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The identification of key nodes in complex networks is a hot topic. Therefore, it
attracts increasing attention from different fields, like airline networks and social
networks. To identify the key nodes in complex network, we suggest an improved
gravity model method that takes propagation features into account. Relevant
experiments were carried out in four actual airline networks based on the
Susceptible Infected Recovered (SIR) model. First, we analyze the correlation
between the proposed method and other benchmark methods.Then, Kendall’s
correlation coefficient and the imprecision function were used as evaluation
metrics to analyze and validate the proposed method. Empirical results reveal
that the suggestedmethod outperforms previous benchmarkmethods in terms of
precision and effectiveness for identifying key nodes, especially in the US air
network, where Kendall’s tau achieves a 107% improvement compared to the
gravity centrality method.
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1 Introduction

Research on complex networks has gained significant traction in recent years [1, 2], and
related work has been progressing in fields including airline networks [3, 4], social networks
[5], and other networks [6]. Numerous scholars have devoted themselves to the study of
identifying key nodes in networks in addition to analyzing and exploring some fundamental
topologies of networks [7–9]. Theoretically and practically, it is critical to accurately identify
key nodes in networks [10], because key nodes frequently play a more important role on the
structure and function of the entire network than other nodes. The research of key nodes
identification has a wide range of applications, including viral marketing, the identification of
significant opinion leaders in social networks, the location of key node airports in airline
networks, and so on.

Theoretically, a variety of methods have been proposed to effectively identify key nodes
in complex networks, including Degree Centrality (DC) [11], k-shell decomposition (KS)
[12], and its variants [13, 14]. However, it frequently appears that many nodes are in the
same ranking when utilizing the aforementioned traditional ways to rank the importance of
network nodes. Over the years, numerous innovative methods have been proposed in an
effort to successfully address these issues and obtain accurate node identification [9, 15–19].
Ma et al. introduced a novel method called Gravity Centrality (GC) [20], which takes into
account both the path information and the local attribute. Li et al. [21] suggested a ranking
algorithm by treating node degree values as masses while taking neighboring nodes’ ranges
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into account. Li et al. [22] proposed an improved gravity model
method that integrates the gravity model as well as the degree and k-
shell values of nodes. In fact, in addition to local and global features
and path-based information, the propagation feature is one of the
variables that affects the propagation range of nodes in the network
[23–25]. According to this idea, Zhong et al. [26] provide an
enhanced information entropy [27] approach that takes into
account the effects of both node neighbors and propagation features.

Inspired by the principles of GC and its modifications as well
as node propagation features, this research proposed a unique
method for identifying key nodes in complicated airline networks
based on the gravity model and propagation feature (IGP). In
four real airline networks, we evaluated the accuracy of our
method, and IGP performed better on Kendall’s tau [28] and
the imprecision function than six other benchmark methods. Our
method can accurately identify key nodes, which not only
contributes to enhancing the effectiveness and quality of the
airline network but also offers theoretical support for network
improvement.

The following sections make up the present paper. It begins with
a description and justification of the proposed method. Second, a
detailed analysis of the results of the experiment is provided. Finally,
an overview of this research project is provided.

2 Model

Given a complex network G, which is undirected and
unweighted, we make G = (N, E), which means that the graph
G consists of N nodes and E edges. A = {aij} is the adjacency matrix
of G; aij = 0 indicates that node i and j are not directly connected;
aij = 1 indicates that they are. Airports represent nodes in an airline
network, and routes between airports substitute edges, which are
abstracted into an undirected airline network. Similar to this, aij =
1 if there are direct connections connecting two airports;
otherwise, aij = 0. Besides, A can also be used to describe the
basic topology of G.

To begin identifying the initial effect of nodes in the network, we
first compute the gravity value—G based on the gravity centrality.

