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CT perfusion (CTP)-derived quantitative maps of hemodynamic parameters have
found important clinical applications in stroke, cancer, and cardiovascular disease.
Blood flow, blood volume, transit time, and other perfusion parameters are
sensitive markers of pathophysiology with impaired perfusion. This review
summarizes the basic principles of CTP including image acquisition, tracer
kinetic modeling, deconvolution algorithms, and diagnostic interpretation. The
focus is on practical and theoretical considerations for accurate quantitative
parametric imaging. Recommended CTP scan parameters to maintain CT
number accuracy and optimize radiation dose versus image noise are first
reviewed. Tracer kinetic models, which describe how injected contrast material
is distributed between blood and the tissue microenvironment by perfusion and
bidirectional passive exchange, are then derived. Deconvolution algorithms to
solve for hemodynamic parameters of kinetic models are discussed and their
quantitative accuracy benchmarked. The applications and diagnostic
interpretation of CTP in stroke, cancer, and cardiovascular disease are
summarized. Finally, we conclude with a discussion of future directions for
CTP research, including radiation dose reduction, new opportunities with novel
CT hardware, and emerging diagnostic applications.
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1 Introduction

CT perfusion (CTP) is a functional imaging technique used to generate quantitative
maps of hemodynamic parameters such as blood flow, blood volume, and mean transit time.
Normal vascular perfusion underpins normal tissue function, and its disruption may be an
indicator of underlying disease. Since the first demonstration of brain CTP by Leon Axel in
1980 [1], the field has rapidly grown to encompass specific diagnostic applications in various
diseases such as acute ischemic stroke, cancer, and cardiovascular disease. Specifically, CTP
may be used to non-invasively diagnose and characterize diseases with impaired tissue
perfusion, monitor disease progression, and distinguish viable from non-viable tissue.
Decisions on the management and treatment of patients can be informed by CTP.

A notable diagnostic application of CTP is in acute ischemic stroke. CTP was used to
select patients with large vessel ischemic stroke for endovascular stroke treatment in multiple
randomized controlled trials [2–4]. Post-processing and analysis of brain CTP imaging was
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fully automated, and imaging-based assessment of treatment
eligibility was available within minutes of acquisition. Patients
who received endovascular stroke treatment based on a favorable
CTP profile had greatly improved 90-day functional outcomes
compared to those not receiving treatment. The therapeutic
benefit persisted beyond the 6-h onset-to-treatment time window
normally recommended for patients selected without perfusion
imaging. CTP is a validated and automated treatment decision
assistance tool in acute ischemic stroke and played an important
role in demonstrating that endovascular stroke treatment was safe
and effective beyond the standard therapeutic time window.

A CTP study is normally performed as follows. An iodinated
contrast agent is intravenously injected into the patient, and
following a short delay (<10 s) for the contrast agent to arrive at
the organ of interest, CT scans are serially acquired for ≈1 to 3 min.
Time–density (attenuation) curves (TDCs) derived from the
acquired serial (dynamic) contrast-enhanced CT images describe
how the contrast agent washes in and out from tissue by blood flow.
Hemodynamic parameters such as blood flow (F), blood volume
(Vb), mean transit time (MTT), artery-to-tissue contrast delay time
(T0), and time-to-maximum of the residue function (Tmax, a
composite index of delay, dispersion, and MTT) [5] can be
estimated by analyzing the acquired TDCs. Specifically, the
arterial TDC, which estimates the arterial contrast concentration,
is deconvolved from tissue TDCs to estimate an impulse residue
function (IRF). The perfusion parameters of interest are derived
from the IRF, which describes the hemodynamic response if a unit
mass of contrast was injected into the arterial inlet of the tissue.
Calculation of the IRF for each tissue voxel leads to quantitative
maps of perfusion parameters from which regional impairment of
perfusion can be visualized.

This review summarizes the basic principles of CTP, methods to
estimate perfusion parameters, diagnostic applications, and
emerging research, with a focus on quantitative parametric imaging.

2 The quantitative capability of CT

CT images are cross-sectional, quantitative maps of the linear
attenuation coefficient (expressed as CT number) of tissue. Due to
the small differences in the linear attenuation coefficient between
water, blood, and soft tissue in the diagnostic X-ray energy range
(≤150 keV) [6, 7], blood cannot be distinguished from soft tissue
with CT to estimate perfusion. In contrast, iodine has a much greater
attenuation coefficient than that of soft tissue [6, 7]. Intravenous
injection of an iodine contrast agent allows the contrast agent to
circulate throughout the organ of interest. If the patient is scanned
serially with fixed CT protocols as in a CTP study, the contrast-
induced changes in CT number reflect the same in iodine
concentration in vessels and tissue in a linear fashion and can be
quantified as TDCs. Furthermore, an iodine contrast agent is inert,
extracellular, and does not bind to any target nor does it enter a cell;
it remains either in the intravascular or interstitial space [8]. As such,
contrast transport principles, which are described in Section 3, can
be applied to describe TDCs obtained from CTP.

The linear relationship between CT number and contrast
concentration is a notable advantage of CTP compared to
perfusion magnetic resonance imaging (MRI). In dynamic

susceptibility contrast perfusion MRI, a tissue-dependent scaling
factor must be accounted to convert T2* signal change to
gadolinium concentration [9, 10]. As such, absolute
measurements of blood flow and blood volume cannot be
obtained without knowledge of these tissue-dependent scaling
factors. The relative blood flow and volume obtained by
normalizing by mean blood flow or volume in a reference region
are used for perfusion MRI in clinical practice due to this limitation.
While perfusion imaging with positron emission tomography and
flow-specific radiotracers is the clinical gold standard for absolute
perfusion measurements, it is often impractical due to its long scan
time and high resource requirement (e.g., availability of a cyclotron
and flow-specific radiotracers such as 15O-water or 13N-NH3, which
are short-lived tracers with additional logistical problems, unlike off-
the-shelf stable contrast agents used in CTP).

2.1 CT perfusion scan protocol

In designing a CTP scan protocol, the goal is to balance the
radiation dose to the patient versus the signal-to-noise ratio (SNR) of
TDCs required to generate diagnostic quality perfusion maps. The
following scan parameters are of significance in CTP: X-ray tube
voltage, tube current-exposure time, scan interval, contrast injection
volume and rate, axial coverage, and scan duration.

Tube voltage determines the energy spectrum of the incident
X-ray beam and sensitivity to the iodine contrast agent. For CTP, to
balance the iodine contrast-to-noise ratio and radiation dose, a tube
voltage of 80 kV is used for most diagnostic applications [11, 12],
though higher tube voltages (100 or 120 kV) may be appropriate in
thoracic and abdominal CTP, where there may be greater
attenuation of X-rays due to the larger scan object.

At a fixed tube voltage, photon fluence is determined by the tube
current-exposure time product (referred to by its unit, mAs). Photon
fluence and radiation dose are linearly proportional to mAs, and the
noise level is inversely proportional to the square root of the mAs.
ThemAs is an important factor, besides kV, in determining the TDC
SNR. The recommended mAs for brain CTP ranges between
100 mAs and 200 mAs per dynamic image at a tube voltage of
80 kV [13, 14]. The optimal mAs for other anatomical applications
has not yet been established, but can range from tens of mAs to up to
200 mAs per dynamic image. The choice of mAs also depends on the
number of dynamic CTP images acquired to balance the
radiation dose.

The recommended CTP temporal resolution is ≤ 3 s between
dynamic images [13–16]. This range has mainly been determined
empirically and depends on other scan parameters such as contrast
volume and injection rate, patient cardiac output, desired brain
coverage versus scanner axial coverage, and radiation dose [17, 18].
A uniform scan interval of 3 s with a 40-mL bolus injection at 4 mL/s
was found to balance the radiation dose and perfusion parameter
accuracy [17]. Non-uniform scan intervals have also been used to
sample the slower venous/wash-out phase of TDCs at prolonged
intervals to assess blood–brain barrier permeability [19] or to
optimize the radiation dose [15, 20].

The minimum scan interval can also be limited by the desired
anatomical coverage versus the axial coverage provided by the
scanner. In CT scanners with less whole organ coverage
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(<8 cm axially), a toggling table [21, 22] or periodic spiral [23]
technique is often used to increase coverage. The toggling table
technique (also called step-and-shoot or shuttle mode) increases the
axial coverage by acquiring two “slabs” of the object at two “toggled”
table positions. Here, the table is stopped during the scan, and this
process is repeated over the prescribed scan duration [21, 22]. In the
periodic spiral technique, the object is scanned continuously while
the patient table smoothly moves in and out of the gantry (i.e., a
continuous helical or spiral CT scan). The scan interval is therefore
limited by the inter-scan time required due to table movement and
the desired axial coverage.

CTP scan duration should be chosen such that at least the
first pass of contrast through the vasculature is fully captured,
which normally takes 45–60 s after contrast injection [24].
Following the first pass of contrast (the intravascular phase),
the TDC signal is mainly from the influx and efflux of contrast
through the blood–tissue barrier by passive diffusion

(interstitial phase). Therefore, a longer scan duration of
120–150 s may be prescribed to assess vessel permeability and
other kinetic parameters with model-dependent deconvolution
[15, 19, 25]. Scan duration must otherwise be balanced against
radiation dose. If a CTP study is too short, the full wash-out
phase of the contrast agent may not be sampled, especially in
diseased regions where the transit time may be prolonged. This
so-called truncation of TDCs is known to cause an
underestimation of CBV, MTT, and Tmax and, accordingly,
may lead to an inaccurate diagnosis [26]. Tolerance to TDC
truncation may depend on the deconvolution algorithm used to
generate perfusion parametric maps [27]. Of note, an iodinated
contrast material is diffusion-limited with respect to perfusion
in blood–tissue exchange, particularly in the case of an intact
blood–brain barrier. This contrasts with xenon, which is not
diffusion-limited in all tissues. Tracers that are not diffusion-
limited are freely diffusible.

FIGURE 1
Examples of CT artifacts that may affect CT number consistency in CT perfusion. (A) Intra-scan motion artifact in a CT perfusion dynamic image.
(A.ii) The cerebral blood volumemap shows regions of increased and decreased blood volume (arrows), where the decrease suggests an ischemic core.
(A.iii) Follow-up diffusion-weighted imaging does not show an infarct in that region. (B) An anthropomorphic head phantom reconstructed (B.i)with and
(B.ii) without beam hardening correction and (B.iii) the difference image (without minus with correction). The image without beam hardening
correction has cupping artifacts and a poor bone–brain interface (arrows). (C) An anthropomorphic head phantom scanned at (C.i) 20 mm and (C.ii)
40 mmbeam collimation width. (C.iii) The difference image (40 mmminus 20 mm) shows increased intracranial CT number at 40 mm relative to 20 mm
collimation width, possibly due to scattering overcorrection. The arrows also show beam hardening shading artifacts due to the different attenuation
characteristics of bone compared to the intracranial material.
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2.2 CT artifacts

A select number of relevant CT artifacts that affect the
estimation of perfusion are reviewed here. The key idea is to
mitigate CT artifacts such that the linear relationship between
the change in CT number and the change in iodine
concentration is maintained. As such, for CTP, the consistency of
the CT number between images is arguably more important than
absolute CT number accuracy. Representative examples of CT
artifacts discussed in this article are illustrated in Figure 1.

