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Reduction in forest resources due to increasing global warming and population
growth is a critical situation the World faces today. As these reserves decrease, it
alarms new challenges that require urgent attention. In this paper, we provide a semi-
analytical solution to a nonlinear mathematical model that studies the depletion of
forest resources due to population growth and its pressure. With the help of the
homotopy perturbationmethod (HPM), we determine an approximate series solution
with few perturbation terms, which is one of the essential power of the HPMmethod.
We compare our semi-analytical results with numerical solutions obtained using the
Runge-Kutta 4th-order (RK-4) method. Furthermore, we analyze the model’s
behaviour and dynamics by changing the parametric coefficients that represent
the depletion rate of forest resources and the growth rate of population pressure
and present these findings using various graphs.
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1 Introduction

The world faces an alarming issue today due to the depletion of forest resources caused by
deforestation, fires, illegal logging, and other factors. Many countries will lose their remaining
forests by 2030 if this trend continues, according to a recent report [1]. Urgent action is needed
to address this challenge, including better coordination and control of the timber industry and
communities that depend on the forests [2]. Mathematics provides some powerful tools to
tackle such problems with the help of differential equations which can offer a way to solve
dynamical systems making them essential to science, engineering and humanity. Some studies
have used the mathematical modeling of forest depletion and suggested solutions using various
numerical and analytical methods. Gompil et al. [3] proposed numerical and simulated results
for a forest depletion model, while Eswari et al. [4] examined the homotopy perturbation
method (HPM) to solve the mathematical model for the depletion of forest resources.
Nugraheni et al. [5] proposed stability analysis and numerical simulations for a mangrove
forest resource dynamical model. Didiharyono and Kasse [6] studied the stability of a
mathematical model for deforestation and presented numerical simulations of the system.
All these studies offer useful insights into the dynamics of forest resources and propose possible
solutions to handle this critical global problem. This paper concentrates on the study of the
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depletion of forest resources, employing a mathematical model
suggested by Misra, Lata, and Shukla [7]. This mathematical
model consists of the cumulative density of forest resources, the
density of the population, and population pressure, represented by the
variables B, N, and P, respectively. In this model, the connection
between forest and population density is considered as a prey-
predator logistic model. The forest density decreases as housing
and development increase, impacting its growth rate. Population
pressure growth is proportional to population density in the model
[7]. The authors have investigated existence and uniqueness of the
global positive solution and provided numerical simulations to
study this model. The cumulative density of forests and population
size, are modelled using comprehensive equations with dynamic
relations similar to a prey-predator system. The model signifies the
depletion of forest resources provoked by population growth,
reduction of forest areas for expansion purposes and the
depletion by the pressure of the population. In addition, the
model considers that the increase in population pressure is
proportional to population density. This model consists of
dimensionless differential equations. The suggested model [7]
can be represented as:

dB

dt
� sB − hB2 − αBN − λ2B

2P,

dN

dt
� rN − jN2 + παBN,

dP

dt
� λN − λ0P,

(1)

where B (0) ≥ 0, N (0) ≥ 0, P (0) ≥ 0 and we define variables and
constant coefficients of this model in the following table as.

Values for the parameters and coefficients are considered, s =
0.8, s0 = 0.2, L = 50, α = 0.0001, λ = 0.2, λ0 = 0.1, r = 0.2, r0 = 0.1, K =
100, π = 0.004, λ2 = 0.0002, h � s0

L , j � r0
K and initial conditions n1 = B

(0) = 30, n2 =N (0) = 35, n3 = P (0) = 1 as given in (Misra et al., 2014).
The rate of forest depletion is alarming, mainly driven by illegal

logging and land clearing activities. This trend poses a serious threat
to our ecosystem and immediate action is needed to mitigate its

TABLE 1 Error in B(t), N(t) and P(t) by using HPM and RK 4th order.

t eB(t) eN(t) eP(t)

