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In this study, we simulate the degree and betweenness node attack over a large set
of 200 real-world networks from different areas of science. We perform an initial
node attack approach, where the node centrality rank is computed at the
beginning of the simulation, and it is not updated along the node removal
process. We quantify the network damage by tracing the largest connected
component (LCC) and evaluate the network robustness with the “percolation
threshold qc,” i.e., the fraction of nodes removed, for which the size of the LCC is
quasi-zero. We correlate qc with 20 network structural indicators (NSIs) from the
literature using single linear regression (SLR), multiple linear regression (MLR)
models, and the Pearson correlation coefficient test. The NSIs cover most of the
essential structural features proposed in network science to describe real-world
networks. We find that the Estrada heterogeneity (EH) index, evaluating the degree
difference of connected nodes, best predicts qc. The EH index measures the
network node degree heterogeneity based on the difference of functions of node
degrees for all pairs of linked nodes. We find that the qc value decreases as a
function of the EH index, unveiling that heterogeneous real-world networks with a
higher variance in the degree of connected nodes are more vulnerable to node
attacks.
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1 Introduction

Networks canmodel many real-world complex systems, where nodes (vertices) represent
the constituent components and links (edges) describe the relationships among the node
components [1, 2]. A paramount issue in complex network science is to determine the
robustness of the overall system to the failure or attack of its nodes [3–10]. On the other
hand, the robustness in complex networks is a problem closely related to understanding
which kind of node removal (attack) strategy is the most effective in damaging the network
[3, 11–14]. The node attack may model different real-world problems of high interest, such
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as the nodes/species extinction in ecological networks [15–17], the
aging of nodes/chromophores in the photosynthetic network [18],
the vaccination of nodes/individuals in social networks [19–22], or
the malfunctioning of nodes/routers in computer networks [23, 24].

Network robustness to node attack may change in real-world
networks with different structures [11]. Iyer et al. [3] studied
network robustness as a function of the node clustering
coefficient (or node transitivity). This study demonstrates that
networks with higher clustering coefficients are more robust,

with the most critical effect for the node degree and node
betweenness attack. Nguyen and Trang [25] studied the
Facebook social network. They found that those networks with
higher modularity, i.e., networks presenting communities of
nodes that are highly connected among them, have lower
robustness to node removal. Zhou et al. [26] observed that
increasing the assortativity of a network makes the network
more robust against node removal and the network less stable.
Nguyen et al. [27] showed that machine learning approaches

TABLE 1 Network structural indicator (NSI) list with a short definition and reference.

ID Key Full name Formula Definition Reference

1 N Node number N is the number of nodes in the network

2 L Link number L is the number of links in the network

3 C Connectance C � 2L
N(N−1) L is the number of links, and N is the number of nodes [15]

4 �k Average node degree
�k � 1

N ∑i�N
i�1

ki
ki is the degree of the node i, and N is the nodes’ number [1]

5 σk Node degree standard
deviation σk �

�������∑i�N
i�1

(ki−�k)2

N−1

√
ki is the degree of the node i, �k is the average node degree, and N is the nodes’
number

[49]

6 AH Albertson index AH � ∑
i,j∈L

|ki − kj| i, j is the link connecting nodes i and j, ki is the degree of the node i, kj is the
degree of the node j, and L is the network link set.

[46]

7 nAH Normalized Albertson index nAH � AH
L

AH is the Albertson index, and L is the number of links [49]

8 EH Estrada heterogeneity index
EH �

∑
i,j∈L

(k−1/2i −k−1/2j )2

N−2 ���
N−1√

i, j is the link connecting nodes i and j, ki is the degree of the node i and kj is the
degree of the node j, L is the network link set, and N is the node number

[30]

9 A Network assortativity A � 1
σ2q

∑
j,k∈N

jk(ejk − qjqk) σq is the standard deviation of the excess degree distribution, ejk is the fraction of
links connecting nodes of degree j and k, and qj and qk are the excess degree of
nodes of degrees j and k, respectively

[39]

10 �d Average node distance �d � 1
N(N−1) ∑

i,j∈N,i≠j
dij dij is the distance between nodes i and j, and N is the node number [41]

11 Φ Network eccentricity
Φ � 1

N ∑i�N
i�1

ε(i) ε(i) is the eccentricity of the node i, and N is the node number [41]