2.2.1 Patient motion
Two types of patient motion can be identified for CTP: (1) inter-

scan motion, which misaligns tissue voxels between dynamic
images, and (2) intra-scan motion, or motion during the
scanning of an image, which often causes dark shading artifacts.
Moderate-to-severe patient motion may be seen in up to 25% of
patients receiving brain CTP [28]. A secondary analysis of a
randomized clinical trial of endovascular stroke treatment
revealed that ≈10% of patients who received brain CTP had
motion artifacts, which rendered the CTP study unanalyzable
[29]. Inter-scan motion can mostly be corrected by co-registering
(spatially aligning) all dynamic images to a reference dynamic image
in the CTP study [30]. Motion correction by image registration is
automated and available in all commercial CTP software. Intra-scan
motion artifact is difficult to correct retrospectively, and dynamic
images showing severe intra-scan motion artifacts may need to be
selectively excluded from CTP post-processing. Motion artifacts can
cause both erroneous increases and decreases in estimated perfusion
depending on the context. For example, intra-scan motion shading
may decrease the amplitude of TDCs and erroneously introduce a
low-blood flow region. In contrast, inter-scan motion may cause
blurring of inter-organ boundaries (e.g., the bone–brain interface)
and cause artificial increases or decreases in the measured TDC
value. Motion is a major challenge for myocardial CTP imaging in
which the beating heart undergoes nonrigid movement. These
challenges are mitigated by electrocardiogram gating, fast gantry
rotation time to minimize intra-scan motion, and nonrigid motion
correction post-reconstruction [31]. Figure 1A illustrates the effect
of intra-scan motion on a CTP cerebral blood volume map.

2.2.2 Beam hardening
Beam hardening refers to an increase in mean X-ray energy

(“hardening”). Generated X-rays are polyenergetic, and low-energy
photons are disproportionately attenuated compared to high-energy
photons when passing through an object [6, 32]. X-rays that pass
through a greater length of the attenuating material will
proportionally have greater hardening. Non-uniform energy
attenuation results in inconsistent X-ray energy distributions
between detectors and projections, which causes a shift in the CT
number, wherein beams with greater hardening have a lower CT
number. Furthermore, streaking and shading artifacts may occur at
cross-sections with heterogenous bone structures, such as at the
posterior fossa of the head [6, 32]. This occurs due to inconsistent
levels of beam hardening between projections. All commercial CT
systems have methods to correct for these artifacts, but the
discussion of specific methods is outside the scope of this review.
Without proper correction, the linear relationship between CT

number and iodine concentration is not maintained, thereby
compromising the accuracy of perfusion parameter estimations.
Beam hardening artifacts are illustrated in Figure 1B and Figure 1C.

2.2.3 X-ray scattering
Compton scattering is one of the main modes of interaction

between X-ray photons and tissue at diagnostic X-ray energy
levels [6]. As a result, the measured CT detector signal can be
from primary photons (directly from the incident X-ray) or a
scattered photon (deflected at a random angle from within the
scanned object). Scattering increases with greater beam
collimation width as the volume of the irradiated material and
detector coverage are increased. Scattering can be modeled as a
low-frequency additive bias to the true primary detector signal,
which may cause streaking artifacts and CT number bias in the
reconstructed image [6]. Because scattering induces a greater
measured detector signal, the projections are seemingly less
attenuated, causing a reduction in CT number [33]. Software
correction methods [34, 35] or a post-patient collimator that
rejects scattered photons [36] can reduce the effects of scattering.
However, suboptimal scattering correction or scattering
overcorrection may result in increased CT number [36]. In
CTP, an inconsistent level of scattering between dynamic
images may cause CT number inconsistency, which would
invalidate the linear relationship between CT number and
iodine concentration. The accuracy of estimated perfusion
parameters would accordingly be affected. Figure 1C illustrates
how CT number consistency may be impacted by differing levels
of scattering due to protocols using different beam collimation
widths.

2.3 CT perfusion radiation dose

2.3.1 CT perfusion dose reduction
Radiation dose levels used for CTP imaging likely do not

increase the risk of cancer mortality substantially, relative to the
natural prevalence rate. Concerns with CTP radiation dose are,
therefore, with respect to the potential diagnostic benefit that is
provided and whether the same diagnostic information can be
reliably abstracted from a lower scan dose. Given a low enough
scan dose, radiation risk-to-diagnostic benefit criteria may be
favorable for CTP.

The most straightforward dose reduction technique is to reduce
the mAs or kV. Dose scales linearly with mAs and by a power law
with kV [6]. CTP image and TDC SNR suffer with lower mAs as
noise increases proportionally to the inverse square root of mAs. The
estimated blood flow becomes overestimated at lower mAs than at
higher mAs, and similar biases are observed for other estimated CTP
parameters [37]. The relationship between kV and the TDC SNR is
more complex: while noise increases with lower kV by a power law
[6], the sensitivity to iodine concentration also increases due to a
greater proportion of the X-ray energy spectrum being closer to the
K edge of iodine.

Dose reduction by reducing mAs and kV has mainly been
investigated empirically. Murphy et al. found no significant
differences in CBF, CBV, and Tmax estimated from brain CTP
studies of patients with acute ischemic stroke acquired at 50 mAs
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versus 100 mAs at otherwise fixed protocols, potentially offering
dose reduction by 50% [38]. Li et al. demonstrated that low-dose
CTP acquired at 70 kV did not compromise the image quality of
generated perfusion maps compared to 80 kV, resulting in a
reduction of the effective dose from 4.7 to 3.0 mSv [39]. A low-
dose 70 kV and 120 mAs CTP protocol was also superior to an
80 kV and 100 mAs protocol for CTP imaging of the pancreas,
resulting in a lower effective dose of 3.60 versus 4.88 mSv [40]. The
minimum image and TDC SNR required for reliable detection of
disease at CTP is not yet known. A model relating the TDC SNR to
lesion detectability may help determine the minimum required scan
dose for the diagnosis.

3 Theory of contrast transport

This section describes the principles of contrast transport used
to estimate perfusion parameters with dynamic contrast-enhanced
CT imaging.

3.1 Fick principle

We begin with the Fick principle, which considers a control
volume, Q, with an arterial inlet contrast concentration, Ca(t),
and a venous outlet contrast concentration, Cv(t). A schematic is
provided in Figure 2A. By conservation of mass, the
concentration of contrast that accumulates in Q(t) over time
is related to Ca and Cv by:

Q t( ) � F∫t
0
Ca τ( ) − Cv τ( )[ ] dτ, (3.1)

where F is the blood flow (in units of mL/g per unit time, but often
reported in mL/min/100 g) delivering contrast into and draining
contrast out of the tissue volume. Eq. 3.1 is the integral form of the
Fick principle and is the basis of the peak enhancement method for
determination of perfusion: under the assumption of no venous
outflow (Cv(t) = 0) in the period [0, t max], where t max is the time
when Q(t) attains its maximum (peak) value. Eq. 3.1 can be
rewritten as

FIGURE 2
Contrast transport in CT perfusion. (A) Schematic of a tissue volume, Q, comprising a network of capillaries with an arterial inlet time-contrast
concentration (density), Ca(t), supplied by blood flow F and a venous outlet time-contrast concentration, Cv(t), drained similarly by F. (B) Schematic of
the Johnson–Wilson–Lee (JWL) model of contrast transport. (C) Arterial time–density curve, (D) JWL-based impulse residue functions, and (E)
corresponding tissue time curves. (A) was adapted and modified with permission from Servier Medical Art, licensed under a Creative Commons
Attribution 3.0 unported license.
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F � Q t( )[ ] max

∫t max

0
Ca τ( )dτ

, (3.2)

which states that perfusion is the ratio of the maximum tissue TDC
value and the area of the arterial curve until t max. Alternatively,
differentiating Eq. 3.1 while assuming no venous outflow results in

F �
d
dt Q t( )[ ] max

Ca,max
. (3.3)

Eq. 3.3, the differential form of the Fick principle, is the basis for the
maximum front slope method [41], which states that blood flow is the
quotient of the maximum slope ofQ(t) and the maximum value of the
arterial curve. While this model simply describes blood flow, it relies on
the assumption that there is no venous outflow of contrast agent during
the measurement period, which is likely violated in regions such as the
brain, where the artery-to-venous transit time of the contrast may be
only 4–6 s. If this assumption is violated, themeasuredQ(t)will change
slower over time compared to no venous outflow, and blood flowwill be
underestimated as a result. Nonetheless, Eq. 3.3 highlights a key
relationship between the slope of Q(t), Ca(t), and blood flow.
Alternatively, F can be computed as the linear regression (y � mx)
slope when taking x � ∫t

0
Ca(τ) dτ and y � Q(t).

3.2 Impulse residue function

Meier and Zierler [42] formalized the work by Stewart [43] to
describe an alternative impulse residue function (IRF)-based
formulation to contrast transport. Consider a network of capillaries
with contrast delivery via blood flow by an arterial inlet and a venous
outlet (Figure 2A). The transit time of contrast from the arterial inlet to
the venous outlet can be modeled by a probability distribution function
or a transit time spectrum, h(t), where ∫∞

0
h(τ) dτ� 1. If the transit

time spectrum is time-invariant (does not change over the
measurement time; i.e., contrast transport can be modeled as a
stationary system) and CT number is linear with contrast
concentration, then by the principle of linear superposition, the
TDC at the venous outlet is related to that at the arterial inlet as follows:

Cv t( ) � Ca t( )⊗ h t( ), (3.4)
where ⊗ is the convolution operator defined as

f t( )⊗ g t( ) � ∫∞
−∞

f τ( )g t − τ( ) dτ. (3.5)

Defining the IRF, R(t), as the fraction of the contrast agent
remaining in tissue at time t, results in

R t( )� 1−∫t
0
h τ( )dτ. (3.6)

Eq. 3.1 can be reformulated using (3.4) and (3.6) to arrive at the
form:

Q t( ) � F∫t
0
Ca γ( )R t − γ( ) dγ

� FCa t( )⊗ R t( )
. (3.7)

The tissue TDC is the convolution of the arterial curve and the
IRF scaled by blood flow. A flow-scaled IRF, RF(t), can be defined as
RF(t) � FR(t) for convenience. Since ∫t

0
h(τ) dτ is a monotonically

increasing function that ranges from 0 to 1, R(t) also ranges from
0 to 1 andmonotonically decreases between time 0 and t. This agrees
with the definition that the IRF is the fraction of contrast remaining
in the system at time t. F can then be estimated as the maximum
value of the flow-scaled IRF.