0 0 0 0

0.0040 7.02229385e − 11 3.8795633e − 12 1.11022302e − 15

0.0080 2.84295254e − 10 1.5518253e − 11 7.77156117e − 15

0.0120 6.60833165e − 10 3.4923175e − 11 2.13162820e − 14

0.0160 1.24834542e − 09 6.2129856e − 11 3.57491813e − 14

0.0200 2.14010853e − 09 9.7180929e − 11 3.15303338e − 14

0.0240 3.48907391e − 09 1.4013323e − 10 2.64233079e − 14

0.0280 5.52271828e − 09 1.9115020e − 10 1.93400850e − 13

0.032 8.55785131e − 09 2.5035973e − 10 5.49560397e − 13

0.0360 1.30154624e − 08 3.1803182e − 10 1.20303766e − 12

0.0400 1.94354861e − 08 3.9440806e − 10 2.29549712e − 12

0.0440 2.84915344e − 08 4.7988635e − 10 4.00479649e − 12

0.0480 4.10056628e − 08 5.74907232e − 10 6.55009380e − 12

0.0520 5.79630068e − 08 6.79982292e − 10 1.01949559e − 11

0.0560 8.05264832e − 08 7.95743915e − 10 1.52524659e − 11

0.0600 1.10051416e − 07 9.22938170e − 10 2.20889972e − 11

0.0640 1.48100092e − 07 1.06238928e − 09 3.11282111e − 11

Notation Description

B Cumulative density of forest resources

N Density of population

P Population pressure

S Intrinsic growth rate

h � s0
L Intraspecific growth rate of forestry resources in absence of

population

j � r0
K Intraspecific growth rate of population in absence of forestry

resources

A Depletion rate of forest resources due to population

Λ Growth rate of population pressure

λ0 Natural depletion rate

λ2 Depletion rate due to population pressure

Π Growth in population due to forest resources (proportionality
constant)

R Intrinsic growth rate human population
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TABLE 2 B(t) by using HPM with variation of α.

t B(t) at α = 0.0001 B(t) at α = 0.0002 B(t) at α = 0.0004

0 30 30 30

0.0400 30.8129 30.8123 30.79938896

0.0800 31.64006505 31.63119549 31.61346378

0.1200 32.48303939 32.46937528 32.44206418

0.1600 33.34108369 33.32237882 33.28500024

0.2000 34.21399144 34.18999515 34.14205247

0.2400 35.10152566 35.07198316 35.01297171

0.2800 36.00341892 35.96807153 35.89747924

0.3200 36.91937333 36.8779588 36.7952667

0.3600 37.84906054 37.80131329 37.70599611

0.4000 38.79212173 38.73777318 38.62929989

0.4400 39.74816763 39.68694645 39.56478085

0.4800 40.7167785 40.6484109 40.51201218

0.5200 41.69750417 41.62171415 41.47053744

0.5600 42.68986396 42.60637366 42.43987062

0.6000 43.69334678 43.60187669 43.41949605

0.6400 44.70741106 44.60768033 44.40886848

TABLE 3 B(t) by using HPM with variation of λ.

t B(t) at λ = 0.1 B(t) at λ = 0.2 B(t) at λ = 0.3

0 30 30 30

0.0400 30.81286325 30.81233672 30.81181021

0.0800 31.64226453 31.64006505 31.63786584

0.1200 32.48820566 32.48303939 32.47787449

0.1600 33.35066779 33.34108369 33.33150392

0.2000 34.22961141 34.21399144 34.19838205

0.2400 35.12497633 35.10152566 35.07809694

0.2800 36.03668172 36.00341892 35.97019679

0.3200 36.96462607 36.91937333 36.87418996

0.3600 37.9086872 37.84906054 37.78954498

0.4000 38.86872228 38.79212173 38.71569051

0.4400 39.84456783 39.74816763 39.65201535

0.4800 40.83603966 40.7167785 40.59786848

0.5200 41.84293296 41.69750417 41.55255902

0.5600 42.86502224 42.68986396 42.51535622

0.6000 43.90206134 43.69334678 43.48548951

0.6400 44.95378345 44.70741106 44.46214845
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impact. Without decisive measures, the depletion of forest resources
will have long-lasting consequences on the environment and our
wellbeing. It is imperative to find sustainable solutions and enforce
regulations to curb the rampant destruction of forests and preserve
them for future generations.

Many dynamical problems in science and engineering cannot be
solved analytically (exactly) and can be approximated numerically.
There is another technique named as series solution (semi-analytical
techniques) which is more closer to analytical results. For this purpose a

wide range of methods have been developed to find approximate
solutions that are as close as possible to the exact solutions. Among
these methods are the Taylor series method [8], which approximates
functions as power series; the Picard method [9], which iteratively
computes solutions from initial conditions; the Adomian
decomposition method [10], which decomposes a differential
equation into simpler sub problems; the variational iteration method
[11], which uses Lagrange multipliers to optimize solutions; and the
homotopy perturbationmethod [12–14,14,15,17–19], which constructs
a homotopy that gradually deforms the problem into a simpler one