Gi � ∑
j∈ψ i( )

ki + ksi( ) kj + ksj( )
d2
ij

(1)

Where Gi refers to the importance of node i; j ∈ ψ(i) denotes that
node j is a neighbor of node i. In this paper, we will consider the
direct neighbors. The ki, ksi represent the degree value, k-shell value
of node i, respectively. The dij denotes the shortest distance from
node i to node j. And ki, kj are expressed using Eq. 2.

ki � ∑
j∈G

aij (2)

The influence of same-order neighbors is typically seen as being
equal in networks that preserve a certain propagation rate. Using
node propagation features, it is possible to further identify the degree
of relevance of nodes with the same influence (nodes with the same
centrality value) in the real propagation process, as well as to
distinguish the degree of influence of a node on its neighbors. In

order to further differentiate, we therefore successfully combine the
propagation rate and node degree. We will use Cj to represent the
influence effect of node j when the propagation rate is β.

Cj � 1 − 1 − β( )kj (3)

Finally, the gravity model and the propagation feature are
considered simultaneously to analyze the influence of the nodes
in the network, as described by the following equation.

IGP i( ) � ∑
j∈ψ i( )

Cj *Gi

� ∑
j∈ψ i( )

1 − 1 − β( )kj[ ]
ki + ksi( ) kj + ksj( )

d2
ij

(4)

3 Results

3.1 Data description

The accuracy of the IGP method will be evaluated in this
experiment using four real airline networks. The US air airline
network is a network of American airlines [29]. The real airline
networks of China’s three domestic carriers are denoted,
respectively, by CA (the airline network of Air China), CZ (the
airline network of China Southern), and MU (the airline network of
China Eastern). Each node in the airline network represents a
separate airport, and the edges indicate the routes that connect
those airports. Table 1 displays some of the topological properties of
the four airline networks.

According to Table 1, it is clear that the US air network covers
the most airports and routes among the four airline networks. By
comparing the average degree of each airline network, it is possible
to compare network sparsity. The epidemic threshold identified for
each airline network using the SIR model is indicated by the βth. The
assortative coefficients for four airline networks are negative, and the
values are near to each other, indicating that the clustering effect of
each airline network is quite close. The US air network’s clustering
coefficient has a maximum value of 0.625, the CZ has the lowest
value. This shows that some nodes (airports) in four airline networks
have a tendency to be connected with preferred large degree values.
The average distance between all four airline networks is kept
between 2 and 3.

TABLE 1 Basic topology information of US air, CA, CZ, and MU networks. The
names of the four networks are placed in the first column under network. TheN
and E denote the total number of nodes and edges, respectively. The 〈k〉 and
βth represent the average degree and epidemic threshold. The r, C and 〈d〉 are
assortative coefficient, clustering coefficient and the average distance,
respectively.

Network N E 〈k〉 βth r C 〈d〉

US air 332 2,126 12.8 0.023 −0.208 0.625 2.738

CA 237 855 7.2 0.026 −0.356 0.447 2.358

CZ 281 1,138 8.1 0.025 −0.367 0.380 2.519

MU 293 1,247 8.4 0.025 −0.361 0.435 2.563
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3.2 Measurement

This study will use the node propagation range of the SIR model
to describe the influence of each node [30]. The nodes in the SIR
model have three discrete states: susceptible, infected and recovered,

FIGURE 1
It is a topology depiction of the four airline network diagrams for US air, CA, CZ, and MU, respectively.

TABLE 2 The top—10 nodes ranked by different methods in the US air network.

Rank SIR BC CC DC KS GC KSGC IGP

1 118 118 118 118 67 118 118 118

2 261 8 261 261 94 261 261 261

3 255 261 67 255 109 255 255 255

4 152 201 255 152 112 182 182 182

5 182 47 201 182 118 152 152 152

6 230 182 182 230 131 230 166 230

7 166 255 47 166 146 112 230 166

8 112 152 166 67 147 166 67 67

9 67 313 248 112 150 67 112 112

10 147 13 112 201 152 147 147 147

The top-ranked node numbers from the other identification methods that do not fall within

the range of the top-ranked node numbers of the SIR are noted with a bold value.

TABLE 3 The top—15 nodes ranked by different methods in the CA network.