The IRF describes a theoretical tissue response function if a
unit mass of bolus was instantaneously injected into the arterial
inlet (i.e., Ca(t) � δ(t), a Dirac delta function). In practice,
directly measuring the IRF non-invasively is infeasible.
Imaging modalities such as CT, magnetic resonance imaging,
or positron emission tomography are used to non-invasively
measure Q(t) and Ca(t), and RF(t) is calculated by inverting
the convolution, i.e., deconvolution. Deconvolution algorithms
are discussed in Section 4.

3.3 Central volume principle

The central volume principle [42] describes the relationship
between blood flow (F), blood volume (Vb), and the mean
transit time (MTT) of blood through the tissue vasculature
(both macro- and micro-vasculature). Consider that a bolus of
the contrast agent is injected into the arterial inlet of the tissue,
i.e., F∫0+

0
δ(t)dt � F. At time t, by definition, the fraction of the

contrast agent leaving the system is h(t) dt. If contrast agent and
blood are uniformly mixed, the fraction of tissue blood volume
leaving via the venous outlet at this time is h(t)dt. However, this
fraction would have ‘traced’ a blood volume of dVb � Fh(t)tdt.
The total blood volume, Vb is obtained by integrating over
time or

Vb � ∫∞
0
F th t( ) dt � F∫∞

0
th t( )dt.

∫∞
0
th(t) dt is recognized as the expected value of h(t). The MTT of

blood through the tissue vasculature (both macro and micro) is

MTT � ∫∞
0
th t( ) dt.

Therefore, the central volume principle states that the blood
volume is the product of the blood flow and the MTT:

Vb � F ·MTT. (3.8)
Meier and Zierler also showed that the area underneath R(t) is

equal to the MTT [42]:

MTT � ∫∞
0
R t( ) dt. (3.9)

Of note, the central volume principle made no assumptions on
the shape of h(t), and thus is generally applicable, independent of
the hemodynamic model of intravascular contrast transport.

3.4 Tracer kinetic modeling

So far, the properties of the contrast agent were not considered,
and no assumptions were made about underlying hemodynamic
processes that determine the functional form of the transit time
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spectrum, h(t), and therefore the IRF, R(t). X-ray contrast is inert,
does not bind to any target in blood or tissue, and does not enter cells
[8]. Therefore, the contrast agent remains extracellular and
distributes in the intravascular blood space and interstitial space.
The magnitude of distribution in the interstitial space depends on
the permeability of local capillaries. For example, an intact
blood–brain barrier prevents the contrast agent from entering the
interstitial space; however, if this barrier is disturbed, contrast can
leak into the extravascular (interstitial) space and efflux from there
back into the blood space by bidirectional passive diffusion
depending on the concentration gradient. Without a tracer
kinetic model, the distribution of the tracer in the intravascular
and extravascular spaces cannot be described mathematically by
the R(t).

The Johnson–Wilson–Lee (JWL) model is a kinetic model that
can describe the equilibration of contrast through the blood–tissue
barrier between intra- and extra-vascular space [12, 44, 45], which
accounts for the perfusion of contrast through the vasculature as
well as its bidirectional permeation across the blood–tissue barrier.
Note that because both perfusion and permeation are explicitly
accounted for, the JWL model is valid independent of the relative
rates of perfusion (F) and blood–tissue permeation (characterized
by the permeability surface product (PS) of the barrier). A schematic
of the JWLmodel is shown in Figure 2B. The JWLmodel IRF and its
special cases (plug flow and irreversible leakage) are discussed in the
following sections and are illustrated in Figure 2D. Corresponding
tissue curves after convolving with the arterial curve in Figure 2C are
shown in Figure 2E.

3.4.1 Johnson–Wilson–Lee model
The flow-scaled IRF of the JWL model is given by

RJWL
F t( ) �

0 0≤ t<T0

F T0 ≤ t<T0 +W
FEe−k2 t−T0−W( ) t≥T0 +W

⎧⎪⎨⎪⎩
� F U t − T0( ) − U t − T0 −W( )[ ]
+FEe−k2 t−T0−W( )U t − T0 −W( ), (3.10)

where T0 is the delay time between the arrival of the contrast
agent at the artery and tissue; W is the minimum transit time for
the contrast to pass through the tissue vasculature; FE is the flow-
extraction product, where E is the fraction of the contrast that is
extracted to the interstitial space by unidirectional passive
diffusion (0≤E≤ 1), and k2 is the efflux rate constant. U(t) is
the Heaviside step function:

U t − τ( ) � 0 t< τ
1 t≥ τ
{ .

For the JWL model, St Lawrence and Lee showed that [45]

K1 � FE,

E� 1−e−PS/F, (3.11)
k2 � K1

Ve
,

whereK1 is the influx rate constant of the extracted contrast agent to
the extravascular space, PS is the permeability surface area product
of the endothelial barrier and gives the permeation rate through
passive diffusion, k2 is the efflux rate constant of the contrast leaking

back to the intravascular space, and Ve is the distribution volume of
the extravascular space.

By using Eq. 3.10 and (3.7), a closed-form solution to Q(t) can
be derived:

QJWL t( ) � F D t − T0( ) −D t − T0 −W( )[ ]
+FECa t − T0 −W( ) ⊗ e−k2tU t − T0 −W( ),

(3.12)
where D(t − γ) � ∫t

γ
Ca(τ − γ)U(τ − γ)dτ and the time integral of

Ca(t) shifted by γ.
The standard interpretation of the JWL model is that all vessels

in a tissue volume are fused into a single tube and, therefore, has a
uniform transit time. In this case, the minimum transit time W is
equal to the MTT. This is the so-called “plug flow” model in which
the contrast agent passes through vessels without dispersion. In the
case of a permeable vessel, a fraction of flowing contrast is initially
extracted from the vessels into the extravascular space and then leaks
back to the intravascular space at the efflux rate constant. Here, the
exponential decay component of the JWL IRF is fully attributed to
the wash-out of the extracted contrast from the extravascular space.

A modified interpretation of the JWL model may instead
consider the exponential decay as a measure of dispersion due to
varying vessel path lengths. In this interpretation, the contrast fully
remains in the intravascular space and E represents the fraction of
contrast with transit time > W such that the MTT � W + E/k (i.e.,
the mean vascular transit time is the total area underneath the JWL
IRF). A mixed interpretation, one in which both heterogeneous
vascular transit time and leakage of the endothelial barrier are
accounted for, may be possible, but the two processes must be
alternatively modeled or partitioned heuristically. The JWLmodel of
contrast transport is, therefore, highly flexible depending on its
interpretation and how the distribution of the contrast is partitioned
between the intra- and extra-vascular space.

3.4.2 Special case of the Johnson–Wilson–Lee
model: irreversible leakage (k2 = 0)

A special case of the JWL model arises when the contrast leaks
into the extravascular space but does not leak back into the
intravascular space (k2� 0). The resulting flow-scaled IRF,
RFE
F (t), for this special case is

RFE
F t( ) �

0 0≤ t<T0

F T0 ≤ t<T0 +W
FE t≥T0 +W

⎧⎪⎨⎪⎩
� F U t − T0( ) − U t − T0 −W( )[ ]
+FEU t − T0 −W( )

, (3.13)

and the closed-form solution, QFE(t), is simplified to

QFE t( ) � F D t − T0( ) −D t − T0 −W( )[ ] + FED t − T0 −W( ).
(3.14)

As with the JWLmodel, this special case can also be interpreted such
that E represents the extraction of the contrast into the extravascular
space from endothelial barrier leakage or the fraction of contrast with
vascular transit time>W (heterogenous vascular transit time).MTT and
Vb therefore depend on the interpretation of the model: in the former
case,MTT � W, whereas in the latter case,MTT � W + E(TD − T0),
where TD is the duration of the CTP study. A width (TD − T0) is
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enforced such thatMTT is clipped to a finite value.Vb � F ·MTT is the
same as in Eq. 3.8 but depends on the adopted definition of MTT.

3.4.3 Patlak graphical analysis
The special case of the JWL model with irreversible leakage is

similar to the Patlak graphical analysis method when taking W→ 0
in RFE

F (t) (i.e., a Dirac delta function in place of a finite-width
boxcar) [46]. The Patlak flow-scaled IRF is therefore:

RPatlak
F t( ) � Vb δ t − T0( ) + K1U t − T0( ), (3.15)

where the area underneath the Dirac delta function is Vb. By
evaluating Eq. 3.7 with (3.15), the tissue TDC can be expressed as

QPatlak t( ) � VbCa t − T0( ) +K1∫t
T0

Ca τ − T0( ) dτ. (3.16)

Dividing both sides by Ca(t − T0) results in

QPatlak t( )
Ca t − T0( ) � Vb +K1

∫t
T0
Ca τ − T0( )dτ
Ca t − T0( ) . (3.17)

The Patlak parameters Vb andK1 can then be estimated linearly
taking y � QPatlak(t)/Ca(t − T0) and x � ∫t

T0
Ca(τ − T0) dτ/Ca

(t − T0) for assumed values of T0 (e.g., by a grid search of T0 values).

3.4.4 Special case of the Johnson–Wilson–Lee
model: intravascular plug flow (FE = 0, k2 = 0)

Another special case arises when there is no leakage of contrast
to the extravascular space (i.e., the contrast fully remains in the
intravascular space) and the vascular transit time is uniform. As
mentioned previously, this is the so-called “plug flow” model. The
resulting IRF, Rplug

F (t), for this special case is

Rplug
F t( ) �

0 0≤ t<T0

F T0 ≤ t<T0 +W
0 t≥T0 +W

⎧⎪⎨⎪⎩
� F U t − T0( ) − U t − T0 −W( )[ ]

, (3.18)

and the closed-form solution, Qplug(t), is

Qplug t( ) � F D t − T0( ) −D t − T0 −W( )[ ]. (3.19)
Here, W � MTT as the contrast is entirely intravascular. The

significance of the two special cases of the JWL model will be
elaborated in Section 4.2 when discussing model-dependent
deconvolution methods.

4 Deconvolution methods

Deconvolution aims to “invert” the convolution in Eq. 3.7 to
recover the flow-scaled IRF from the measured arterial (Ca(t)) and
tissue TDCs (Q(t)). Methods can be broadly categorized into
model-independent and model-dependent deconvolution. Model-
independent methods make no assumption about the functional
form of RF(t) which is non-parametrically recovered from the
measured Q(t) and Ca(t). Conversely, model-dependent
methods parameterize RF(t) based on tracer kinetic models (e.g.,
equations 3.9; 3.12; 3.14) and use the parametric form of Q(t) (e.g.,
equations 4.11; 4.13; 4.15; 4.16) to estimate the model parameters of
RF(t). It has been extensively shown that different deconvolution

methods can produce different estimates of perfusion parameters
[47–50].