TABLE 4 B(t) by using HPM with variation of λ2.

t B(t) at λ2 = 0.0001 B(t) at λ2 = 0.0002 B(t) at λ2 = 0.0003

0 30 30 30

0.0400 30.81659405 30.81233672 30.80808055

0.0800 31.64999511 31.64006505 31.63014111

0.1200 32.50021609 32.48303939 32.46588035

0.1600 33.36724938 33.34108369 33.31495729

0.2000 34.2510668 34.21399144 34.17699131

0.2400 35.15161962 35.10152566 35.05156215

0.2800 36.06883856 36.00341892 35.93820992

0.3200 37.00263378 36.91937333 36.83643509

0.3600 37.9528949 37.84906054 37.74569848

0.4000 38.91949097 38.79212173 38.6654213

0.4400 39.9022705 39.74816763 39.59498509

0.4800 40.90106144 40.7167785 40.53373176

0.5200 41.9156712 41.69750417 41.4809636

0.5600 42.94588662 42.68986396 42.43594323

0.6000 43.991474 43.69334678 43.39789368

0.6400 45.05217908 44.70741106 44.36599828

FIGURE 1
Solution for model 1.

FIGURE 2
Solution for model 1 in 3D.
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while adding a perturbation term to the solution. These methods have
been applied to a wide range of problems in physics, engineering,
various fields and have proven to be highly effective in providing
accurate approximations to complex dynamical systems.

Ji Huan He, a mathematician from China proposed a novel
semi-analytical method based on homotopy and perturbation
techniques in 1999, which was named the homotopy
perturbation method (HPM) [12]. He improved and extended
the HPM to solve a wide range of problems. In 2004, He used
the HPM to non-linear oscillators and asymptotic [13,14]. In 2005,
the HPM was applied to solve non-linear wave equations and
problems related to limit cycle and bifurcation of non-linear
systems [15,16]. In 2008, He employed the HPM to solve
boundary value problems [20]. In 2007, Javidi and Golbabai used
a revised version of the HPM to solve non-linear Fredholm integral
equations [21].Recently, HPM with small variations has been
applied to study fractal duffing oscillator problems under
arbitrary conditions [22], modified HPM for nonlinear oscillators
Anjum andHe [23], attachment oscillator arising in nanotechnology
[24], conservative nonlinear oscillators [25], non-linear oscillator
problems in a fractal space [26] and HPM including Aboodh
transformation to solve fractional calculus Tao et al. [27],
vibrating magnetic inverted pendulum Moatimid et al. [28],
Symmetry-breaking and pull-down motion for the
helmholtz–duffing oscillator Niu et al. [29], nonlinear fractional
Drinfeld–Sokolov–Wilson Equation Nadeem and Alsayaad [30],
trajectory analysis of a zero-pitch-angle e-Sail Niccolai et al. [31],
natural convection between two concentric horizontal circular
cylinders Abdulameer and Ali Al-Saif [32], nonlocal initial-
boundary value problems for parabolic and hyperbolic Al-Hayani
and Younis [33], multi-step iterative methods for solving nonlinear
equations Saeed et al. [34], telegraph equation Moazzzam et al. [35],
triangular linear diophantine fuzzy system of equations Shams et al.
[36], condensing coagulation model and Lifshitz-Slyzov equation
Arora et al. [37], singular nonlinear system of boundary value
problems Pathak et al. [38], rikitake-yype system Ene and Pop

[39], heat and mass transfer with 2D unsteady squeezing viscous
flow problem Abdul-Ameer and Ali Al-Saif [40], variable Speed
Wind Turbine Control Shalbafian and Ganjefar [41], radial thrust
problem Niccolai et al. [42], special third grade fluid flow with
viscous dissipation effect over a stretching sheet Swain et al. [43],
and the frequency–amplitude relationship of a nonlinear oscillator
with cubic and quintic nonlinearities He et al. [44]. The HPM has
become a widely-used technique to solve a large variety of problems
in different fields and many research papers have been published
each year using this method as evidenced by a simple search on
Google Scholar.

In this paper, we provide an approximate solution of model 1) by
using the homotopy perturbation method. The interesting feature of
HPM is that it provides the best approximate solution by taking a
few numbers of perturbation terms.