12 D Network diameter D � max
i,j∈N,i≠j

(dij) dij is the distance between i and j, and N the node number [41]

13 π Network radius π � min
i∈G

(ε(i)) ε(i) is the eccentricity of the node i [41]

14 Eff Network efficiency Eff � 1
N(N−1) ∑

i≠j

1
dij

dij is the distance between node i and node j, and N is the node number [52]

15 T Average node transitivity
T � 1

N ∑i�N
i�1

τi
τi is the transitivity of the node i, and N is the node number [3]

16 B Average node betweenness
B � 1

N ∑i�N
i�1

g(i) N is the number of nodes and g(i) the betweenness of the node i [53]

17 nB Average normalized node
betweenness nB � 1

N ∑i�N
i�1

ng(i)
N is the number of nodes, and ng(i) is the normalized betweenness of the node i [53]

18 Clo Average node closeness
Clo � 1

N ∑i�N
i�1

Ci

Ci is the closeness of the node i, and N is the node number [54]

19 nClo Average normalized node
closeness nClo � 1

N ∑i�N
i�1

nCi

nCi is the normalized closeness of the node i, and N is the node number [49]

20 Q Network modularity Q � 1
2L ∑

i,j

(aij − kikj
2L )δ(cicj) L is the total number of links in the network; aij is the element i, j of the

adjacency matrix, equal to 1 if i and j are connected, and 0 otherwise; ki and kj
are the degrees of i and j, respectively; ci and cj are the modules (or community)
of nodes i and j, respectively; and δ(x, y) is 1 if x � y and 0 otherwise

[36]
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unveil the degree assortativity, global closeness, and average node
degree as the most critical factors in predicting the robustness (R)
of real-world social networks.

Network science research shows contrasting outcomes about the
role of the network structure in affecting its robustness to node
attacks. On one hand, these studies are often based on small datasets
of real-world networks, and they need more (robust) statistical
analyses. On the other hand, research outcomes generally restrict
the investigation, focusing on a few structural features of the
networks, thus lacking a wide comparison of network structural
indicators (NSIs) to forecast network robustness. For these reasons,
understanding which structural features of real-world networks
affect their robustness to node removal is still an urgent problem
in network science.

In this research, we implement two well-known node attack
strategies, i.e., the degree and betweenness node removal over a
large set of 200 real-world networks from different areas of
science.

We quantify the network functioning damage along the node
attack sequence using the largest connected component (LCC)
indicator [3, 11, 28]. To evaluate the network robustness against
the node attack, we adopt the “percolation threshold” (qc), i.e., the
fraction of nodes removed at which the network becomes
disconnected or, in other terms, the fraction of nodes removed
for which the size of the LCC is quasi-zero [29].

Then, to understand how the network structure affects the
network robustness (and the node attack efficacy), we correlate
qc with 20 NSIs from the literature. To study this correlation, we
performed regression analysis, single linear regression (SLR),
multiple linear regression (MLR) models, and the Pearson

correlation coefficient test to find the best NSI predictors of the
target variable qc.

We find that the Estrada heterogeneity (EH) index [30] best
predicts qc in both the SLR and MLR models. The qc value decreases
as a function of the EH index. The EH index measures network
degree heterogeneity based on the difference in functions of node
degrees for all pairs of linked nodes [30]. This result indicates that
the degree heterogeneity of linked nodes may negatively affect the
real-world network robustness to node attack, specifically the
network robustness against removing the most connected and
highest betweenness nodes. Our outcomes shed light on the role
of the real-world network structure in shaping their robustness and
can help assemble more robust network structures.

2 Methods

2.1 The node attack strategies

We simulated two classic node attack (removal) strategies. The
first is the removal of nodes according to their degree (DEG), i.e., the
number of links to the node [3, 4, 31]. The DEG strategy removes
nodes in decreasing order of connectivity, i.e., the most connected
nodes (hubs) are removed first. The second node attack strategy
removes nodes in decreasing order of betweenness centrality (BET)
[3, 7, 32]. The betweenness centrality is a node centrality based on
the shortest paths between node pairs (also called geodesic paths).
The shortest path between two nodes is the minimum number of
links required to travel from one node to another [33]. The
betweenness centrality of a node returns the number of shortest
paths from every node pair of the network passing along that node.
The betweenness g(i) of the node i is (i) � ∑N

s,t�1
σst(i)
σst

, where σst is
the total number of shortest paths between nodes s and t and σst(i) is
the number of these shortest paths passing through the node i, and
N is the number of nodes.