4.1 Model-independent deconvolution

First, the convolution in Eq. 3.7 can be discretized as

q j[ ]� Δt∑N−1

i�0
ca i[ ]rF j − i[ ], (4.1)

where

q � Q t0( ),Q t1( ),/,Q tN−1( )[ ]T
ca � Ca t0( ),Ca t1( ),/,Ca tN−1( )[ ]T
r � RF t0( ),RF t1( ),/,RF tN−1( )[ ]T

are vectorized forms of Q(t), Ca(t), and RF(t), respectively, over
measurement times t0,t1, . . . ,tN−1 at Δt uniformly spaced intervals. i
and j are integer vector indices, and N is the number of vector
elements. Vectors and matrices are denoted by emboldened
characters.

The discrete convolution in Eq. 3.14 can be formulated as a
matrix multiplication:

q� ΔtAr, (4.2)
where A is a Toeplitz matrix formed by the elements of ca:

A �
Ca t0( ) 0 / 0
Ca t1( ) Ca t0( ) / 0

..

. ..
.

1 ..
.

Ca tN−1( ) Ca tN−2( ) / Ca t0( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4.3)

Model-independent deconvolution methods therefore aim to
non-parametrically recover r from the measured q and ca.

4.1.1 Singular value decomposition
One of the most commonly used approaches to recover r in

perfusion imaging is with singular value decomposition (SVD) [49,
51]. The SVD factorizes an m × n matrix, M, into the form:

M�UΣVT �∑k
i�1
σ iuiv

T
i ,

where U � [ u1 . . . um ] and VT � [ v1 . . . vn ]T are real
orthogonal matrices for a real matrix M, comprising left and
right singular vectors ui and vi, respectively, and Σ is an m × n
diagonal matrix with non-negative real singular values σ i � Σii on its
diagonal. Singular values by convention are arranged in descending
order such that σ1 ≥ σ2 ≥ . . . ≥ σk, where k is the rank of M.
Knowing that the inverse of an orthogonal matrix is its
transpose, the pseudoinverse of M can be obtained by

M+�VΣ+UT �∑k
i�1

viuT
i

σ i
,

where + indicates the pseudoinverse and Σ+ is obtained by taking the
reciprocal of each singular value:

Σ+
ii � 1/σ i σ i > 0

0 σ i� 0
{ .

Eq. 3.14 can then be solved by the pseudoinverse with the SVD:
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r̂ � 1
ΔtVΣ+UTq � 1

Δt∑
k

i�1

uT
i q
σ i

vi, (4.4)

where r̂ is the pseudoinverse-estimated flow-scaled IRF and U ,Σ,V
are from the SVD of A. The pseudoinverse returns the least-squares
solution [49, 52, 53]:

r̂ � argmin
r

q −Ar‖��� 2
2.

However, since Σ+ comprises reciprocals of σ i, small singular
values will cause the solution r̂ to be unstable [53]. Small singular
values arise when columns of A are collinear, that is, columns of A
can be expressed as a linear combination of its other columns [54]. A
simple method to combat this problem is to truncate small singular
values below a prescribed threshold [49, 55]:

ftrunc
i,λr

� 1 σ i > λ
0 σ i ≤ λ
{ , (4.5)

where ftrunc
i,λr

is a regularization filter and λ � λrσ1 is the singular
value threshold for truncating singular values below a fraction λr of
the largest singular value σ1. Commonly used values for λr range
between 10% and 20% [48–50]. Alternatively, small singular values
can be rolled off more smoothly with a Tikhonov/Wiener weighting
filter [56]:

fTikh
i,λr

� σ2i
σ2i + λ2

.

These filters can be incorporated into Eq. 4.4:

r̂ � 1
Δt∑

k

i�1
fi,λr

uT
i q
σ i

vi,

where fi,λr is either f
trunc
i,λr

or fTikh
i,λr

. Of note, the solution r̂ obtained
after applying the Tikhonov/Wiener filter is equivalent to the least-
squares solution with Tikhonov (2-norm) regularization [56, 57]:

r̂ � argmin
r

q
��� −Ar‖22 + λ2 Ir‖ ‖22,

where I is the identity matrix. More advanced constraints, such as
non-negativity and regularizing the second derivative of r (by
replacing I with a second-order finite difference matrix) to
reduce spurious oscillations [58, 59], may be further applied to
produce more physiologically reasonable solutions, but is outside the
scope of this review.

Standard SVD deconvolution is considered delay-sensitive; that is, r̂
is erroneous when there is a time interval between contrast arrival at
Ca(t) and at Q(t). This time interval is T0. There are two cases to
consider: (1) when the contrast arrives atQ(t) earlier than at Ca(t) and,
conversely, (2) when the contrast arrives atQ(t) later than atCa(t). The
first case is arguably more problematic as it violates the causality
assumption of the contrast transport theory formulated in Eq. 4.2,
where tissue enhancement, Q(t), is expected to be “driven” by the
arterial contrast concentration, Ca(t). Q(t) and R(t) must therefore be
0 between 0≤ t<T0 as the contrast has not yet arrived in the tissue from
the artery. However, this assumption may not hold in practice if Ca(t)
was obtained from a distal artery relative to the local artery supplying
Q(t). Alternatively, Ca(t) may have been selected in an ischemic region
where arterial contrast arrival is delayed relative to that of normal brain. In

such cases,T0 < 0 and the first non-zero element ofQ(t) andR(t) occur
at t< 0. Smith et al. [60] reformulated the standard SVDdeconvolution to
enforce causality by deconvolving a shifted Q(t) such that it lags Ca(t).
Without shifting Q(t), standard SVD substantially overestimated true
blood flow, but after reformulation, SVD blood flow was equivalent to
that of delay-insensitive deconvolution [60].

The second case, in which the contrast arrives at Q(t) later than
that at Ca(t), is common in acute ischemic stroke and may lead to an
underestimation of blood flow [61, 62]. Ca(t) is often selected at a
proximal large artery, and Q(t) is downstream of an occlusion, so the
contrast arrival in tissue is delayed. In these cases, T0 > 0, andQ(t) and
R(t) should theoretically be 0 between 0≤ t<T0 as no contrast has
arrived at t<T0. As this criterion is not enforced by the formulation in
Eq. 4.2, r̂ may not be 0 between 0≤ t<T0. True blood flow is
underestimated as a result of SVD deconvolution when T0 > 0 [61,
62]. Ibaraki et al. proposed estimating T0 for each tissue curve until the
arterial peak time by a least-squares fitting toQ(t) with a shifted Ca(t)
convolved with an exponential decay kernel. Alternatively, a more
thorough but computationally expensivemethodwould be to iteratively
shift Q(t) for a range of T0 and compute an r̂T0 by SVD for each
T0-shiftedQ(t), qT0

[58]. The optimal delay time and deconvolved IRF
would be the r̂T0 producing the least-squares difference between qT0

andAr̂T0. By including both negative and positive delays in the iterative
search ofT0, this method can address both delay sensitivity problems of
standard SVD in which the contrast can arrive at Q(t) either earlier or
later than at the selected Ca(t).

4.1.2 Block-circulant singular value decomposition
Wu et al. described a delay-insensitive deconvolution method by

performing the SVD with a block-circulant matrix of ca [50]. The
matrix multiplication in Eq. 4.2 becomes a circular convolution
when replacing A with the circulant matrix, Ac :

Ac �

Ca t0( ) 0 / 0 0 Ca tN−1( ) / Ca t1( )
Ca t1( ) Ca t0( ) / 0 0 0 / Ca t2( )

..

. ..
.

1 ..
. ..

. ..
.

1 ..
.

Ca tN−1( ) Ca tN−2( ) / Ca t0( ) 0 Ca tN−2( ) / 0
0 Ca tN−1( ) / Ca t1( ) Ca t0( ) 0 / 0
0 0 / Ca t2( ) Ca t1( ) Ca t0( ) / 0

..

. ..
.

1 ..
. ..

. ..
.

1 ..
.

0 Ca tN−2( ) / 0 Ca tN−1( ) Ca tN−2( ) / Ca t0( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� A A′

A′ A
[ ]

,

where

A′ �
0 Ca tN−1( ) / Ca t1( )
0 0 / Ca t2( )
..
. ..

.
1 ..

.

0 Ca tN−2( ) / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Block-circulant SVD deconvolution can be performed using Ac

in Eq. 4.2 and using the pseudoinverse method with regularization as
described in the previous section. Circular convolution is equivalent
to linear convolution with time aliasing [63]. Time aliasing can be
avoided by appending ca with zeroes to have a total length ≥ 2N,
which is already considered in the above notation. Note that this is
equivalent to applying a rectangular window function of width tN−1;
unless ca decays to 0 at t � tN−1, the sharp change from Ca(tN−1) to
0 will result in Gibbs ringing artifact in the deconvolved IRF r̂.
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Ringing can be mitigated in part by regularizing the solution with an
oscillation index as described by Gobbel and Fike [50, 64].
Regularizing the second derivative of r̂ as briefly alluded in the
previous section may also be effective in this context.

4.1.3 Fourier transform deconvolution
The Fourier transform-based method of deconvolution utilizes

the convolution theorem, which states that a convolution in the time
domain is a product in the frequency domain. Applying the Fourier
transform to both sides of Eq. 3.7 results in

~Q f( ) � ~Ca f( ) · ~RF f( ),
where˜ indicates the Fourier transform of a function and f is the
frequency variable in units of inverse time. RF(t) can then be
obtained by taking the inverse Fourier transform (F −1) of the
quotient of the tissue and arterial curve frequency spectra:

RF t( ) � F −1 ~Q f( )
~Ca f( ){ }.

The Fourier transform method of deconvolution is
mathematically equivalent to the block-circulant SVD method
[50, 53]. It follows that Q(t) and Ca(t) should also be zero-
padded in this method to have a total length ≥ 2N prior to
taking the Fourier transform to avoid time aliasing. As with SVD
methods, the Fourier transform method is also highly sensitive to
noise and must be regularized with a filter, ~g(f):

RF t( ) � F −1 ~g f( ) ~Q f( )
~RF f( ){ }.

~g(f) could be a rectangular low-pass filter defined as

~glp f( ) � 1 −λ≤RF f( )≤ λ
0 f
∣∣∣∣ ∣∣∣∣> λ{ ,

where λ � λr ~RF(0) is a fractional threshold of the zero-frequency
~RF(0) and would be equivalent to block-circulant SVD with
truncated singular values of the same relative threshold.
Alternatively, Straka et al. proposed a Wiener-like filter to roll off
high-frequency components more smoothly [65]:

~gWiener f( ) �
~C
2

a f( ) −N2

~C
2

a f( ) ~Ca f( )>N,f ≠0

1 f� 0

0 else

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (4.6)

whereN � λr
2 max|~Ca(f)|. Wiener-like filtering is effectively similar

to Tikhonov regularization in block-circulant SVD. Note that the
filter value at zero frequency is 1, and thus the zero frequency of the
filtered ~RF(f) remains unchanged. The significance of the zero
frequency of ~RF(f) is that it is the area underneath RF(t), which is
equal to the blood volume. This can be shown by evaluating the
Fourier transform integral at f� 0:

~RF 0( ) � ∫∞
−∞

RF t( )dt � F∫t
0
R τ( )dτ � F ·MTT � Vb.

