and phase velocity asymptotes are shownwith the low-frequency asymptote at the bottom and the high-frequency asymptote
at the top. Results from Holm [3, Chs. 2, 3, and 5].

Model Figures Relaxation modulus, G(t) Asymptotes of attenuation Asymptotes of phase velocity

Kelvin-Voigt 1A Ee · H(t) + ηδ(t) ω1/2

ω2{ ω1/2

c0
{

Diffusion 1B ηδ(t) ω1/2 ω1/2

Zener 1C Ee ·H(t) + Ee(τϵτσ − 1) · e−t/τσ ω0

ω1/2

ω2

⎧⎪⎨⎪⎩ c0
τϵ
τσ

( )1/2

ω1/2

c0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Fractional Kelvin-Voigt 2A Ee ·H(t) + η t−α/Γ(1 − α) ω1−α/2

ω1+α{ ωα/2

c0
{

Fractional diffusion 2B η t−α/Γ(1 − α) ω1−α/2 ωα/2

Fractional Zener 2C Ee ·H(t) + Ee[(τϵ
τσ
)α

− 1] · Eα[−(t/τσ )α] ω1−α

ω1−α/2

ω1+α

⎧⎪⎨⎪⎩
c0 τϵ/τσ( )α/2
ωα/2

c0

⎧⎪⎨⎪⎩
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also the basis for the Navier-Stokes description of a viscous medium.
The Zener model’s relaxation modulus is well-behaved and the
phase velocity is limited in value.

The relaxation modulus for the Kelvin-Voigt model is:

G ω( ) � Ee

iω
+ η ��→

ω→∞
η (13)

The limit indicates that this is indistinguishable from that of a
diffusion model for high frequencies. This can also be seen from the
asymptotic values for high frequencies where the Kelvin-Voigt and
the diffusion models have the same values in Table 1. Therefore, an
analysis of the diffusion model will give insight into the properties of
the viscous Kelvin-Voigt model as well.

The singularity of the diffusion model which is the same as the
heat equation, manifests itself in the solution kernel, or impulse
response, also called Green’s function, which is [18]:

ϕ x, t( ) � H t( )����
2πκt

√ exp − x2

4κt
( ), κ � η

ρ0
, (14)

whereH(t) is the Heaviside step function. The Gaussian term is non-
zero for every t > 0, i.e., the pulse has spread instantly over the entire
medium, even to infinite values of x. This is the infinite-speed
paradox of the diffusion equation and there are several ways to
amend it [19], which are beyond the scope of this article.

An excellent historical review of the properties is found in [18]
who quotes the second edition of Maxwell’s book from 1888,
Maxwell [20, pp. 238–240]:

“Hence, in a strict sense, the influence of a heated part of the body
extends to the most distant part of the body in an incalculably short
time, so that it is impossible to assign to the propagation of heat a
definite velocity initially and these properties also apply to the Kelvin-
Voigt or viscous wave equation as can be seen from the singularity.”

Do these causality properties matter much in practical modeling?
Not really, as stated by Maxwell. He is further quoted in [18] as saying:

“But while this influence can be expressed mathematically from the
first instant, its numerical value is excessively small. . . The sensible
propagation of heat, so far from being instantaneous, is excessively slow
process and the time required to produce. . . change of temperature. . . is
proportional to the ‘square’ of the ‘linear dimension’.”

The last sentence refers to the maximum in time of Eq. 14 which
occurs at tm � x2/(2κ). Maxwell’s statement is another way of saying
that the infinite velocity of the diffusion and Kelvin-Voigt (viscous)
wave equation is attenuated by the infinite attenuation to be so small
that it matters little in practice. There is however a simple way to
avoid it and that is by adding one more spring to the mechanical
model of the medium as is done in the Zener model and this is why it
is called the standard linear solid model.

2.2 Fractional medium models

In the fractional Zener model, shown in Figure 2C, the medium
model of Eq. 10 will be modified to include fractional derivatives,
Mainardi [2, Chap. 3]:

σ t( ) + τασ
∂ασ t( )
∂tα

� Ee ϵ t( ) + ταϵ
∂αϵ t( )
∂tα

[ ], 0< α≤ 1. (15)

As in Mainardi [21, Section 3.1], the fractional derivatives here and in
the rest of the paper are assumed to be of the Caputo type. The
equation reduces to the standard Zenermodel for α = 1. The fractional
Kelvin-Voigt and fractional diffusion models are found in the same
way as in the non-fractional case. The impulses in their responses will
now be changed into power-law functions which will still be singular.