We perform an “initial node attack approach,” i.e., the node
centrality rank is computed at the beginning of the simulation, and it
is not updated along the node removal process [11]. The “initial
node attack approach” differs from the recalculated (also named
adaptive) node attack, in which node centralities are updated after
node removals [11, 28]. The initial node attack describes the case
where it is not possible to collect information about node features
during the node removal process, such as vaccinating nodes/
individuals in a social contact network with limited resources
(limited time or vaccines) [34] or attacking nodes/routers in a
computer network with a simultaneous node attack [28].

For both the node attack strategies, in the case of ties, i.e., nodes
with equal ranking, we randomly sort their sequence. We perform
103 simulations for each node attack strategy. We implemented the
node attack simulations using the igraph package of the R program.
The simulations are carried out on the high-performance computing
(HPC) cluster of the “Università degli Studi di Parma.”

2.2 Real-world networks

We analyzed a large dataset of real-world network systems
composed of 200 networks from different fields of science. The

FIGURE 1
LCC as a function of the node removal fraction (q). The
percolation threshold qc value corresponds to the q-value at which
LCC is quasi-zero. A higher percolation threshold qc denotes a slower
LCC decrease. Consequently, a higher percolation threshold qc

denotes a more robust network. The red line presents lower qc,
describing a more vulnerable network response to node attack than
the black strategy. In other words, the black line denotes a more
robust network response to a node attack.

Frontiers in Physics frontiersin.org03

Bellingeri et al. 10.3389/fphy.2023.1245564

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1245564


real-world networks analyzed here come from social, biological,
Internet, road, transportation, neuronal, and ecological networks.
The networks analyzed here are undirected (i.e., do not account for
link directionality) and unweighted (do not account for link weight).
The number of network nodes ranges from N = 25 to N = 75,811;
the average is �N = 4,955.6. The real-world network datasets analyzed
in this study are available in the “Netzschleuder” repository [https://
networks.skewed.de/], in the “Stanford Large Network Dataset
Collection” repository [https://snap.stanford.edu/data/index.html],
and in “the Colorado Index of Complex Networks (ICON)”
repository [https://icon.colorado.edu/#!/]. The complete list of the
real-world networks is provided in Supplementary Table Al in
Supplementary Appendix A1.

2.3 Network structure indexes

We considered 20 different NSIs from the network science
literature, graph theory, and chemical graph theory to predict qc
in a large real-world network dataset. NSI adopted in this work

covers most of the salient structural features of the real-world
networks proposed in the network science literature, such as the
node connectivity level [35], presence of a community structure [36,
37], degree heterogeneity [30, 38], node assortativity [39], node
transitivity (or clustering) [3, 40], distance among nodes [41], and
different notions of node centrality [42]. The list of NSIs is provided
in Table 1.

2.4 The network robustness

To evaluate the networks’ response to node attack, we trace LCC
as a function of the fraction of nodes removed q. LCC (also named
the giant component) is the maximum number of connected nodes
[1]. In other terms, LCC is the maximal set of nodes in the network
such that a path connects each node pair. LCC is the most
commonly used measure to evaluate the network response to
node removal [11]. Then, to evaluate the network robustness to
node attack, we use qc that represents the fraction of nodes to
remove for reducing LCC to quasi-zero [29]. This work defines qc as

FIGURE 2
Scatterplots of the percolation threshold (qc) vs. the network structural indicators (NSIs) for the DEG node attack strategy, removing nodes with
higher degrees first.
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the fraction q of nodes removed to reduce the LCC value equal to or
lower to 0.05 of its initial size. The lower the qc value, the lower the
network robustness (Figure 1). Furthermore, the lower the qc value,
the higher the efficacy of the node attack strategies to dismantle the
network [29].