As such, with careful filtering to not modify the zero-frequency
value during Fourier transform deconvolution, blood volume
estimates will be unaffected by regularization.

4.1.4 Bayesian deconvolution
Applying Bayesian deconvolution to estimate hemodynamic

parameters in patients starts with the assumption that each
patient can be specified by two types of events (characteristics)—
CTP TDCs and themodel represented by the flow-scaled IRF, RF(t),
to generate Q(t) according to Eq. 3.7. The a posteriori probability of
RF(t) given a measured Q(t), or P(RF(t)|Q(t)), can be factored
using the Bayes Theorem [66] as follows:

P RF t( )|Q t( )( ) � P Q t( )|RF t( )( )P RF t( )( )
P Q t( )( ) , (4.7)

where P(Q(t)|RF(t)) is the probability (likelihood) of observing
Q(t) given a specific RF(t), P(RF(t)) is the a priori probability of
RF(t), and P(Q(t)) is the probability of observing Q(t). The
Bayesian deconvolution for RF(t) then maximizes the a posteriori
probability P(RF(t)|Q(t)) or

argmax
RF t( )

P RF t( )|Q t( )( )� argmax
RF t( )

P Q t( )|RF t( )( )P RF t( )( )
P Q t( )( ) . (4.8)

P(Q(t)) can also be written as

P Q t( )( )� ∫P Q t( )|RF t( )( )P RF t( )( )dRF t( ). (4.9)

Eq. 4.9 shows that P(Q(t)) gives the probability (evidence)
that the measured Q(t) can be modeled by RF(t) using Eq. 3.7.
Unless there are biases or artifacts in the CTP study, every Q(t) is
equally likely; therefore, P(Q(t)) is uniform and Eq. 4.8
simplifies to

argmax
RF t( )

P RF t( )|Q t( )( ) � argmax
RF t( )

P Q t( )|RF t( )( )P RF t( )( ). (4.10)

If P(RF(t)) is uniform (i.e., ~1), i.e., we do not have prior
knowledge of which RF(t) is more likely, Eq. 4.10 simplifies to

argmax
RF t( )

P RF t( )|Q t( )( ) � argmax
RF t( )

P Q t( )|RF t( )( ). (4.11)

Eq. 4.11 shows that the Bayesian deconvolution or maximum a
posteriori (MAP) is equivalent to the maximum likelihood
estimation of RF(t) under the assumption that both P(RF(t))
and P(Q(t)) are uniform. In addition, because an RF(t) that
maximizes P(RF(t)|Q(t)) and P(Q(t)|RF(t)) also maximizes
their logarithms, Eq. 4.11 can also be written as

argmax
RF t( )

logP RF t( )|Q t( )( ) � argmax
RF t( )

logP Q t( )|RF t( )( ). (4.12)

Assuming that the measured Q(t) has a Gaussian noise of equal
variance, σ2, distributed around the true value and the noise between
samples is independent (IID Gaussian noise), then the likelihood,
P(RF(t)|Q(t)), can be written as

P RF t( )|Q t( )( ) �∏N
n�1

1����
2πσ2

√ e−
1
2

Q tn( )− Ca t( ) ⊗ RF t( )[ ]t�tn
σ( )2 . (4.13)

Substituting Eq. 4.13 into (4.12) results in

argmax
RF t( )

logP RF t( )|Q t( )( ) � argmin
RF t( )
∑N
n�1

1
2σ2

Q tn( ) − Ca t( ) ⊗ RF t( )[ ]t�tn( )2

+∑N
n�1

1
2
log
����
2πσ2

√( ).
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Therefore, the MAP RF(t) estimate is equivalent to the
traditional least-squares estimate. That is, under the assumptions
of (1), P(RF(t)) and P(Q(t)) are uniform (i.e., ~1) and (2) Q(t) has
IID Gaussian noise:

argmax
RF t( )

P RF t( )|Q t( )( ) � argmin
RF t( )
∑N
n�1

Q tn( ) − Ca t( ) ⊗ RF t( ))[ ]t�tn( )2.
(4.14)

When a priori knowledge of RF(t) is available, the MAP RF(t)
estimate for uniform P(Q(t)) is given by the log transformation of
Eq. 4.10:

argmax
RF t( )

logP RF t( )|Q t( )( ) � argmax
RF t( )

logP Q t( )|RF t( )( ) + logP RF t( )( )[ ] .
(4.15)

If Q(t) has IID Gaussian noise, Eq. 4.15 can be rewritten as
(ignoring constant term) follows:

argmax
RF t( )

logP RF t( )|Q t( )( ) ~ argmax
RF t( )
∑N
n�1

− 1
2σ2

Q tn( ) − Ca t( ) ⊗ RF t( )[ ]t�tn( )2
+ argmax

RF t( )
logP RF t( )( ) .

(4.16)

One useful a priori constraint on RF(t) is smoothness as measured
by the integral of the square of the curvature. Boutelier et al. formally
expressed the smoothness of R(t) as a probability distribution and
solved for the MAP distribution, P̂(RF(t)|Q(t)), using Eq. 4.16 [67].
The hemodynamic parameters can then be obtained as the means of
different marginal distributions of P̂(RF(t)|Q(t)).

The marginal a posteriori distribution of F, P̂(F|Q(t)), is
obtained by evaluating the following multiple definite integrals
(noting RF(t) � FR(t)):

P̂ F|Q t( )( ) � ∫
R t( )

P̂ RF t( )|Q t( )( )dR t( ),

which is a definite integral in the N-dimensional space (as R(t) is
discretized into a vector of N elements, see Eq. 4.1). The Bayesian
deconvolution-estimated blood flow, F̂, is the mean of P̂(F|Q(t)):

F̂� ∫FP̂ F|Q t( )( )dF.

The marginal a posteriori distribution of R(t), P̂(R(t)|Q(t)), is
obtained by evaluating the following multiple definite integrals:

P̂ R t( )|Q t( )( ) � ∫
F
P̂ RF t( )|Q t( )( )dF.

The Bayesian deconvolution-estimated IRF, R̂(t), is the mean
of P̂(R(t)|Q(t)):

R̂ t( ) � ∫
R t( )

R t( ) P̂ R t( )|Q t( )( )dR t( ),

which is a definite integral in the N-dimensional space. The
estimated mean transit time, M̂TT, is calculated as

M̂TT �∑N
n�1

R tn( )Δt,

where Δt is the sampling interval ofQ(t). Finally, the estimated fit to
Q(t) is evaluated by Eq. 3.7 with F̂R̂(t).

However, calculations of both marginal distributions and their
means can be time-consuming as they involve evaluating up to N
definite integrals, where N is the number of samples of Q(t) and
R(t), which can be as many as 90 depending on the sampling
interval. Approximate analytical rather than more exact numerical
integration can speed up the calculation but lead to oscillating and
negative R(t) at certain times [66], both of which are non-
physiological.

The right side of Eq. 4.16 suggests that Bayesian deconvolution
with a priori knowledge of P(R(t)) can be cast as an optimization
problem. If a least-squares criterion is used for IID Gaussian noise in
Q(t), then the cost function C(R(t),λ) to be minimized is

C R t( ),λ( ) �∑N
n�1

Q tn( ) − Ca t( ) ⊗ RF t( )[ ]t�tn( )2

+ λ∫
R t( )

d2R t( )
dt2
( )2dR t( ) (4.17)

for imposing a priori smoothness constraint on R(t), where λ is the
Lagrange multiplier to control the importance of R(t) smoothness
relative to the least-squares criterion. C(R(t),λ) is linear with
respect to R(t) and λ and, therefore, is amenable to non-negative
linear least-squares (NNLS) techniques described by Lawson and
Hanson [52]. Lee extended the optimization to include time
causality (i.e., Q(t) must start later than Ca(t) or Q(t) lags
behind Ca(t) by τ > 0) and monotonicity (i.e., R(t) starts with a
maximal plateau for a duration equal to the minimum transit time
and thereafter decreases monotonically to baseline without
oscillations) [58].

4.2 Johnson–Wilson–Lee model-
dependent deconvolution

Model-dependent deconvolution based on the JWL model will
be described in this section. The special cases of the JWL model as
described previously simplify parameter estimation by reducing the
number of unknowns.

The closed-form solution of the JWL tissue curve, QJWL(t), is
shown in Eq. 3.12. This equation can be discretized as

q � Df , (4.18)
where f � [F FE ]T and D is an N× 2 matrix given by

D �
D t0 − T0( ) −D t0 − T0 −W( ) G t0 − T0 −W( )
D t1 − T0( ) −D t1 − T0 −W( ) G t1 − T0 −W( )

..

. ..
.

D tN−1 − T0( ) −D tN−1 − T0 −W( ) G tN−1 − T0 −W( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(4.19)
D(t − γ) � ∫t

γ
Ca(τ − γ)U(τ − γ) dτ is the time integral of the

arterial TDC, and G(t − γ) � Ca(t − γ) ⊗ e−k2t U(t − γ) is the
convolution of the arterial TDC with an exponential decay function.

Note thatD(t) can be computed numerically with the measured
Ca(t), and evaluating G(t) requires an estimate of k2. Therefore,
there are five unknown parameters: F,FE,T0,W,k2. Estimating the
five parameters of the JWL model requires solving a nonlinear
optimization problem. This is computationally intensive, requires a
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reliable initial guess, and is susceptible to returning solutions of local
minima. To solve for the parameters in the JWL model, Bennink
et al. [68] used parameter estimates from a simplified model as initial
guesses to a nonlinear regression of Eq. 3.12. It is unclear whether
these initial guesses may have biased the nonlinear regression to
unsatisfactory local minimum solutions.

Alternatively, the estimation of f can be linearized by
performing a grid search of the nonlinear parameters
T0,W,and k2. With assumed values of T0,W, and k2, D(t) and
G(t) can be numerically evaluated and f can be estimated by an
NNLS algorithm to enforce physiological positive values of blood
flow and the flow-extraction product [52]. For example, a grid search
may comprise 25 values of T0 from 0 to 24 s at 1-s intervals,
25 values of W between 2 and 26 s at 1-s intervals, and
25 logarithmically spaced values of k2 between 10–3 and 1 s-1,
leading to 15,625 grid search combinations. The optimal set of
estimated parameters, f̂ ,T̂0, Ŵ, and k̂2 would be the set that
minimizes the squared differences between q and Df :

f̂ ,T̂0,Ŵ,k̂2 � argmin
f̂ ,T̂0 ,Ŵ,k̂2

q − Df
���� ����22 s.t. f ≥ 0. (4.20)

As can be seen, the number of NNLS required can be large
depending on the number of grid search combinations. Advanced
optimization methods, such as using a dynamic grid search step size,
may be required to reduce the grid search combinations for efficient
application in practice. Alternatively, the grid search can be greatly
accelerated by assuming a simplified model as described in Section
3.4.2 and Section 3.4.4.