The relaxation response of the fractional Zener model will change
from dependence on an exponential, e−t/τσ to its generalization, the
Mittag-Leffler function, Eα[−(t/τσ)α]. This function is defined as:

Eα t( ) � ∑∞
n�0

tn

Γ αn + 1( ), 0< α≤ 1, (16)

and it is seen that it becomes the exponential function for α = 1. The
Mittag-Leffler function has power-law characteristics for large arguments,
and is finite like the exponential function for small arguments.

The wave equations and asymptotes for attenuation and phase
velocity for the fractional Kelvin-Voigt and fractional diffusion
models shown in Figures 2A, B, will be special cases of the
results to be derived in the next section.

3 Wave equation for a tempered
medium model

We modify the power-law relaxation response of the fractional
Kelvin-Voigt model by tempering. Tempering is a fairly common
way of limiting the extent of a power-law kernel and is done by
tapering it off with an exponential with time-constant τ [22, 23],:

G t( ) � EeH t( ) + ηt−α

Γ 1 − α( )e
−t/τ . (17)

This will limit the tail of the power-law function and thus mainly affect
what happens for large time, i.e., it changes properties for low frequencies
as will be evident. Other smoothly falling tempering functions could also
be considered, for instance the 3-parameter Mittag-Leffler function as in
[24], and which includes the exponential as a special case. Due to the shift
property of the Fourier transform, an exponential is more tractable and is
therefore used here, see Eqs. 22, 23.

Taking the Fourier transform gives the corresponding complex
modulus:

G ω( ) � Ee

iω
+ ητ1−α

1 + iωτ( )1−α, (18)

where the second term happens to be equivalent to the complex
modulus of a Cole-Davidson dielectric model of order (1 − α) [25] as
pointed out in [[3], Section 8.2]. Equation 18 will be the basis for the
derivation of dispersion relations and wave equations.

3.1 Tempered fractional Kelvin-Voigt model

We consider the tempered fractional Kelvin-Voigt medium and by
using its Fourier transform from Eq. 18 and substituting it in Eq. 8, we
obtain the dispersion relation as
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ρ0ω
2

Ee
� k2 + η

Ee
τ1−α

iω

1 + iωτ( )1−αk
2. (19)

With c20 � Ee/ρ0, the wave number can be solved for to give:

k � ω

c0
1 + η

Ee
τ1−α iω 1 + iωτ( )α−1[ ]−1/2

. (20)

The asymptotic values for attenuation and phase velocity can be found
using the methods of [16, 17], and Holm [3, Chap. 5]. For the different
frequency regimes, the wave number can be approximated as:

k ≈

ω

c0

η

Ee
τ1−α iω iωτ( )α−1[ ]−1/2

� ω

c0

η

Ee
( )−1/2

iω( )−α/2, ωτ≫ 1, ωη/Ee ≫ 1

ω

c0
1 + η

Ee
τ1−α iω iωτ( )α−1[ ]−1/2

≈
ω

c0
1 − η

2Ee
iω( )α[ ], ωτ≫ 1, ωη/Ee ≪ 1

ω

c0
1 + η

Ee
τ1−αiω[ ]−1/2

≈
ω

c0
1 − 1

2
η

Ee
τ1−αiω[ ], ωτ≪ 1, ωη/Ee ≪ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(21)

The asymptote of the negative imaginary part of the wavenumber,
i.e., the attenuation of Eq. 12, follows the asymptotes of the fractional
Kelvin-Voigt model for high frequencies and for the medium range
(upper and middle lines in Eq. 21 respectively),

In order for the tempering to affect the lowest frequencies, the
tempering time constant has to be larger than that of the spring-damper
system, i.e., τ≫ η/E. This is assumed in the approximations of Eq. 21.
From the expression in the lower line of Eq. 21, it can be seen that the
imaginary part of k, i.e., the attenuation, will be proportional to ω2. This
latter result is exactly the low frequency response of the band-limited
relaxation integral of Eq. 5 withΩL = 1/τ, so our goal has been achieved.
Likewise, from the real part of the same equation, it can be seen that for
low frequencies, the phase velocity remains constant. The results are
summarized in Table 2.

