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Due to the differences in society stratum, personal profession, and social
acceptability, information propagation can be impacted by the contact
capabilities of individuals. Importantly, we found that with the changes in
individual psychology, their response to a phenomenon will gradually weaken.
This phenomenon is called heterogeneous decreased behavior and applied in the
fields of economics, sociology, and ecology. In the social network, people show a
gradually decreasing degree of interest for information, named individual
heterogeneous decreased behavior (IHDB). We structure a two-layer network
model to describe individual behavioral contact and propose a threshold function
to represent IHDB. Meanwhile, we use partition theory to explain the information
propagation mechanism. Through experiments, it is demonstrated that there is a
continuous information outbreak in the ultimate adoption size when individuals
exhibit a positive IHDB. However, when individuals exhibit a passive IHDB, there is
a discontinuous information outbreak in the ultimate adoption size. Eventually, our
experiments show that the theoretical analysis coincides with the results of the
simulations.

KEYWORDS

information propagation, two-layer networks, individual behavioral contact, individual
heterogeneous decreased behavior, adoption threshold function

1 Introduction

1.1 Research background

With the persistent exploration of the information propagation mechanism, researchers
have discovered the influencing factors of different individual behaviors on information
outbreak [1–9]. Individual behavior is mainly affected by individual psychology. For
example, in information propagation, some people show positive adoption, while others
show negative adoption [10, 11]. These behaviors are not only applied in information
propagation but also in other fields, such as economics, ecology, and medicine. By
investigating abundant literature works, we found that there is a latent behavioral
phenomenon in multiple fields. Particularly, in investment, when the investment quota
is increased, the additional income brought by an increase in one unit of investment will
decrease [12–15]. In agricultural production, when the number of chemical fertilizers
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increases, the additional yield that can be brought by a unit of
chemical fertilizers will decrease [16, 17]. In medicine, when the dose
of drugs increases, the treatment effect of drugs on patients will
decrease [18, 19]. In the field of education, the additional
educational effects that can be brought about by one unit of
educational resources will be reduced [20, 21]. In summary, this
behavior is called a decreasing behavior which is applied in multiple
fields. For propagation dynamics, the paper aims to explore the
impact mode of decreasing behavior on information propagation.

Based on our survey, we found that the phenomenon of
decreased behaviors also exists in information propagation. For
example, for advertising effect, at the beginning, advertising may
attract people’s attention, but over time, the interest degree of people
in advertising will gradually decrease [22, 23]. For media marketing,
people’s interest degree in the same type of content will also decrease
[24, 25]. For teaching, learning motivation of students for the same
knowledge will decrease [26, 27]. In summary, in information
propagation, if the same information is repeatedly received, the
interest degree of people will decrease, which is closely related to
individual psychology [28]. Therefore, this paper defines the
phenomenon as an individual heterogeneous decreasing behavior,
which is called IHDB, to explore its impact on information
propagation mechanisms.

1.2 Main contributions

In this study, we found that people can only closely contact with
a small number of friends due to the differences in society stratum,
personal profession, and social acceptability [29–31]. For instance, a
user can face difficulty to connect with all of his/her friends in a short
period of time. Furthermore, several social media platforms, such as
Twitter, Instagram, Tinder, and WhatsApp, are used frequently by
many individuals [32–34]. Therefore, this paper considers the two-
layer contacted network to explore the individual contact capacity
which needs to be considered to analyze the information
propagation mechanism.

More importantly, information propagation will be influenced
by the individual adoption behaviors [35, 36]. According to the
explanation given in Section 1.1, we found that the individual
interest in behavior adoption is closely related to the proportion
of neighbors who adopt the behavior. The individual heterogeneous
decreasing behavior (IHDB) illustrates that when more and more
neighbors transmit a same piece of information to the individual, the
passion degree of the individual to receive the information gradually
decreases.

The advantages of the IHDB compared to other behaviors are as
follows: i) More accurate simulation of reality: IHDB reflects
different responses and response degrees of the individual in
information acceptance. This is closer to the real situation
because the response of a person is gradually weakened in each
receiving information, which will affect the information propagation
process. ii) More accurate prediction of information propagation: By
considering IHDB, you can more accurately predict the spread trend
of information in the networks. With the proportion of neighbors in
adoption state changes, the individual behavior spreads more
passively or slowly. This difference can be reflected in the model,
thereby providing more accurate diffusion forecasts. iii) Planning

more targeted propagation strategies: The consideration of IHDB
can help decision-makers formulate more targeted information
dissemination strategies. By understanding the mental
characteristics and behaviors of people, we can make better
customized strategies for different types of information and
improve the effect of information propagation. iv) Research and
identification of crucial factors: Simulation of IHDB can help
researchers identify the impact factors. By observing the IHDB in
the individual, it is possible to determine the factors that play a key
role in the information dissemination network so as to intervene or
use these factors to promote information propagation.