Using the irreversible leakage model described in Section 3.4.2, it
is assumed that k2� 0. The exponential function with a decay rate
constant of 0 evaluates to 1, so the convolution term G(t − T0 −W)
is simply the shifted time integral of the arterial TDC
(G(t − T0 −W) � D(t − T0 −W) when k2� 0). By excluding k2
from the grid search, the number of grid search combinations
greatly decreases (e.g., 25 × 25 = 625 in the above example),
resulting in a more manageable computation time. The four
model parameters are estimated as described for the JWL model
with the aforementioned simplifications.

A further simplification is to assume no leakage and a uniform
vascular transit time as in the plug flow model described in Section
3.4.4. Here, FE� 0, so there are three model parameters to be
estimated: f � [F], T0, and W. As such, only the first column of
D is required in Eq. 4.19. A fast method of calculating a normalized
form of the residuals is as follows. Knowing that the areas
underneath the left and right sides of Eq. 3.19 are equal, we can
normalize both sides to have an unit area as follows:

Q t( )
∫T
0
Q t( )dt

� D t − T0( ) −D t − T0 −W( )
∫T
0
D t − T0( ) −D t − T0 −W( )dt

,

where T is the total measurement time. Areas of Q(t) and
D(t − T0) −D(t − T0 −W) can both be computed numerically.
Note that F is eliminated on the right-hand side after
normalizing the area and eliminates the need to estimate f plug to
compute the normalized residuals. Defining q′ and D′ as qplug and
Dplug normalized by their respective areas, the residuals become
‖q′ − D′1‖22, where 1 is a vector of 1. The set of T̂0,Ŵ that produce
the minimum residual can be quickly determined, and only a single

NNLS needs to be computed to determine the corresponding
optimal f̂ for the TDC. A similar approach without T0-delay
estimation was described by Axel [69].

While the appeal of the simplified models is their fast
computation, their assumptions may not hold in general,
especially in highly diseased conditions.

4.3 Comparison of deconvolution methods

We compared the quantitative accuracy of five deconvolution
algorithms: two model-independent (SVD and Fourier
transform) and three model-dependent (plug flow, irreversible
leakage, and JWL) deconvolution methods. Block-circulant SVD
was omitted as it produced the same results as the Fourier
transform method when using equivalent regularization filters.
Details of the methods are provided in Section 4.1 and Section
4.2. Specifically, SVD was not delay-corrected and regularized by
truncating the smallest 15% of the largest singular value as
described in Eq. 4.5. Fourier transform deconvolution used a
Wiener-like regularization filter with 15% regularization as
described in Eq. 4.6. The plug flow and irreversible leakage
model deconvolution methods were the simplified cases of the
JWL model as described in Section 4.2 and used a grid search of
T0 ∈ [0, 1, . . . , 20] s and W ∈[2, 3, . . . , 24] s. A research version of
commercial CTP software (CT Perfusion 4D, GE Healthcare) was
used to solve for the full JWL model parameters. The remaining
four methods were implemented in-house using a custom Python
script. Details on the simulation of CTP data are provided in the
Supplementary Materials.

4.3.1 Ground truth versus deconvolution-
estimated blood flow

Correlation plots comparing ground truth versus mean
estimated blood flow over 1,024 trials for each deconvolution
method are shown in Figure 3. Simulation of routine-dose noise
(σ� 2.5 HU) and low-dose noise (σ� 5.0 HU) is shown in the left
and right columns, respectively. Linear lines of best fit are indicated
by the solid red lines, while the dashed black line is the identity line.
The linear regression slope is an indicator of parametric contrast
(i.e., magnitude of difference between high and low estimated blood
flow values), and the intercept can be loosely interpreted as an
indicator of bias at low ground truth blood flow values. The linear
regression line of an ideal method would be the identity line,
indicating a one-to-one agreement between the ground truth and
estimated blood flow values.

As shown in the correlation plots, all deconvolution methods
have a positive vertical axis intercept that is similar in value and
overestimates very low true blood flow values (e.g., <8 mL/min/
100 g). The regression intercept has greater deviation from the
origin at the low-dose noise level compared to the routine-dose
noise level. Notably, the model-independent methods have
shallower regression slopes that substantially underestimate
higher true blood flow values, whereas the regression slopes of
model-dependent methods are closer to 1. This indicates that despite
the difference in the simulated model IRF versus those used in
model-dependent deconvolution methods, (1) the model-dependent
deconvolution methods investigated here are better able to estimate
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FIGURE 3
Ground truth versus deconvolution-estimated blood flow using (A) singular value decomposition (SVD), (B) Fourier transform, (C) plug flow, and (D)
irreversible leakage. (E) Johnson–Wilson–Lee (JWL) model deconvolution at routine-dose noise (σ = 2.5 HU; left) and low-dose noise (σ = 5.0 HU; right)
levels. The linear regression equation and Pearson’s correlation are indicated in the inset of each plot.
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absolute blood flow than model-independent methods and (2), as a
result, can better quantify differences between low and high ground
truth blood flow values. In addition, the regression slope became
shallower with greater noise for all methods, indicating that blood
flow quantification worsens with greater noise.

The trade-off for better absolute agreement (lower bias)
between ground truth and estimated blood flow with model-
dependent methods is that they have higher variance than model-
independent methods. The mean and standard deviation of
deconvolution-estimated perfusion parameters over
1,024 trials for a single set of ground truth parameters at
routine-dose noise levels (σ� 2.5 HU) are tabulated in Table 1.
Reflecting the correlation plots, the model-independent methods
underestimate the true blood flow value on average, whereas the
model-dependent methods better agree with the true value on
average. However, the model-independent methods have smaller
standard deviations compared to model-dependent methods.
Note that for this set of ground truth parameters, the mean
SVD blood flow is less than that of the Fourier transform method
despite the latter having a shallower regression slope. This is due
to the positive T0 (i.e., the tissue TDC and the artery TDC), which
is described in Section 4.1.1, which causes a reduction in
estimated blood flow, whereas the Fourier transform method
is delay-insensitive.

Figure 4 shows a comparison of the mean deconvolution-
estimated flow-scaled IRF and their corresponding fitted tissue
TDCs overlaid on their respective ground truths for the
parameter set listed in Table 1. For the model-independent
methods, the estimated flow-scaled IRFs were averaged and the
fitted TDC was then computed with Eq. 4.2. For the model-
dependent methods, the means of the estimated model
parameters were first computed and then substituted into
Equation 3.10 and 4.18 to evaluate the mean estimated flow-
scaled IRFs and fitted TDCs, respectively. Despite applying
regularization and averaging over 1,024 trials, the model-
independent flow-scaled IRFs are oscillatory and fail to recover
the sharp initial peak in the true flow-scaled IRF. The corresponding
fitted tissue TDCs also contain oscillations, indicating that the
model-independent deconvolution methods overfitted to noise.
While the flow-scaled IRFs for the model-dependent methods did
not match the shape of the ground truth, they better reproduced the
sharp peak required for accurately estimating blood flow. The fitted
tissue TDCs do not show oscillations and arguably agree better with
those of the ground truth in this example.

The rightmost column of Figure 4 shows the distribution of
blood flow values estimated over 1,024 trials with each
deconvolution method. All methods produced approximately a
unimodal normal distribution of estimated blood flow values.
The model-independent methods produced a very narrow
distribution, whereas the model-dependent methods had a
broader distribution. The standard deviations of estimated blood
flow values are accordingly greater with model-dependent
deconvolution. However, the mean of the distribution better
converges to the true value with the model-dependent methods.
As such, model-independent deconvolution methods are more
precise at the expense of accuracy, whereas model-dependent
methods are more accurate but are less precise.

Though not investigated in this experiment, model-dependent
methods can also provide hemodynamic parameters that are
unavailable with model-independent methods, such as those
related to vessel permeability.

5 Applications of CT perfusion

5.1 Acute ischemic stroke

Acute ischemic stroke is mainly caused by a clot that limits blood
flow to the brain. Reperfusion treatments including intravenous
thrombolysis (IV-tPA) and endovascular thrombectomy (EVT) are
highly effective if administered early after stroke onset (<4.5 h for
IV-tPA and <6 h for EVT). However, randomized controlled trials
demonstrated that the therapeutic time window can be extended up
to 9 h after stroke onset for IV-tPA and 16–24 h for EVT with
selection by CTP [2–4, 70]. Treatment selection was based on a
target mismatch profile defined as a small volume of irreversible
brain injury (infarct or ischemic core) relative to a large salvageable
region (penumbra). Specifically, the target mismatch profile in the
DEFUSE-3 late-window EVT trial (6–16 h after stroke onset) was
defined as an ischemic core volume <70 mL, penumbra
volume ≥15 mL, and a mismatch ratio (quotient of penumbra
and core volume) ≥ 1.8 [4]. Anterior large vessel ischemic stroke
patients receiving late-window EVT based on this target mismatch
profile had significantly greater rates of good 90-day functional
outcome compared to best medical therapy [4]. As of 2022, CTP is
one of two imaging-based selection methods (alongside diffusion-
weighted imaging and perfusion magnetic resonance imaging)
approved by the American Heart Association best practice

TABLE 1 Mean and standard deviation of deconvolution-estimated perfusion parameters over 1,024 noise trials for a set of ground truth perfusion parameters.

Method F [mL/min/100 g] Vb [ml/100 g] MTT [s] T0 [s]

Ground truth 60 4 4 4

SVD 21.7 ± 0.2 3.7 ± 0.2 10.3 ± 0.5 N/A

Fourier transform 26.0 ± 0.2 3.7 ± 0.2 8.6 ± 0.4 N/A

Plug flow 59.9 ± 5.2 4.0 ± 0.1 4.0 ± 0.5 4.0 ± 0.4

Irreversible leakage 61.5 ± 3.1 4.0 ± 0.1 4.0 ± 0.3 4.2 ± 0.2

JWL 65.5 ± 1.7 4.3 ± 0.1 3.9 ± 0.1 4.4 ± 0.1

F, blood flow; Vb, blood volume; MTT, mean transit time; T0, delay time between contrast arrival at the artery and tissue; SVD, singular value decomposition; JWL, Johnson–Wilson–Lee.
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FIGURE 4
Comparison of deconvolutionmethods for a single set of ground truth parameters: blood flow, 60 mL/min/100 g; blood volume, 4 mL/100 g;mean
transit time, 4 s; T0, 4 s. Deconvolution methods were (A) singular value decomposition (SVD), (B) Fourier Transform, (C) plug flow, (D) irreversible
leakage, and (E) Johnson-Wilson-Lee (JWL) model. The mean deconvolution-estimated flow-scaled impulse residue function (IRF) and fitted tissue
time–density curve over 1,024 trials are overlaid on their respective ground truths in the left and middle columns, respectively. Histograms showing
the distribution of deconvolution-estimated blood flow values over 1,024 trials are shown in the rightmost column, where the solid red line indicates the
mean and the dotted black line is the ground truth.
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guidelines for EVT selection between 6 and 16 h after stroke onset
[71]. CTP played a major role in demonstrating that the therapeutic
window of reperfusion treatments can be extended based on tissue
status rather than strict time thresholds. An example CTP study of a
patient with large vessel ischemic stroke is shown in Figure 5.