We now want to find the corresponding wave equation. The
temporal operator corresponding to the factor (1 + iωτ)1−α is not
trivial to find, but by employing results in the dielectrics literature it
can be done. The paper [26] provides a step by step derivation of the
following time–frequency equivalence:

τα−1 1 + iωτ( )1−α5 Dt + 1/τ[ ]1−α. (22)
Here D1−α

t is a standard non-integer or fractional derivative operator
of order 1 − α defined by a convolution integral and [Dt + 1/τ]1−α
refers to the shifted time-fractional derivative or the fractional
pseudo-differential operator. The fractional pseudo-differential
operator is defined as a weighted fractional derivative operator
with a kernel weighted by an exponential [27, 28]:

Dt + 1/τ[ ]1−α � e−t/τD1−α
t et/τ . (23)

We can now derive the wave equation from Eq. 19:

∇2u − 1
c20

∂2u

∂t2
+ η

Ee
Dt + 1/τ[ ]α−1 ∂

∂t
∇2u � 0. (24)

As a test of this result the already existing power-law wave
equation corresponding to the fractional Kelvin-Voigt model can be
obtained as a limiting case. The fractional pseudo-differential
operator can be expanded using an infinite binomial series of
fractional derivatives, Garrappa et al. [28, Eq. B.18]:

Dt + 1/τ[ ]1−α � ∑∞
n�0

1 − α
n

( )τ−nD1−α−n
t . (25)

When t/τ → 0, i.e. n = 0, this infinite series simplifies to

lim
t/τ→0

Dt + 1/τ[ ]1−α � D1−α
t . (26)

Hence, in the limit we observe that the wave equation (Eq. 24)
simplifies to the following:

∇2u − 1
c20

∂2u

∂t2
+ η

Ee

∂α

∂tα
∇2u � 0. (27)

This is indeed the wave equation one would have found if one had
started with the relaxation modulus of the fractional Kelvin-Voigt
model as shown in, e.g., [17, 29].

FIGURE 2
(A) Fractional Kelvin-Voigt, (B) fractional diffusion, and (C) Fractional Zener models for an order 0 < α ≤ 1.
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3.2 Tempered fractional diffusion-wave
equation

Substituting the complex modulus of Eq. 18 with Ee = 0 into Eq.
8, we obtain:

k2 − ρ0
η
τα−1 1 + iωτ( )1−α iω � 0. (28)

Dispersion analysis similar to that of Eq. 21 will give attenuation
which increases with ω1/2 for low frequencies and the same as for
fractional diffusion for higher frequencies. Likewise the phase
velocity will also vary with ω1/2 for very low frequencies.

Using the same procedure as for the tempered fractional Kelvin-
Voigt medium, we find the tempered fractional diffusion-wave
equation:

∇2u − ρ0
η

Dt + 1/τ[ ]1−α∂u
∂t

� 0. (29)

This is equivalent to the tempered fractional diffusion wave
equation of, e.g., [30] (Section 2.2), that can describe a transition
from an anomalous sub-diffusion regime to the normal diffusion
regime. The relaxation response of the tempered fractional diffusion
wave equation has been used to model the responses of elastomers,
Polydimethylsiloxane (PDMS), and the rheological behavior of
alginate-based gels [31].

Using the same limiting operation for τ→∞ as in the previous
section, we observe that the wave equation (Eq. 29) simplifies to the
following:

∇2u − ρ0
η

∂2−αu
∂t2−α

� 0. (30)

This is the fractional diffusion-wave equation.
The properties of the tempered Kelvin-Voigt and diffusion

models are summarized in Table 2.

4 Discussion

There exist numerical schemes for fractional derivative
equations in general [32] as well as for the fractional pseudo-
differential operator of Eq. 23, e.g., the diffusive representation
of [33].

The fractional diffusion-wave equation (Eq. 30), has been analyzed
extensively. The Green’s function, the generalization of Eq. 14, is given
in [[34], Eq. 9]. They also comment that their time-space solution “can
be used to give a new proof of the known fact that . . .a response of the
time-fractional diffusion–wave equation . . .to a localized disturbance

spreads infinitely fast.” They also shows that the maximum in time
occurs at a time proportional to x2/(2−α), Luchko et al. [34, Eq. 16].