2 Homotopy perturbation method

Consider a non-linear differential equation

D μ( ) − g τ( ) � 0, τ ∈ [ (2)
subject to the boundary condition

β μ,
∂μ

∂τ
( ) � 0, τ ∈ Γ (3)

where D is a differential operator, β is boundary operator, Γ is the
boundary of the domain [ and g(τ) is an unknown function. The D,
generally consist on two parts, linear and non-linear part,
represented as L and N respectively. Therefore, 2) can be written
as follows

L μ( ) +N μ( ) − g τ( ) � 0, (4)
using homotopy method, by taking an embedding parameter q one
can construct a homotopy v (τ, q): [ × [0, 1] → R for Eq. 4 which
satisfies

FIGURE 3
Forest resources B(t) and α with the variation of time.

FIGURE 4
Forest resources B(t) and λ with the variation of time.
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H w, q( ) � 1 − q( ) L w( ) − L μ0( )[ ] + q L w( ) +N w( ) − g τ( )[ ] � 0,

(5)
and it is equivalent to

H w, q( ) � L w( ) − L μ0( ) + qL μ0( ) + q N w( ) − g τ( )[ ] � 0, (6)
where q ∈ [0, 1] is an embedding parameter, μ0 is an initial guess

approximation of Eq. 6 which satisfies the initial (or boundary)
conditions. It can be written as follows.

q � 0, H w, 0( ) � L w( ) − L μ0( ), (7)
q � 1, H w, 1( ) � L w( ) +N w( ) − g τ( ). (8)

We suppose the solution in the form of power series for Eq. 5 by
taking an embedding parameter q

w � w0 + qw1 + q2w2 + q3w3 +/ (9)
The approximate solution of Eq. 2 can be obtained by setting

q = 1,

μ � lim
q→1

w � w0 + w1 + w2 + w3 +/ (10)

The convergence of (Eq. 10) has been proved in [12]. The series
is convergent for most cases, however, the convergent rate depends
upon the nonlinear operator N(w). Furthermore He suggested the
following conditions.

1. The second derivative of nonlinear operator N(w) with respect to
wmust be small, because the parameter qmay be relatively large,
i.e., q → 1.

2. The norm of ‖L1(∂N∂w)‖must be smaller than one, in order that the
series converges.

3 Application of HPM

Now we apply HPM on our model, Eq. 1 of depletion of forest
resources (non-linear system of differential equations) as

1 − q( ) u′ − B0′( ) + q u′ − su + hu2 + αuv + λ2u
2w( ) � 0,

1 − q( ) v′ −N0′( ) + q v′ − rv + jv2 − παuv( ) � 0,
1 − q( ) w′ − P0′( ) + q w′ − λv + λ0w( ) � 0.

⎧⎪⎨⎪⎩
(11)

The initial guesses for (11) are constant as defined in [7].

u0 t( ) � B0 t( ) � B 0( ) � n1
v0 t( ) � N0 t( ) � N 0( ) � n2
w0 t( ) � P0 t( ) � P 0( ) � n3

(12)

and we assume the solution of (11) as,

u � u0 + qu1 + q2u2 + q3u3 +/ ,
v � v0 + qv1 + q2v2 + q3v3 +/ ,
w � w0 + qw1 + q2w2 + q3w3 +/ ,

(13)

by substituting Eq. 13 in Eq. 11 and collecting the terms of
powers of q, we obtain

q0:
u0′ � 0, u0 0( ) � n1,
v0′ � 0, v0 0( ) � n2,
w0′ � 0, w0 0( ) � n3.

⎧⎪⎨⎪⎩ (14)

q1:
u1′ + u0 αv0 − s( ) + u2

0 h + λ2w0( ) � 0, u1 0( ) � 0,
v1′ − r + απu0( )v0 + jv20 � 0, v1 0( ) � 0,
w1′ − λv0 + λ0w0 � 0, w1 0( ) � 0.

⎧⎪⎨⎪⎩ (15)

q2:
u2′ + αu0v1 + u1 αv0 + 2u0 h + λ2w0( ) − s( ) + λ2u2

0w1 , u2 0( ) � 0,
v2′ − απu1w0 − r + απu0 − 2jv0( )v1 � 0, v2 0( ) � 0,
w2′ − λv1 + λ0w1 � 0, w2 0( ) � 0,

⎧⎪⎨⎪⎩
(16)

q3:

u3′ + αu0v2 + u2
1 h + λ2w0( ) + u2 αv0 + 2u0 h + λ2w0( )( )