As such, the main role of CTP is to measure the ischemic core and
penumbral volumes and quantify mismatch profiles. Modern CTP
software is automated and can provide diagnostic information within
minutes of image acquisition [72]. Ischemic core and penumbra
volumes are mainly measured by thresholding perfusion parameters.
CBF is often used to detect the ischemic core, andTmax is often used for
the penumbra [73–75]. The randomized controlled trials that validated
the diagnostic utility of CTP used a single software package (RAPID
CTP, RapidAI, Menlo Park, CA), which used CBF<30% relative to that
in the normal tissue to detect the ischemic core and Tmax>6 s for the
penumbra [2–4, 70]. Of note, RAPID perfusion imaging software uses
Fourier Transform deconvolution as described by Straka et al. [65],
which may have limited absolute agreement with ground truth blood
flow, as we have shown in Section 4.3.1. This demonstrates that absolute
accuracy and quantification of blood flow may not be required
specifically for determining target mismatch profiles, which may
have implications for CTP scan protocol design and radiation dose
reduction.

Optimal stroke lesion thresholds, however, differ between CTP
software packages, which has raised doubts about its widespread
deployment across institutions using different software platforms
[76]. One of the potential reasons that stroke lesion thresholds differ
between CTP software is that each software may use different
deconvolution algorithms. As shown in Section 4.3, each
deconvolution algorithm has different biases and variances in
estimating blood flow, and optimal lesion thresholds may
accordingly differ. Chung et al. found that linear regression
relationships of ground truth versus estimated perfusion
parameters determined from simulated CTP data (as in Section
4.3.1) may help guide the calibration of optimal stroke lesion
thresholds between software packages [77]. Threshold calibration
and demonstration of equivalence between other CTP software and
RAPID CTP have also been shown empirically [78–81].
Nonetheless, CTP requires better standardization between

software packages such that reliable diagnostic criteria can be
deployed between institutions using different platforms.

CTP has also demonstrated potential for detecting hemorrhagic
transformation in ischemic stroke [19, 82]. Hemorrhagic
transformation is a brain bleed caused by a complete breakdown
of the blood–brain barrier due to sustained severe ischemia and is
associated with high rates of mortality when symptomatic [83, 84].
According to the Heidelberg Bleeding Classification [85], there are
two main types of hemorrhagic transformation following ischemia:
hemorrhagic infarct (HI1 and HI2) and parenchymal hemorrhage
(PH1 and PH2). Symptomatic hemorrhage, which causes an
increase in the National Institutes of Health Stroke Scale
(NIHSS), is usually associated with PH and not HI.

Measures of vessel permeability as determined with model-
dependent deconvolution methods have been found to identify
patients likely to undergo hemorrhagic transformation. Aviv
et al. found that patients with larger permeability surface area
products (PS, Eq. 3.11) within the ischemic region at admission
CTP were associated with hemorrhagic transformation [19]. In a
voxel-wise analysis of CTP maps of 1,407 patients with acute
ischemic stroke, Bivard et al. found that an extraction fraction
(E, Eq. 3.11) threshold of 30% relative to the contralateral
hemisphere optimally distinguished between patients who did
and did not develop any form of hemorrhagic transformation
[82]. Both studies by Bivard et al. and Aviv et al. showed that
increased PS or E is associated with hemorrhagic transformation,
but differentiation of PH from HI is an ongoing research issue.
Nonetheless, Bivard et al. showed that the severity of hemorrhage
increased with larger volumes of tissue with E > 30%.82 Neither study
included patients treated with EVT and only included patients who
were considered for IV-tPA. CTP measures of vessel permeability
may therefore help identify patients at risk of hemorrhagic
transformation. Validation of CTP permeability measures in
predicting hemorrhagic transformation after EVT is still required.
Specifically, a useful application may be to predict hemorrhagic
transformation in large vessel ischemic stroke patients presenting
with a large ischemic core or beyond 24 h after stroke onset, who
have been found to have high rates of hemorrhage after EVT
[86, 87].

FIGURE 5
CT perfusion study of a patient with large vessel ischemic stroke who achieved early quality recanalization at endovascular thrombectomy. (A)
Predicted pre-treatment ischemic core (red) and penumbra (blue) by thresholding (B) cerebral blood flow and (C) Tmax maps, respectively, using the
optimal thresholds for this software package (CT Perfusion 4D, GE Healthcare). The small ischemic core relative to the large penumbra indicates a target
mismatch profile suitable for endovascular thrombectomy. (D) Follow-up infarct (red outline) delineated on non-contrast CT shows good
agreement with the ischemic core predicted by pre-treatment CT perfusion. Cerebral blood flow is in units of mL/min/100 g, and Tmax is in units of
seconds.
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5.2 Solid tumor

Tumor angiogenesis fosters the microenvironment required for
tumor growth and metastasis [88]. Tumor perfusion and vessel
permeability are therefore associated with tumor grades, prognosis,
and treatment response [89, 90]. Therefore, the main role of CTP in
evaluating solid tumors is to supplement histological assessment of
the tumor with non-invasive imaging of tumor perfusion and vessel
permeability.

5.2.1 Brain tumors
Gliomas are highly heterogeneous brain tumors that are the

most common type of neoplasm in adults [91]. The malignancy of
glioma is graded according to WHO tumor classification using a
tumor sample taken from a brain biopsy or surgery [92]. However,
the acquisition and utility of sampling the tumor is problematic due
to the highly heterogeneous nature of glioma cells and the limited
obtainable samples, meaning that the histopathological results may
be under-graded [93, 94]. An alternative to this invasive and limited
procedure is in vivo perfusion imaging, such as CTP. Perfusion
parameters such as blood volume, blood flow, and PS are associated
with angiogenesis, which underpins tumor growth. In current
practice, perfusion imaging supplements histological evaluation of
tumor grading, prognosis, and monitoring treatment response.
Histological assessment is nonetheless still required as CTP lacks
the spatial resolution required for assessing tumor
microenvironments (i.e., CT resolution is approximately 0.5 mm,
whereas microvasculature is on the order of μm) [89].

Perfusion parameters such as blood volume, blood flow, and PS
are associated with the tumor vasculature and have demonstrated
predictive value in glioma grading, prognosis, and treatment
response [89, 90]. Studies have suggested that blood volume may
potentially be a good biomarker for microvascular density (MVD),
which is associated with angiogenesis and, therefore, the
aggressiveness of the tumor [95–98]. Vascular endothelial growth
factor (VEGF) is an additional biomarker that shows a positive
correlation with hypoxic and hypoglycemic permeable blood vessels.
It is used to judge the potential for neoangiogenesis, aiding in the
histological grading process [99]. CTP PS could replace the need to
sample for VEGF as well as be used to study treatment response
[100]. This may help design more effective therapies based on the
underlying mechanisms of permeability and the blood–brain barrier
[99]. Jain et al. reported that in a study of 23 brain tumor patients
with various tumor grades, CBV and PS showed a significant
positive correlation with MVD (Pearson’s correlation, r = 0.596,
p < 0.001) and microvascular cellular proliferation (MVCP) (r =
0.546, p = 0.001), respectively, as well as a significant correlation with
WHO-defined tumor grade for CBV (r = 0.373, p = 0.031) and PS
(r = 0.452, p = 0.039) [95]. Ellika et al. found that in a cohort of
19 patients with glioma, CTP had higher sensitivity and specificity
than conventional MRI in classifying patients into low-grade and
high-grade glioma (92.9% and 100% for CTP versus 85.7% and 60%
for MRI, respectively) [90]. Therefore, CTP-derived parameters can
be used in combination with biopsy to non-invasively differentiate
tumor grades and elucidate different characteristics of tumor
proliferation. Overall, CTP may have the potential to non-
invasively track relevant biomarkers for tumor grading and
angiogenesis associated with treatment planning and response.

5.3 Cardiovascular disease

The main role of CTP in cardiovascular disease is to determine
regions of ischemic myocardial tissue using functional information
on blood flow, blood volume, MTT, and other hemodynamic
parameters.

5.3.1 Ischemic heart disease
Although coronary CT angiography (CCTA) is the main imaging

tool used to define coronary artery disease (CAD) that causes myocardial
ischemia, invasive fractional flow reserve (FFR) is currently the gold
standard for the identification of significant CAD requiring
revascularization [101–104]. CCTA provides morphological
information on the degree of stenosis but lacks functional information
on myocardial perfusion, leading to suboptimal positive predictive value
and specificity for significant CAD [104–106]. FFR is a diagnostic
measure that assesses the relative pressure difference across stenotic
coronary arteries, providing guidance for revascularization decisions. It
exhibits a diagnostic accuracy of over 90% when using a relative pressure
threshold of ≤0.8 [102]. Treatment for significant CAD involves either
enlarging the narrowed artery by percutaneous transluminal coronary
angioplasty or stenting or bypassing blockages by grafts [103].

Despite diagnostically validated non-invasive FFRCT technology
[107–110], FFRCT still does not provide quantitative data in the
myocardium, such as with CTP. The principal role of CTP in CAD
is non-invasively providing functional information on ischemic
myocardial tissue while maintaining a similar diagnostic value to
FFRCT. Using CTP-derived functional maps of blood flow, blood
volume, and mean transit time, occluded major vessels can be
determined by referencing ischemic regions segmented according to
the AHA 17 segment model [111]. CTP, either dynamic or static, has
been shown to have utility in isolation [104, 112] but has the most
impact when combined with othermodalities such as CCTA [113, 114].
Using their PERFECTION study data with CCTA-derived FFRCT,
Pontone et al. showed that CCTA + CTP had similar diagnostic
performance per vessel determination of significant CAD as CCTA
+ FFRCT in terms of the area under its receiver operating characteristic
curve (CCTA + CTP AUC = 0.876 with 95% confidence interval:
0.832 to 0.919, and CCTA + FFRCT AUC = 0.878 with 95% confidence
interval: 0.833–0.923) [113].