2.5 The linear regression models

We perform regression model analyses to understand the
relationship between NSI and the qc value of the real-world
networks. First, we perform SLR. The SLR model between qc and
an NSI x is expressed by the following linear equation:

qc � a + b ·NSI, (1)
where a is the intercept and b is the slope. We choose the one with
the highest R-squared among the significant SLRs to evaluate the
best SLR model and, consequently, the best predictor. In linear
regression, R-squared (R2), also named the coefficient of

determination, measures how close the data points are to the
fitted line. Higher R2 denotes better regression fitting models [48].

Then, we perform MLR models. MLR is an extension of SLR for
multi-dimension variables x � (x1, x2, . . . , xn). The linear equation
between the qc value and NSIs becomes

qc � a0 + a1x1 + a2x2 + . . . + anxn, (2)
where ai are coefficients obtained performing the ordinary least square
(OLS) method and x1, x2, . . . , xn are NSIs. The ai coefficients quantify
the association between NSI (variable) and qc (response).We interpret ai
as the average effect on qc of a one-unit increase in NSI, holding all other
NSI predictors fixed [48]. In practice, we often have more than one
predictor, and the MLR model, differently from SLR, can directly
accommodate multiple predictors. To evaluate the best predictor
carried out by the MLR model, we choose the significant NSI with
the highest absolute t-value. The t-value used in MLR is the t di-student
statistic value from a two-sided t-test. The larger the absolute value of the
t-test statistic, the less likely the results occurred by chance [48]. For this,
larger absolute t-values are associated with better predictors (NSIs).

FIGURE 3
Scatterplots of the percolation threshold (qc) vs. the network structural indicators (NSIs) for the BET node attack strategy, removing nodes with
higher betweenness first.
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We use the lm function of the R program to perform the SLR and
MLR models. The fitting process is computed using the OLS
method, which estimates the coefficients by minimizing an
appropriate loss function [49].

Last, we perform the Pearson correlation coefficient (r) to test
the goodness of the correlation between NSI and qc. The r coefficient
is the most common way of measuring the strength of a linear
correlation [50]. It is a number between −1 and 1 that measures the
strength and direction of the relationship between two variables. To
evaluate the best correlation performed by the r coefficient, we
choose the significant NSI with the highest absolute t-value. Last, we
furnish the p-value to show the statistical significance of each model.

3 Results

Figure 2 shows the scatterplots of qc vs. NSIs for the DEG node
attack strategy. Figure 3 shows the scatterplots of qc vs. NSIs for the
BET node attack strategy.

Table 2 shows the outcomes of the SLRmodel. The best NSI to fit an
SLR model with qc is the EH index for both DEG (p-value <10–4, R2 =
0.567) and BET (p-value <10–4, R2 = 0.671) strategies. SLR qc ~ EH
returns the lowest p-values and the highest R2 for both node attack

strategies (Table 2). The qc ~ EH fitting slopes are negative, indicating
that qc decreases as a function ofEH, i.e., the robustness of the network is
negatively correlated with EH for both node attack strategies
(Figures 2, 3).

Table 3 shows the outcomes of the MLR model. The best NSI to
predict qc with the MLR model is the EH index for both DEG
(t-value = −11.9, p-value <10–23) and BET (t-value = −11.8,
p-value <10–23) strategies. MLR estimates a negative correlation
between qc and EH for both node attack strategies (negative
correlation estimate, Table 3).

Table 4 summarizes the r coefficient test outcomes. The best NSI
to correlate qc is the EH index for both DEG (t-value = −11.9,
p-value <10–23) and BET (t-value = −11.8, p-value <10–23) strategies.
The r coefficient estimates a negative correlation between qc and EH
for both node attack strategies (−16.063 for DEG and −20.035 for
BET, Table 4).

4 Discussion

The EH index is the best predictor of n qc in our NSI set. Estrada
[30] proposed the EH index as a unique characterization of network
degree heterogeneity based on the difference in functions of node

TABLE 2 Single linear regression model outcomes. The best significant predictor with the highest R2 value is in bold.