Rank SIR BC CC DC KS GC KSGC IGP

1 148 148 148 148 14 148 148 148

2 33 33 33 33 19 33 33 33

3 153 153 153 153 22 153 153 153

4 179 136 179 179 23 179 179 179

5 27 179 27 27 27 27 27 27

6 71 56 71 71 33 71 71 71

7 149 27 41 149 41 149 149 41

8 41 41 197 41 69 197 41 197

9 197 71 171 197 71 41 197 171

10 171 22 69 69 80 171 171 149

11 69 149 22 171 87 204 69 69

12 204 171 204 22 106 69 204 204

13 113 159 113 204 113 113 22 113

14 22 2 19 113 115 22 113 19

15 19 106 56 19 120 195 19 22

The top-ranked node numbers from the other identification methods that do not fall within

the range of the top-ranked node numbers of the SIR are noted with a bold value.
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respectively. A certain infection step, propagation rate, and recovery
rate are first determined prior to the experiment. The susceptible
neighbors of every infected node will, at random and with a
predetermined probability β, get infected at each time step of the
SIR model. At the same time, at a certain recovery rate μ, certain
infected nodes will return to their pre-infection state and not
become infected again. When there are no infected nodes left in
the overall network, the propagation process comes to an end. To
quantify the SIR propagation process, we recorded the average
number of infected nodes for each node in this experiment after

5,000 experimental propagation processes. According to the SIR
model, a node is more significant and plays a more critical function
when there are more nodes infected by it.

To evaluate whether there is a correlation between two
sequences, one uses Kendall’s tau coefficient [28]. The value of
Kendall’s coefficient ranges from 0 to 1. The closer the calculated
Kendall’s tau correlation coefficient is to 1, the stronger the
correlation between the two sequences. The correlation
coefficient can be defined as Eq. 5.

τ � 2
N N − 1( ) ∑i<j

sgn vi − vj( ) wi − wj( )[ ] (5)

Given two sequences with the same length, name the two
sequences as V and W, their ith values are denoted by vi and wi,
respectively. There are three relationships between (vi, wi) and (vj,
wj): vi > vj andwi > wj or vi < vj andwi < wj; vi > vj andwi < wj or
vi < vj and wi > wj; vi = vj and wi = wj, denoted as concordant,
discordant, and neither concordant nor discordant, respectively.
The Kendall’s tau coefficient will be used to analyze the correlation
between network ranking lists produced by various node ranking
algorithms and SIR model in this paper. If the obtained τ value is
nearer 1, it indicates that the ranking list produced by the ranking
method is more likely to reflect the ranking in the actual propagation
process, indicating that the method is more efficient.

The imprecision function ε(p) calculates the mean propagation
capacity of the top-M nodes in the ranking list generated by various
key node detection methods, it can assess the performance of the
ranking method. The imprecision function ε(p) is defined as Eq. 6.

ε p( ) � 1 − M p( )
Meff p( )

(6)

Here p denotes the ratio of selected nodesM to the total number
of nodes N (p = M/N), which ranges from 0 to 1. The M(p) and
Meff(p), respectively, represent the average spreading influence of the
top pN nodes in the ranked list produced by different methods and
the SIR model. The better it is for identifying key nodes in networks,
the smaller the difference betweenM(p) andMeff(p), the smaller the
ε(p), and the more accurate the ranking of the network nodes
computed by a particular method.

3.3 Simulation results

To evaluate the effectiveness of our proposed method (IGP), we
compare it with six ranking methods, including BC (Betweenness
Centrality) [31], CC (Closeness Centrality) [32], DC (Degree
Centrality) [11], KS (k-shell decomposition) [12], GC (Gravity
Centrality) [20], and KSGC (the k-shell based on gravity
centrality) [33]. Besides, we set propagation rate β in the SIR
model for different networks.