Enlightened by the aforementioned overview, we consider
individual limited contact capacity, capture the IHDB, and define
a non-rule trapezoidal-like threshold function to illustrate the IHDB
feature. The non-rule trapezoidal-like threshold function displays a
slow and non-linear rising, subsequently maintaining a horizontal
line. In addition, we provide a partition theory to analyze the
information propagation mechanism based on limited contact
and IHDB. Finally, through the theoretical analysis and
experimental simulation, this paper reveals the information
propagation mechanism.

The remainder of this paper is organized as follows: in Section 2,
we put forward a probability adoption threshold model for
information propagation on the two-layer contacted network.
Section 3 exhibits a division theory based on limited contact and
IHDB function model. Section 4 uses simulations and theoretical
assessments to validate the information propagation mechanism.
Finally, Section 5 summarizes the results, and Section 6 reports the
conclusion.

2 Information propagation model

2.1 Related work

A two-layered network model with N nodes is set up to explore
the impacts of individual contact capability and IHDB
characteristics on information propagation. Layers A and B
represent two independent social network layers. Since the nodes
connecting the various tiered networks are one-to-one
correspondences, the same node is present in each layer. Then,
the degree vector of node i is represented by ki

→ � (kAi , kBi ), where kXi
represents a node degree. The degree distribution P( �k) of the
network is represented by the degree vector �k. Furthermore, the
degree distributions PX(k

X) of P( �k) can be broken down in
accordance with the uncorrelated feature. Considering the
independence of PA(k

A) and PB(k
B), P( �k) � PA(kA)PB(kB).

This paper establishes a two-layer social network model to
explore a novel information propagation mechanism by
exploiting S–A–R (susceptible–adopted–recovered) propagation
theory, as illustrated in Figure 1A. The explanation of the S–A–R
model theory is as follows: a node in the susceptible state is denoted
as the S-state, in the adopted state is denoted as the A-state, and in
the recovered state is denoted as the R-state. Specifically, the
individuals in the S-state cannot propagate information, but they
can receive it from their A-state neighbors. The A-state individuals
have adopted a piece of information and will transmit it to their
neighbors in the S-state. The individuals in the R-state no longer
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receive information and exit the whole propagation process. If an
individual transforms its state in the X-layer in the two-layer
network model, it will change to the same state in other layers.

This paper first considers that the contact ability of individuals
can be set as C. If C < ki, where ki is the degree of individual i, an
individual that has been adopted who can only contact some of its
neighbors. However, it can contact all of its neighbors if C ≥ ki. The
probability of information transmission in the network can be set as
λ. The probability that the information is received by the neighbor j
in the S-state can be denoted as λC

kXj
(X ∈ {A, B}).

mX is the total amount of information that the individual in the
S-state has successfully received in the layer X. At the beginning,
there is no information spreading on the multiple-layered
network, the reason why the j value mX

j of the individual in
the S-state is 0. When a neighbor i in the A-state effectively spreads
information to individual j along the related link in the A-layer or
B-layer, the total information bits of individual j will rise by 1 at
each time step, i.e., mX

j → mX
j + 1. To explain the IHDB on

information propagation, a non-rule trapezoidal-like function is
proposed to illustrate the individual behavioral adoption in the
whole network:

hX x, α, β( ) � x

α
( )β, 0≤ x< α, 0< β< 1

1, α≤x< 1,

⎧⎪⎨⎪⎩ (1)

where x represents the proportion between the receiving
information of an individual and the number of its contacted
neighbors and parameter α represents the IHDB variable. In
region I of Figure 1B, the behavioral adoption probability rises

slowly to 1 based on the increase in x. In region II of Figure 1B, the
adoption probability remains at 1.

2.2 Propagation mechanism

We randomly select a portion of ρ0 individuals to act as the
individuals (seeds) in the A-state at the beginning of information
propagation and all other individuals to act as S-state individuals.
Each A-state individual randomly chooses C of its neighbors to
whom information is transferred in layer A(B) with probability
λA(λB). The total amount of information that individual j in the
S-state effectively gets from layer X is mX

j → mX
j + 1. Due to non-

redundancy in information propagation, the information will not
then be repeated through the same edge. Additionally, the individual
in the susceptible state of X will accept the information and transmit
to the adoption state with possibility hX(mX

kX , α, β) at every time
step. The S-state individual then changes to the corresponding state
in other layers. Following successful information spreading, when
the individual lost interest in information, the individuals in the
adoption state transfer disinterested information and change to the
recovery state with probability γ. In the two-layered contacted
network, once there is no individual in the A-state, the
information spreading process eventually comes to an end.