DEG BET

NSI Intercept Slope p-value R2 Intercept Slope p-value R2

N 0.515 0.000 <10–4 *** 0.149 0.519 0.000 <10–4 *** 0.149

L 0.467 0.000 0.903 0.000 0.477 0.000 0.713 0.001

C 0.413 1.887 <10–4 *** 0.217 0.431 1.502 <10–4 *** 0.159

B 0.493 0.000 <10–4 *** 0.079 0.497 0.000 <0.001** 0.070

nB 0.446 4.184 0.05 0.019 0.443 5.792 <0.05* 0.041

Clo 0.429 56.559 <10–4 *** 0.146 0.441 49.661 <10–4 *** 0.130

nClo 0.213 0.939 <10–4 *** 0.195 0.305 0.628 <10–4 *** 0.101

�d 0.558 −0.019 <10–4 *** 0.089 0.536 −0.013 <0.05* 0.048

D 0.560 −0.008 <10–4 *** 0.105 0.539 −0.005 <0.001** 0.059

π 0.565 −0.015 <10–4 *** 0.094 0.540 −0.010 <0.05* 0.049

T 0.290 0.866 <10–4 *** 0.330 0.330 0.703 <10–4 *** 0.251

�k 0.424 0.002 <10–4 *** 0.114 0.446 0.002 <0.001** 0.059

σk 0.460 0.000 0.401 0.004 0.479 0.000 0.642 0.001

A 0.454 0.520 <10–4 *** 0.294 0.460 0.532 <10–4 *** 0.355

Q 0.595 −0.234 <0.05* 0.037 0.530 −0.100 0.214 0.008

AH 0.471 0.000 0.449 0.003 0.480 0.000 0.185 0.009

EH 0.665 −0.940 <10–4 *** 0.567 0.674 −0.952 <10–4 *** 0.671

Φ 0.556 −0.010 <10–4 *** 0.097 0.535 −0.007 <10–4 *** 0.053

Eff 0.183 0.963 <10–4 *** 0.237 0.274 0.679 <10–4 *** 0.136

nAH 0.524 −0.001 <10–4 *** 0.200 0.534 −0.001 0.000 0.261
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degrees for all pairs of linked nodes. EH quantifies the degree
heterogeneity of the network as a quadratic form of the
Laplacian matrix of the network. It takes the value of zero if all
nodes have the same degree as it happens in regular networks, and it
is maximized when the difference of both degrees increases. The EH
index has two bound or limit structures, i.e., it is equal to zero for any
regular network (where all nodes present the same degree) and equal
to one only for star graphs, i.e., networks in which N-1 nodes are
directly connected to a single central node [30]. We find that qc
decreases as a function of the EH index (Figures 2, 3). This finding
indicates that heterogeneous real-world networks with a higher
variance in the degree of connected nodes are more vulnerable to
node attacks.

EH is conceived as a refining of the Albertson index (AH),
which computes the sum of the absolute value of the degree
difference of the connected nodes [44]. The AH index, its
normalized version nAH, and the node degree standard deviation
σk are all indicators we used to quantify the network degree
heterogeneity. The statistical analyses we performed, both SLR

and MLR and the r coefficient test, indicate that these NSIs are
not good predictors of qc. σk did not return significant fittings for all
statistical models (Tables 2–4). σk evaluates the whole node degree
heterogeneity, neglecting whether the node degree variance is
among connected nodes. Differently, the EH index measures the
degree difference among connected nodes [30]. For this reason, we
can argue that the node degree heterogeneity would play a
significant role in affecting the network robustness only if the
node degree heterogeneity is located (and evaluated) among
connected nodes.

The third and fourth ring roads of Beijing City, the capital of
China, are the real-world networks of the lowest EH in our dataset
(EH = 0.008 and 0.009). In these networks, nodes represent the road
intersections and links depict the roads connecting nodes [51]. The
connected nodes present homogenous degrees, and for this reason,
removing higher-degree road intersections would cause a slower
network fragmentation with very high qc values (qc = 0.6 and 0.56),
indicating lower network damage. On the contrary, the academia US
faculty hiring network shows the highest EH value (EH = 0.73). In

TABLE 3 Multiple linear regression model outcomes. The best significant predictor with the highest absolute t-value is in bold.