+ u1 αv1 + 2λ2u0w1( ) + 2λ2u2
0w2 � 0, u3 0( ) � 0,

v3′ − απu2v0 − απu1v1 + jv21 − rv2 − απu0v2 + 2jv0v2 � 0,
v3 0( ) � 0,

w3 − λv2 + λ0w2 � 0, w3 0( ) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(17)

q4:

u4′ + αu2v1 + αu0v3 + u3 −s + αv0 + 2u0 h + λ2w0( )( ) + λ2u2
1w1

+λ2u0u2w1 + u1 αv2 + 2u2 h + λ2w0( ) + 2λ2u0w2( )
+λ2u2

0w4 � 0, u4 0( ) � 0,
v4′ − απu3v0 − απu2v1 − απu1v2 + 2jv1v2 − rv3

−απu0v3 + 2jv0v3 � 0, v4 0( ) � 0,
w4 − λv3 + λ0w4 � 0, w4 0( ) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(18)

.

.

.

Now considering s = 0.8, s0 = 0.2, L = 50, α = 0.0001, λ = 0.2, λ0 =
0.1, r = 0.2, r0 = 0.1,K = 100, π = 0.004, λ2 = 0.0002, h � s0

L , j � r0
K, n1 =

B (0) = 30, n2 = N (0) = 35, n3 = P (0) = 1, and simplifying the
equations from (Eqs 14–18) we have.

By substituting these values in Eq. 13, we have the solution of
model 1) as

FIGURE 5
Forest resources B(t) and λ2 with the variation of time.

u0 = 30 v0 = 35 w0 = 1

u1 = 20.115t v1 = 5.7742t w1 = 6.9t

u2 = 4.84665t2 v2 = 0.375578t2 w2 = 0.232542t2

u3 = −0.260167t3 v3 = 0.00519615t3 w3 = 0.017287t3

u4 = −0.495765t4 v4 = −0.000913025t4 w4 = −0.00017237t4
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B t( ) � lim
q→1

u

� 30 + 20.115t + 4.84665t2 − 0.260167t3 − 0.495765t4

− 0.12174t5 +/ , (19)
N t( ) � lim

q→1
v

� 35 + 5.77542t + 0.375578t2 + 0.00519615t3

− 0.000913025t4 − 0.00006t5 +/ ,

(20)

P t( ) � lim
q→1

w

� 1 + 6.9t + 0.232542t2 + 0.0172871t3 − 0.00017237t4

− 0.000033t5 +/ (21)

For α = 0.0001, α = 0.0002 and α = 0.0004, we have.
B(t)α=0.0001 = 30 + 20.115t + 4.84665t2 − 0.260167t3 − 0.495765t4

+ /,
B(t)α=0.0002 = 30 + 20.01t + 4.77438t2 − 0.274268t3 − 0.49119t4

+ / and.
B(t)α=0.0004 = 30 + 19.8t + 4.63094t2 − 0.301744t3 − 0.481988t4

+ /.
For λ = 0.1, λ = 0.2 and λ = 0.3, we have.
B(t)λ=0.1 = 30 + 20.115t + 5.16165t2 + 0.0854419t3 − 0.336328t4

+ /,
B(t)λ=0.2 = 30 + 20.115t + 4.84665t2 − 0.260167t3 − 0.495765t4

+ / and.
B(t)λ=0.3 = 30 + 20.115t + 4.53165t2 − 0.605776t3 − 0.648587t4

+ /.
For λ2 = 0.0001, λ2 = 0.0002 and λ2 = 0.0003, we have.
B(t)λ2�0.0001 � 30 + 20.205t + 5.24226t2+

0.113954t3 − 0.334519t4 +/ ,
B(t)λ2�0.0002� 30+20.115t+4.84665t2−0.260167t3−0.495765t4

+/ and.
B(t)λ2�0.0002� 30+20.025t+4.45157t2−0.629906t3−0.645153t4

+/ .

3.1 Verification of the solution

To verify the validity of solution, first we check the solution for
initial conditions which are satisfied at t = 0, secondly we put the
solution and its derivatives in the system. If both sides of system are
satisfied then we consider the solution is correct or true. For the
second condition, we differentiate Eqs 19–21 with respect to t, so we
have

dB t( )
dt

� 20.115 + 9.69329t − 0.780501t2 − 1.98306t3 − 0.608698t4

+/

(22)
dN t( )
dt

� 0.77542 + 0.751156t + 0.0155885t2 − 0.0036521t3

− 0.000326555t4 +/ (23)
dP t( )
dt

� 6.9 + 0.465084t + 0.0518614t2 − 0.000689481t3

− 0.000165368t4 +/ (24)