3 Theoretical analysis

We explore the novel IHDB properties of non-redundant
information memory on two-layer networks by investigating

FIGURE 1
(A) Diagram of S–A–R propagation on the two-layer social network. Node 1 in the adopted state can transmit information to its neighbors in the
susceptible state. Symbol λ represents the transmission probability in the social network. The dotted linemeans that the information has been transmitted
in the last time step such as node 1 and its neighbors 4, 7 in layer A and node 1 and its neighbors 5, 8 in layer B. The solid line denotes that the information
has not been transmitted along the corresponding edges. (B) Numerical function of a non-rule trapezoidal-like behavior. Symbol h denotes the
proportion of information that a node in the adopted state has obtained its degree. Symbol α denotes the IHDB parameter.
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literature works [37, 38]. Then, in order to mathematically
investigate the information propagation mechanism, we
propose an information propagation theory including
individual limited contact and IHDB. The ultimate spreading
size is defined as the proportion of individuals in the recovery
state when the information spreading progress has ended. We
introduce the initialization state [39] in which the individual can
receive information but cannot transmit it outside.

The probability that an edge in layer X(X ∈ (A, B)) has not
seen information propagation toward its S-state neighbor j up to
time t is represented by θXkXj

(t). With a degree of kXj , the
probability that i and j are neighbors in layer X is represented

by the expression
kXj P(kXj )
〈kX〉 . As a result, at time t, the individual i

cannot receive the information by its neighbors in the X-layer
with probability

θA t( ) � ∑
kAj �0

kAj P kAj( )
〈kA〉 θAkAj t( ), (2)

θB t( ) � ∑
kBj �0

kBj P kBj( )
〈kB〉 θBkBj t( ), (3)

respectively.
Until time t, the probability that an individual in the S-state

possessing ki
→ � (kAi , kBi ) will cumulatively take mX bits of

information in the A-layer or B-layer can be expressed as

ϕA
mA

kAi , t( ) � kAi
mA

( )θA t( )kAi −mA 1 − θA t( )[ ]mA , (4)

ϕB
mB

kBi , t( ) � kBi
mB

( )θB t( )kBi −mB 1 − θB t( )[ ]mB , (5)

respectively.
Individual i with mX pieces of information in layer X,

according to the IHDB features and the adoption threshold
function, has not adopted the information and remained in
the S-state with a probability ∏mX

j�0[1 − hX( j
kXi
, α, β)]. While

getting mX bits of information from those of layer X, the
probability that an individual remains in the S-state at time t
can be expressed as

τXmX
kXi , t( ) � ∑kXi

mX�0
ϕX
mX

kXi , t( )∏mX

j�0
1 − hX

j

kXi
, α, β( )[ ]

� ∑αk
X
i� �

mX�0
ϕX
mX

kXi , t( )∏mX

j�0
1 − j

αkXi
( )β⎡⎣ ⎤⎦

+ ∑kXi
mX� αkXi� �

ϕX
mX

kXi , t( ) ∏αk
X
i� �

j�0
1 − j

αkXi
( )β⎡⎣ ⎤⎦ ∏mX

j� αkXi� �
1 − 1( )

� ∑αk
X
i� �

mX�0
ϕX
mX

kXi , t( )∏mX

j�0
1 − j

αkXi
( )β⎡⎣ ⎤⎦.

(6)
As a result, the S-state individual i gets mA and mB pieces of

information until time t and continues to be in the S-state possessing
the probability

s �k, t( ) � 1 − ρ0( ) ∑kAi
mA�0

ϕA
mA

kAi , t( )∏mA

j�0
1 − hA

j

kAi
, α, β( )[ ]

× ∑kBi
mB�0

ϕB
mB

kBi , t( )∏mB

j�0
1 − hB

j

kBi
, α, β( )[ ]

� 1 − ρ0( )τAmA
kAi , t( )τBmB

kBi , t( ).