DEG BET

NSI Estimate t-value p-value Estimate t-value p-value

N 1.36·10−06 0.574 0.567 1.326·10−06 0.589 0.556

L 6.537·10−07 3.475 <0.001** 6.145·10−07 3.439 <0.001**

C −0.767 −3.422 <0.001** −0.614 −2.885 <0.05*

B −6.725·10−07 −1.029 0.305 −8.068·10−07 −1.299 0.196

nB −1.387 −0.975 0.331 −1.016 −0.752 0.453

Clo −5.647 −0.927 0.355 −9.027 −1.560 0.121

nClo −3.551 −3.552 <0.001** −4.915 −5.173 <10–4 ***

�d 0.036 3.188 <0.05* 0.029 2.788 <0.05*

D −0.02 −2.705 <0.05* −0.017 −2.378 <0.05*

π 0.0006 0.049 0.961 0.015 1.384 0.168

T −0.199 −3.179 <0.05* −0.315 −5.290 <10–4 ***

�k −0.0006 −0.757 0.449 −0.001 −1.493 0.137

σk 0.001 1.257 0.210 0.003 1.752 0.081

A 0.203 5.023 <10–4 *** 0.222 5.789 <10–4 ***

Q 0.015 0.283 0.778 0.004 0.085 0.932

AH −1.33·10−09 −2.635 <0.05* −1.243·10−09 −2.597 <0.05*

EH −0.915 −11.836 <10–4 *** −0.874 −11.904 <10–4 ***

Φ 0.0121 0.934 0.352 0.002 0.125 0.900

Eff 4.945 5.254 <10–4 *** 6.033 6.747 <10–4 ***

nAH −1.47·10−07 −0.001 0.999 −4.193·10−05 −0.432 0.666

Intercept 1.505·10−01 0.089 2.13·1002 0.012

Outcome RSE: 0.06 multiple R2: 0.94 p-value: <0.001 RSE: 0.06 multiple R2: 0.94 p-value
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this network, a node is a Ph.D.-granting institution, and a link from
node i to node j indicates that a person received their Ph.D. from
node i and was tenure-track faculty at node j [52]. This network
presents the highest degree heterogeneity of connected nodes,
i.e., famous higher-degree nodes/institutions are connected with
many lower-degree institutions. Therefore, the removal of the
highest degree nodes, i.e., the removal of famous institutions
sending many Ph.D. to other institutions, can cause a quick
network disconnection. Therefore, the academia US faculty hiring
network returns a lower qc value (qc = 0.13), indicating more
significant network damage.

The nAH index is computed by averaging the original AH
index over the number of links in the network. It can be viewed as
the average degree difference among connected nodes [43]. nAH
shows significant fitting for SLR (Table 2). Nonetheless, R2 of SLR
is much higher for EH than that for the nAH index (0.567 for EH
and 0.200 for nAH, Table 2), indicating that the EH index can
better explain the data. AH returns significant fitting for MLR
(Table 3), but the absolute t-value for AH is much lower than that
for EH (Table 3). Furthermore, AH did not return a significant r
coefficient test (Table 4). These statistical results indicate that
only EH correlates the nodes’ degree heterogeneity of the
networks with their robustness to the attack of connected
nodes. On the other hand, these results suggest that networks
presenting, on average, similar node degrees of the connected
nodes should be robust to node attack. For this reason, networks
of lower EH should show higher robustness to node attack and
higher qc.

The assortativity coefficient A (Table 1) measures how nodes
tend to be connected with nodes of similar degrees [39]. “Assortative
networks” present a preference for a network’s nodes to attach to
others with similar node degrees [39, 53]. On the contrary, a network
is “disassortative” when, on average, high-degree nodes are
connected to nodes with a lower degree, and on average, low-
degree nodes are connected to nodes with a higher degree.
Positive values of A indicate a correlation between nodes of
similar degrees, while negative values indicate relationships
between nodes of different degrees [39].

Given a certain node degree heterogeneity, assortative networks
should have, on average, lower EH than disassortative networks.
The linear regression A ~ EH indicates a negative correlation
(p-value < 0.001) in our real-world network dataset and confirms
this hypothesis, i.e., higher values of A are associated with lower EH
(Figure 4).

Consequently, assortative networks should show higher
robustness to node attack and higher qc. According to this
hypothesis, we find that qc increases as a function of A (Figures
2, 3), and all models SLR, MLR (Tables 2, 3 respectively), and the r
coefficient (Table 4) return a positive significant fitting between A
and qc. The literature research results corroborate this finding,
unveiling that increasing the assortativity of a network makes the
network more robust against node removal [26], and a moderate
assortativity increase positively affects the network’s robustness
against targeted node attacks [54]. Therefore, real-world networks
with higher-degree differences of connected nodes are likely to
present lower qc.