Now using Eqs 19–24 and the values of given parameters in
system 1) and we have

0. − 1.77636 × 10−15t + 2.22045 × 10−16t3 − 2.22045 × 10−16t4 +/

� 0

(25)
0. + 3.46945 × 10−18t2 − 8.67362 × 10−19t3 + 4.73413 × 10−6t5 +/

� 0

(26)
0. − 6.93889 × 10−18t2 + 9.75483 × 10−6t5 +/ � 0 (27)

The coefficients of t powers in Eqs 25–27 are around 15 to
19 decimal places correct to zero. So our series solution (5th degree
polynomials) satisfies the system up to 4th degree polynomial
(where the coefficients are approximately 17 decimal correct to
zero). The solution can be improved by taking/adding more terms of
power t in it.

3.2 Results and discussions

In this section, we demonstrate the performance of our model
1 through the evaluation of our calculated approximate solutions,
B(t), N(t), and P(t). To validate our results, we compare them with
the Runge-Kutta 4th-order method and present the absolute error,
eB(t), eN(t), and eP(t) in Table 1 for various time steps. The time
domain of our Homotopy Perturbation Method (HPM) is divided
into sub-intervals and mapped onto 0 ≤ t ≤ 400 with a step size of
0.5 for graphical representation. Our analysis revealed an average
absolute error of 6.53290554e − 08, 5.09269781e − 10, and
1.35452205e − 11 for B(t), N(t), and P(t), respectively. In Tables
2–4, we present the cumulative density of forest resources, B(t), for
various values of α, λ, and λ2. These results underscore the versatility
and accuracy of our proposed model, which has the potential to
contribute significantly to the field of forest resource management.
Figure 1 provides a clear illustration of the behaviour of the
cumulative density of forest resources B(t), the density of
population pressure P(t), and the density of population N(t) as
calculated using HPM and RK-4th order method. The solid lines
represent the HPM series solution, while the dotted lines show the
numerical solution calculated by the RK-4th order method. The
graph highlights that the cumulative density of forest resources
decreases as the density of population pressure increases. This
suggests that controlling population pressure is essential for
preserving forests on a large scale. Additionally, Figure 2 depicts
the behaviour of model 1 in 3D with respect to HPM and RK
method, providing a comprehensive view of the model’s behaviour
over time. Figure 3, represents the impact of the depletion rate of
forest resources due to population, α = a, on the cumulative density
of forest resources, B(t). It reflects that decreasing the depletion rate
of forest resources due to population directs to a growth in the
cumulative density of forest resources over time. This emphasizes
the significance of controlling the population pressure on forests to
control their depletion. In Figure 4, we discuss the impact of the
growth rate coefficient of population pressure caused by population
λ = l on the cumulative density of forest resources B(t). The graph
indicates that if we decrease the value of λ, the cumulative density of
forest resources increases. Likewise, Figure 5 describes the effect of
population pressure λ2 on B(t). We can see, as the value of λ2
decreases, the cumulative density of forest resources B(t) increases.
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These figures illustrate the significance of controlling population
pressure and growth rates to save and preserve forest resources. It
also emphasizes the necessity for procedure interventions to control
population growth and decrease the depletion of forest resources.

3.3 Technical specification

These calculations are performed onMathematica® 11.3.0.0 (64-
bit) and Matlab® R2015a (8.5.0.197613) 64-bit using a machine
Intel(R) Core(TM) i3.2310M CPU @ 2.10 GHz and OS: window
7 Professional (64-bit).

4 Conclusion

In this paper, we used the homotopy perturbation method to
obtain a semi-analytical solution for the nonlinear model of the
depletion of forest resources. Important characteristic of HPM is
that it provides the adequate approximate series solution by taking a
few number of perturbation terms which is near to analytical exact
solution. Through comparison with the Runge-Kutta method, we
established the effectiveness and accuracy of the proposed method.
Additionally, we investigated the behaviour of the model by varying
the values of the depletion rate of forest resources due to population
α, the growth rate coefficient of population pressure caused by
population λ, and the depletion rate of its carrying capacity due to
population pressure λ2. The results showed that reducing these
coefficients can increase the cumulative density of forest
resources B(t). These findings highlight the urgent need for
measures to conserve forest resources for the wellbeing of our
planet. The presented model and its solution indicate the
seriousness of this global issue which needs to be acted upon
immediately and effectively to preserve our forest resources. This

study suggests that additional investigations and research is needed
to build more relevant models for assistance of forest resource
experts.
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