We organized and evaluated the data from the four airline
networks to produce the structure map of the network. After
that, we plot the combined routes of the four airline networks to
get Figure 1, from which we may roughly infer the distribution of
each network’s nodes (the total number of airports) and connections
(the total number of routes connecting those airports). As can be
observed in Figure 1, the nodes in the four airline networks have

TABLE 4 The top—10 nodes ranked by different methods in the CZ network.

Rank SIR BC CC DC KS GC KSGC IGP

1 27 27 27 27 27 27 27 27

2 215 233 245 215 32 215 215 215

3 245 215 233 245 33 245 245 245

4 39 245 39 233 39 39 39 39

5 233 39 32 39 44 44 233 233

6 32 109 215 32 46 32 32 32

7 44 32 44 44 79 233 44 44

8 189 57 206 206 85 137 206 189

9 206 95 189 57 95 206 189 206

10 137 83 193 189 131 189 137 193

The top-ranked node numbers from the other identification methods that do not fall within

the range of the top-ranked node numbers of the SIR are noted with a bold value.

TABLE 5 The top—15 nodes ranked by different methods in the MU network.

Rank SIR BC CC DC KS GC KSGC IGP

1 208 208 208 208 25 208 208 208

2 137 267 137 137 32 137 137 137

3 267 137 267 267 38 267 267 267

4 191 115 191 191 44 191 191 191

5 223 191 237 223 46 223 259 259

6 237 223 223 259 58 259 223 223

7 259 204 259 237 64 237 237 237

8 201 149 201 201 82 46 46 46

9 46 259 89 46 89 248 201 201

10 248 269 46 89 90 89 89 89

11 89 237 280 204 103 201 204 248

12 280 46 204 248 112 187 248 204

13 204 201 153 280 132 280 280 280

14 187 283 187 187 137 204 187 153

15 153 89 248 153 147 153 153 187

The top-ranked node numbers from the other identification methods that do not fall within

the range of the top-ranked node numbers of the SIR are noted with a bold value.
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highly similar topologies, and each of the four networks exhibits the
characteristics of high core node connectivity density and low edge
node connectivity.

We compared the top 10 or 15 key nodes obtained by the IGP
approach to those found by other benchmark methods. In our
experiments, we ranked the nodes in each of the four airline
networks using the IGP method before choosing the top-10 or
top-15 of the ranked nodes. These nodes were then ranked for
selection using the other six benchmark methods in the same way.
Tables 2–5 displays the results of node ranking.

When using different methods to identify key nodes for the same
network, the results are frequently not exactly the same.We consider
that it is related to the accuracy of eachmethod and also has a certain
relationship with the network’s structure. For each method in the
table, the more the number of bolded numbers, the less accurate the
method is. The SIR model here is with β = βth for different networks.
As is shown in the US air network, the IGP, GC, KSGC and SIR all
have the same node numbers. Comparable circumstances are
represented in the MU network as well. Besides, the DC and CC
are method that perform better in the CA and MU networks, the
poorest effective method is KS since there are multiple nodes
scattered across the same shell. The BC method also showed

poor performance in the four networks. After that, we’ll conduct
more experiments to further evaluate these methods’ effectiveness.

We obtain Figure 2 to further examine the correlations between
the IGP and other benchmark methods. The KS, DC and CC are
picked as comparison methods. Each node in the network is
represented by a point on the graph. In this experiment, we set
propagation rate β = βth and the infection step F(t) = 10. Each point’s
color indicates the spreading capacity determined by the SIR model.
The closer a point’s color is to red represents its larger relevance,
according to the color bar.

As shown in Figure 2, we can see that IGP and KS have a positive
correlation from Figures 2A–D. The CC and IGP also have a positive
correlation from Figures 2I–L, but neither of the two methods
mentioned above has as strong of a correlation as the one
between DC and IGP. From Figures 2E–H, we recognize that DC
and IGP have a strong positive correlation, meaning that nodes with
larger DC values will also have larger IGP values. For this reason, we
believe that the DC has a stronger correlation with the IGP
compared to both the CC and KS methods, likely because the
degree value of the node is taken into account when considering
the influence of the propagation feature on the node. In conclusion,
the IGP method has varying degrees of positive correlation with

FIGURE 2
The relationship between the IGP and KS, DC, and CC in four airline networks is shown in this figure. The values of the horizontal and vertical axes
denote the results of the IGP and KS, DC, and CC calculations, respectively. Each point’s color indicates the spreading capacity determined by the SIR
model.
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FIGURE 3
In the four airline networks, the Kendall’s tau τ is obtained using sevenmethods. The range of β is from 0.6βth to 1.4βth. The results are the average of
more than 100 independent experiments conducted at different propagation rates.