Relaxation responses of the form of Eq. 17 have some similarity
with the compressional and shear wave models of the Viscous
Grain-Shearing model for sediment acoustics. The derivation is
however very different as [35] starts with time-varying models to
get the relevant relaxation responses. There are also changes in
constants and terminology, as well as an additional independent
power-law term in Eq. 17 in that work. As fractional calculus is not
used in that work, the wave equations formulated as in Eqs. 24, 29,
are not found there.

In the case of a fit to a lower frequency limit of, for example,
2 kHz as in the sediment acoustics example of Williams et al. [13,
Figure 6] mentioned earlier, the time constant of the tempering
would be in the order of τ = 1/(2π · 2000) ≈ 0.08 ms. This value is
comparable to the value of 0.12 ms used for what is called the
viscoelastic time constant in Buckingham [35, Table 1].

The tempered models considered here both have relaxation
responses with an initial singularity. Although we have argued
that the resulting initial transient that travels with infinite
velocity is negligible, it may be desirable with a model that
avoids it completely. This can be achieved by tempering the non-
singular relaxation response of the fractional Zener model, i.e., by
multiplying the Mittag-Leffler function in the lower left corner of
Table 1 with an exponential. Its Laplace transform is given in [24]
and it is possible to find the corresponding wave equation. It will
have a total of five terms including three loss terms, one more loss
term than that of the fractional Zener model. The fractional Maxwell
model also avoids the singularity at t = 0. Its relaxation response is
similar to that of the fractional Zener model, but without the
constant term. As the Maxwell model is primarily relevant for
fluid media, it will not be considered here.

An alternative way for tempering the fractional Zener model is to
start with the four-term wave equation for the fractional Zener model. It
is similar to that for the fractional Kelvin-Voigt model in Eq. 27 but with
the addition of a loss termwith temporal derivative order α + 2 [16]. One
may substitute all the fractional derivatives with fractional pseudo-
differential operators, similar to when moving from Eq. 27 to Eq. 24.
The relaxation response which corresponds to this new wave equation
can then be found, butG(t) only can be expressed as an infinite series as in
[24]. Such a tempered fractional Zener wave equation is also relevant for
modeling acoustic wave propagation in marine sediments. In [26], it was
shown that the shear wave mode and the fast compressional wave mode
of the Biot poroelastic model can be described by tempered half-order
fractional Zener models.

In our view, the added complexity of either of these approaches
for finding a tempered non-singular kernel based on the fractional

TABLE 2 Relaxation responses for t ≥ 0, and asymptotes of attenuation and of phase velocity for tempered fractional linear viscoelasticity models. Attenuation and
phase velocity asymptotes are shown with the low-frequency asymptote at the bottom and the high-frequency asymptote on the top.

Model Relaxation modulus, G(t) Asymptotes of attenuation Asymptotes of phase velocity

Tempered fractional Kelvin-Voigt
Ee ·H(t) + ηt−α

Γ(1 − α)e
−t/τ ω1−α/2

ω1+α

ω2

⎧⎪⎨⎪⎩
ωα/2

c0
c0

⎧⎪⎨⎪⎩
Tempered fractional difussion ηt−α

Γ(1 − α)e
−t/τ ω1−α/2

ω1/2{ ωα/2

ω1/2{

Frontiers in Physics frontiersin.org06

Holm et al. 10.3389/fphy.2023.1250742

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1250742


Zener model outweighs the advantages, so further results are
therefore not given here.

5 Conclusion

The goal of this paper was to modify the fractional Kelvin-Voigt
and fractional diffusion mediummodels in order make the variation
with frequency at low frequencies more steep. This was patterned
after the ω2 behavior of a truncated sum of relaxation processes
below the lower frequency limit. We found that tempering of the
relaxation modulus with an exponential would lead to such behavior
for the fractional Kelvin-Voigt model. In the case of the fractional
diffusion model, it led to

��
ω

√
behavior below the low frequency limit.

Both of these models are used for modeling compressional and shear
waves in sediment acoustics, but in these cases they are formulated
without fractional derivatives as done in the current work.

The wave equations for the tempered models were found by
employing the fractional pseudo-differential operator, as is also done
in analysis of the Cole-Davidson model for dielectrics. The tempered
power-law wave equations are equivalent to equations discussed in the
fractional calculus literature and thismakes it possible to draw on already
existing literature for analysis of the properties of the solutions, like the
effect of the singularity in the relaxation modulus of these models.
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