To further investigate the relationship between node degree
heterogeneity and network robustness, we perform an MLR model

TABLE 4 Pearson correlation coefficient test outcomes. The best significant
predictor with the highest absolute t-value is in bold.

DEG BET

NSI Estimate t-value p-value Estimate t-value p-value

N −0.386 −5.876 <10–4 *** −0.386 −5.88 <10–4 ***

L 0.009 0.123 0.903 −0.026 −0.369 0.713

C 0.466 7.388 <10–4 *** 0.398 6.092 <10–4 ***

B −0.281 −4.102 <10–4 *** −0.264 −3.841 0.001

nB 0.137 1.928 0.06 0.203 2.896 0.004

Clo 0.382 5.805 <10–4 *** 0.36 5.42 <10–4 ***

nClo 0.442 6.917 <10–4 *** 0.318 4.7 <10–4 ***

�d −0.299 −4.398 <10–4 *** −0.218 −3.141 0.002

D −0.324 −4.807 <10–4 *** −0.243 −3.512 0.001

π −0.307 −4.527 <10–4 *** −0.22 −3.17 0.002

T 0.575 9.859 <10–4 *** 0.501 8.128 <10–4 ***

�k 0.337 5.022 <10–4 *** 0.243 3.514 0.001

σk 0.06 0.842 0.401 −0.033 −0.466 0.642

A 0.542 9.059 <10–4 *** 0.596 10.408 <10–4 ***

Q −0.192 −2.752 0.007 −0.088 −1.246 0.214

AH −0.054 −0.759 0.448 −0.094 −1.329 0.185

EH −0.753 −16.063 <10–4 *** −0.819 −20.035 <10–4 ***

Φ −0.311 −4.599 <10–4 *** −0.23 −3.312 0.001

Eff 0.487 7.825 <10–4 *** 0.369 5.569 <10–4 ***

nAH −0.447 −7.02 <10–4 *** −0.511 −8.349 <10–4 ***

FIGURE 4
Scatterplot of the assortativity coefficient (A) vs. the Estrada
heterogeneity (EH) index. The black line represents the significant
linear regression A � 0.2 − 0.84 · EH (p-value < 0.001).
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holding only EH and A as predictors of qc, i.e., we fit the model
qc ~ EH + A. The outcomes of this analysis are shown in Table 5.
EH is highly significant for theDEG strategy and presents the lowest
t-value, whereas A is not a significant predictor. EH is highly
significant for the BET strategy and presents a smaller t-value
than A. This finding supports EH as NSI that can correlate with
the real-world networks qc.

5 Conclusion

Investigating node attack strategies provides valuable insights
into enhancing network robustness by anticipating potential
threats and identifying components that need protection. On
the other side of the coin, node attack research plays a crucial role
when the aim is to perform a fast network disruption, such as
halting the spread of a disease or stopping the diffusion of a
computer virus. Here, we investigate the relationship between the
network structure and its robustness to node attack in a large
dataset of real-world networks. Our results indicate that the
degree heterogeneity of connected nodes negatively affects the
network robustness. Specifically, the EH index evaluates the node
degree heterogeneity, and it is the best predictor of qc in our NSI
set. This result unveils that heterogeneous real-world networks
presenting higher differences in the degree of connected nodes
are more vulnerable to node attacks. These results may help
quantify real-world networked systems’ robustness and build
more robust networks.

This paper presents some limitations that may open new lines of
research. First, we perform linear regression models only. The
relationship between NSIs and the percolation threshold qc of
the real-world networks may follow nonlinear models. Therefore,
a natural extension of this research may consider nonlinear
regression models, such as logistic, monomolecular, or
exponential functions, to describe the relationship between the
structure and the percolation threshold of real-world networks.
Then, we adopt an initial node attack approach to study network
robustness. Future research may analyze the robustness of real-
world networks using recalculated node attacks, in which node
ranking is updated after each node removal. Last, it would be
interesting to investigate how NSIs correlate with other
robustness indexes besides qc, such as, for example, the network
robustness index R robustness proposed by Schneider et al [55]. The
R measurement considers the size of LCC during the whole node
attack process not only at the point the network collapses. Therefore,
adopting R may unveil a new correlation pattern between NSIs and
network robustness.
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