FIGURE 4
The imprecision function ε(p) is obtained by different methods in the four airline networks. The p ranges from 0.1 to 0.3. We set β = 0.05 and μ = 1.
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several previous centrality methods, and the infectivity of the nodes
with higher IGP values is larger.

By calculating Kendall’s tau coefficient, we are able to compare
the efficacy of various methods. We adjusted the propagation rate
range in the SIR model, and the propagation rate varies from 0.6βth
to 1.4βth for each network in order to further examine the impact of
propagation rate on the IGP method. Figure 3 shows Kendall’s tau,
which was calculated using various methods in the four airline
networks.

As shown in Figure 3, the IGP method performs well in the US
air network and also performs better in the MU and CA networks,
with the corresponding value almost always coming in first. The
superiority of our proposed method is visible in the US air network,
where IGP has a more stable largest Kendall’s tau coefficient and has
an advantage of up to 107% over the GC method. There is a similar
phenomenon in MU network, with the exception of the propagation
rate of 0.6βth, where the Kendall’s tau values obtained by the IGP
method remain at their maximum values for all propagation rate
cases.

In the MU network, the Kendall’s coefficients obtained by the
IGP method increase as the propagation rate increases. We can
find that our suggested method and the KSGC method are
somewhat competitive in both CA and CZ networks. For both
networks, the two methods are nearly equally effective when the
propagation rate is from 0.6βth to 0.9βth. When the propagation
rate exceeds 0.9βth, The IGP method obtains a larger value of
Kendall’s tau, demonstrating the greater validity and accuracy
of IGP.

After calculating Kendall’s tau coefficient, we learn that the IGP
method outperforms other methods. To further back up this
conclusion, we will then employ the imprecision function. The
accuracy of the method increases as the value of the imprecision
function decreases. We calculate the ε(p) achieved using the IGP
method and the other six benchmark methods, respectively, in four
airline networks. Figure 4 shows the experimental results. The p-
value range was defined to be between 0.1 and 0.3. The figure shows
that the ε(p) acquired by the IGP method is in a relatively low value
range for each airline network, and the overall experimental findings
are encouraging, demonstrating the accuracy and effectiveness of
our method.

4 Discussions and conclusion

In order to identify key nodes in complex networks, we present
the IGP method, an improved gravity model based on propagation
features. First, we compare the proposed method to the top node
rankings obtained by other benchmark methods. Next, we analyze
the correlation with the DC, CC, and KS methods. Finally, we
evaluate the performance of the proposed method using Kendall’s
correlation coefficient and imprecision function as evaluation
criteria. Experimental simulations in four airline networks show
that the proposed method outperforms other benchmark methods.
The IGP method produces larger Kendall’s coefficient than other
methods, particularly in the US air network, with a clear advantage.
Additionally, each network has lower imprecision function values
related to the IGP method, indicating that the IGP method can

identify key nodes more accurately than benchmark methods. The
results of our experiments demonstrate that our method has
accuracy as well as practicality, and that the IGP method can
theoretically assist in the accurate identification of key node
airports in the airline network.

Accurately and effectively identifying key nodes in complex
networks is increasingly important as network topologies become
more complex in the real world. In addition to the complex airline
networks, the approach we propose can be utilized to locate key
nodes in other complicated networks. Furthermore, we will improve
our method by applying it to multilayer network topologies or
temporal networks, in conjunction with later practical advances and
modifications, in order to achieve more precise identification of
critical nodes.
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