5.3.2 Cardiac sarcoidosis
Sarcoidosis is a disease where a number of granuloma cells

accumulate within the tissue of any organ in the body, and in 2011,
it was reported to affect about 10–40 in 100,000 Americans [115].
Cardiac sarcoidosis (CS) accounts for approximately 20%–30% of all
sarcoidosis cases in the United States and can lead to sudden death
without any admissible symptoms [115]. Silverman et al. found that
there were a significant number of CS patients who were clinically silent
[116]. Diagnostic imaging via 18F-FDG PET or gadolinium-based
cardiac MRI has substantially improved the detection of sarcoidosis.
Corticosteroid therapy is currently the only treatment for CS, though its
benefit requires validation in randomized controlled trials [117].
Imaging may guide the management of CS symptoms and
potentially decisions for corticosteroid treatment, but this requires
validation in future studies [118]. So et al. demonstrated the
potential utility of CTP to identify scar tissue in a CS patient using
myocardial blood flow and extravascular contrast distribution volume
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imaging [119]. More studies are needed to validate the diagnostic
potential of CTP in identifying CS patients, but if successful,
myocardial CTP may prove to be a more accessible imaging
modality than cardiac MRI and 18F-FDG PET for diagnosing CS.

6 Discussion

6.1 Radiation dose reduction

6.1.1 Low-dose CT perfusion denoising
Dose reduction by reducing mAs comes at the expense of lower

CTP image SNRs and TDC SNRs. The lower limit for recommended
mAs has mainly been established empirically. Further dose
reduction may be possible with post-processing or advanced CT
reconstruction techniques that improve image and TDC SNRs. In
simulation studies, spatiotemporal filtering of dynamic CTP images
demonstrated potential for dose reduction by leveraging spatial and
temporal relationships between CTP TDCs to improve TDC SNRs
[120–123]. An ultra-low-dose brain CTP protocol (effective dose:
1.2 mSv) with statistical iterative reconstruction (ASIRv, GE
Healthcare) allowed the evaluation of blood–brain barrier
permeability in thrombotic thrombocytopenic purpura [124].
Statistical iterative reconstruction has also been applied for 20 ×
dose reduction myocardial CTP imaging in a porcine model of
coronary artery occlusion [125]. More recently, deep learning-based
image reconstruction and denoising techniques have been proposed,
potentially offering greater improvements in CTP imaging and TDC
SNRs [126–128]. These methods have mainly been evaluated in
terms of quantitative image fidelity metrics and require clinical
validation. In addition, the strength of these noise reduction
methods needs to be increased at lower doses, which often comes
at the expense of spatial resolution. A balance between a perfusion
map SNR and spatial resolution is required for reliable diagnostic
application [73], though this has not been investigated in detail.

6.1.2 Low-temporal resolution CT perfusion
Radiation dose can be reduced by acquiring fewer dynamic CTP

images at the expense of temporal resolution or scan duration. Van
Ommen et al. demonstrated that certain deconvolution methods for
brain CTP tolerated a scanning interval of up to 5 s while still
adequately distinguishing between ischemic and normal brain tissue
[129]. Chung et al. found that tailored sampling of four dynamic
CTP images (pre-contrast baseline, arterial peak, and two additional
delayed images at 8-s intervals) had diagnostic potential in
identifying mismatch profiles in acute ischemic stroke [130].
While the quantitative accuracy of estimated perfusion
parameters may decrease with fewer acquired dynamic images,
perfusion map quality may be sufficient for diagnosis. Deep
learning methods to interpolate missing dynamic images or
directly predict perfusion maps from low-temporal resolution
CTP studies may also be viable [131, 132].

6.1.3 Future outlook
Demonstration of low-dose CTP has mainly been with

simulation studies or animal models. Prospective acquisition of
low-dose CTP in humans has been hampered by ethical and
safety considerations or concerns of diagnostic reliability. Studies

reporting the prospective application of low-dose CTP are required.
These data may then support the wider deployment of low-dose
CTP in practice. In addition, a theoretical model relating the
radiation dose and image/TDC SNR to the detectability of
disease in CTP parametric maps may be helpful in guiding the
selection of low-dose protocols. Future studies should also consider
diagnostic task-based metrics rather than intermediate measures,
such as the accuracy of estimated perfusion parameters. Absolute
agreement between regular-dose and low-dose CTP parameters may
not be important so long as diagnosis is reliable. For better inter-
study comparison, dose reduction studies should also report dosage
in more comparable absolute measures, such as the dose-length
product (mGy cm), CTDI100 dose (mGy), or effective dose (mSv), in
addition to relative measures of dose reduction compared to routine
levels.

Ongoing work in CTP dose reduction may facilitate its broader
clinical application. For example, perfusion imaging of pediatric
stroke patients is garnering interest to validate the translation of
diagnostic and therapeutic stroke paradigms from adults to children
[133], but pediatric perfusion imaging studies have mainly usedMRI
in part due to the lack of ionizing radiation [134]. Therefore, ultra-
low-dose CTP protocols may provide a broad opportunity to better
characterize pediatric cerebrovascular disease and identify pediatric-
specific imaging profiles suitable for stroke reperfusion therapies.

6.2 New CT technology

6.2.1 Photon-counting detector CT
Current clinical CT scanners use energy-integrating detectors

(EIDs), which comprise scintillators to convert X-rays to light and
light to electrical signals via photodiodes. The generated electrical signal
is proportional to the sum of energies of all transmitted X-rays. Photon-
counting detector (PCD) CT is an emerging technology that instead
uses semiconductors to produce an electrical signal directly
proportional to the energy of each incident X-ray photon. Electronic
noise, which may be prevalent at low-fluence scans with EIDs, can
therefore be minimized by setting an energy floor required for photon
detection [135, 136]. PCD elements are much smaller than EID
elements, ranging from 0.11 × 0.11 to 0.5 × 0.5 mm2 and 1 ×
1mm2, respectively [135], allowing for higher spatial resolution.

PCDs provide several advantages over EIDs: (1) spectral energy
resolution from a single X-ray source, (2) higher spatial resolution,
(3) beam hardening and metal artifact reduction, and (4) radiation
dose efficiency. These have meaningful implications for PCD-CT
perfusion. First, multi-energy resolution may improve the iodine
contrast-to-noise ratio [135] and thus improve the CTP TDC SNR.
Radiation dose reduction may be possible if sufficient TDC SNRs
can be achieved at lower doses with spectral imaging. Second,
smaller perfusion deficits, such as lacunar or watershed infarcts
[137], may be better visualized with the higher spatial resolution
afforded by PCD-CT. Last, artifact reduction may improve
perfusion map quality in previously problematic anatomical
locations and scan conditions. For example, CTP is less reliable
in quantifying stroke lesion volumes for posterior circulation
ischemic strokes compared to anterior circulation [30]. This may
be in part due to beam hardening and photon starvation artifacts at
the posterior fossa obscuring CTP TDCs.
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6.3 New applications

6.3.1 Lung perfusion CT
In contrast to brain perfusion imaging, where deconvolution

techniques are commonly employed, lung perfusion imaging
predominantly utilizes either the peak enhancement method (Eq.
3.2) or the maximum front slope method (Eq. 3.3) [138–141]. These
methods are applied under the assumption of no venous outflow and
have the advantage that the numerical computation is simpler to
implement. Nevertheless, the requirement of no venous outflow
means the perfusion values will be dependent on injection rate
and the viscosity of the contrast agent, as investigated by Xin et al.
[141] They found that compared to invasive measurement of cardiac
output by thermal dilution at the pulmonary artery, applying Eq. 3.3
to data acquired with diluted contrast (Isovue-370 and saline in the
ratio of 3:2) calculated more accurate lung perfusion than applying
Eq. 3.2. In contrast to Equation 3.2, Equation 3.3 also provided more
comparable lung perfusion values when comparing the rapid injection
rate (8 mL/s) with the slower rate (4 mL/s) of diluted contrast.

To circumvent the assumption of zero venous outflow, two
approaches have been employed. The first approach involved
utilizing the irreversible leakage model, as outlined in Section
3.4.3 and Eq. 3.16 [142]. The second approach used the model-
independent regularized deconvolution method, as described in
Section 4.1 [143]. The justification for irreversible leakage lies in the
fact that CTP acquisition for lung perfusion usually lasts less than
20–30 s, primarily due to the necessity of breath holding. Consequently,
any potential backflux of leaked contrast from tissue to blood can be
disregarded. Nonetheless, as discussed in Section 3.4.1, the value of K1

obtained through the irreversible leakage model does not directly
represent lung perfusion. Rather, it represents the product of lung
perfusion and the contrast extraction efficiency by the lung tissue.
Consistent with this interpretation, lung perfusion calculated with Eq.
3.3 with the no venous outflow assumption had better potential for the
diagnosis of pulmonary nodules than K1 from the irreversible leakage
model [144]. The deconvolution approach demonstrated a significant
reduction in lung perfusion downstream of a stenosed pulmonary
artery, surpassing 50% occlusion. The threshold for stenosis, leading to
a decrease in lung blood volume, was higher at 76%. This higher
threshold is likely due to autoregulation, wherein at lower degrees of
stenosis, the microvasculature undergoes vasodilation to compensate
for the decrease in perfusion pressure, resulting in an increase in lung
blood volume.

Due to tumor-associated angiogenesis, the blood supply to lung
cancer transitions from a single input solely from the pulmonary artery
to a dual input from both the pulmonary and bronchial arteries. To
account for this change, Yabuuchi et al. [145] expanded the application
of the maximum front slope method to accommodate dual-input
scenarios. By utilizing the dual-input maximum front slope method,
Ohno et al. [146] demonstrated that dual-input total perfusion
outperformed pulmonary arterial perfusion and the single-input
perfusion obtained through the single-input maximum slope method
in predicting treatment response and recurrence following chemo-
radiotherapy for non-small-cell lung cancer.

The requirement of breath holding during lung CT
perfusion restricts the acquisition time to a maximum of
20–30 s. Consequently, the analysis of lung CTP studies is
currently limited to the simple models discussed above,

namely, peak enhancement and maximum front slope,
operating under the assumptions of no venous outflow or
irreversible leakage. To advance lung CTP techniques, future
developments can explore acquiring studies with shallow
breathing and subsequently employing non-rigid registration
to align the images. This approach has the potential to extend
the acquisition time to 2–3 min. With these extended data, in
addition to perfusion and blood volume, parameters such as PS
can be determined as in solid tumors (Section 5.2).

7 Conclusion

CTP has demonstrated diagnostic utility in numerous clinical
applications due to its relative accessibility and low cost compared
to other perfusion imagingmodalities. This review provided a summary
of CTP scan protocols, theory of contrast transport, deconvolution
methods, applications, and future opportunities for research and
application. With further reductions to radiation dose and
improvements in hardware and software methods to acquire and
generate perfusion maps, CTP is poised to become an integral
component of the diagnosis and management of patients with
perfusion injuries.
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