(7)

The probability that a piece of information would have
accumulated in the X-layer by time t when the S-state individual
has not received information is expressed as

ηX �∑
kXi

PX kXi( )τXmX
kXi , t( ). (8)

As a result, the percentage of the S-state individuals in the multi-
layer network at time t is denoted as

S t( ) �∑
�k

P �k( )s �k, t( ) � 1 − ρ0( )ηAηB. (9)

All of the model’s individuals can only alternate between three
states; therefore, θXkXj (t) can be transformed to

θXkXj t( ) � ξXS,kXj t( ) + ξXA,kXj t( ) + ξXR,kXj t( ), (10)

where the probability that a neighbor of individual j is in the
S-state, A-state, or R-state and has not sent the information to i by
time t in layer X is represented by ξXS,kXj (t), ξ

X
A,kXj

(t), and ξXR,kXj (t),
respectively.

Individual i in the initialization state cannot contact its
neighbors due to the cavity theory. The degree vector of
individual j is kj

→� (kAj , kBj ). The S-state individual j can receive
information from all neighbors in layer A with the exception of
individual i of layer A and kBj neighbors of layer B if individual in the
S-state i links its neighbor j of layer A. The probability for the
individual j with degree kj

→ � (kAj , kBj ) is indicated by ςAnA(kXj − 1, t)
who receives nA bits of information by its neighbors in the A-layer
cumulatively up to time t. The probability ςXnX(kXj − 1, t) can be
denoted as

ςXnX kXj −1, t( )� ∑k
X
j −1

nX�0
ϕX
nX

kXj −1, t( )∏nX
j�0

1−hX j

kXj
,α,β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� ∑αk
X
j⌊ ⌋

nX�0
ϕX
nX

kXj −1, t( )∏nX
j�0

1− j

αkXi
( )β⎡⎣ ⎤⎦

+ ∑k
X
j −1

nX� αkXj⌈ ⌉ϕ
X
nX

kXj −1, t( ) ∏αk
X
j⌈ ⌉

j�0
1− j

αkXi
( )β⎡⎣ ⎤⎦

∏nX
j� αkXj⌈ ⌉ 1−1( ) � ∑αk

X
j⌊ ⌋

nX�0
ϕX
nX

kXj −1, t( )∏nX
j�0

1− j

αkXi
( )β⎡⎣ ⎤⎦.

(11)
jwith �kj � (kAj , kBj ) is also more likely to have acquired nB bits of

information from neighbors in layer B at time t by τBnB(kBj , t).
Following the accumulation of nA and nB bits of information, the
probability that j will stay in the susceptible state is given as
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ΘA
�k, t( ) � ∑k

A
j −1

nA�0
ϕA
nA

kAj − 1, t( )∏nA
j�0

1 − hA
j

kAj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

× ∑k
B
j

nB�0
ϕB
nB

kBj , t( )∏nB
j�0

1 − hB
j

kBj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� ςAnA kAj − 1, t( )τBnB kBj , t( ).

(12)

The probability that j in layer B will continue to be in the
susceptible state after receiving all of the nA and nB bits of
information is kj

→
when the individual i in the S-state interacts

with j by a degree of kj
→

is expressed as

ΘB
�k, t( ) � ∑k

A
j

nA�0
ϕA
nA

kAj , t( )∏nA
j�0

1 − hA
j

kAj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

× ∑k
B
j −1

nB

ϕB
nB

kBj − 1, t( )∏nB
j�0

1 − hB
j

kBj
, α, β⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� τAnA kAj , t( )ςBnB kBj − 1, t( ).

(13)

So, the probability that individual i and individual j in the S-state
are linked by an edge can be expressed as

ξXS,kXj t( ) � 1 − ρ0( )
∑
kj
→kXj PX kj

→( )ΘX kj
→
t( )

〈kX〉 , (14)

where
kXj PX(kj

→
)

〈kX〉 defines the normal degree of the X-layer and 〈kX〉
represents the probability that individual i is next to j
possessing kXj .

The evolutionary equation of ξXR,kXj (t) and ξ
X
A,kXj

(t) of layer X can
be examined in the following expression. An A-state individual
possessing degree kXj chooses C

kXj
of its neighbors and contacts them.

The probability of information transmission is λ. As a result, the
probability that rumor will spread from individual j to its neighbors
can be denoted by λC

kXj
. The following expression defines how θXkXj

(t) is
evolved in layer X:

dθXkXj t( )
dt

� −λC
kXj

ξXA,kXj t( ). (15)

Individuals in the adoption state cease spreading information
and move to the recovered state with γ. The calculation for the
evolution of ξXR,kXj (t) is

dξXR,kXj t( )
dt

� γξXA,kXj t( ) 1 − λC

kXj
⎛⎝ ⎞⎠. (16)

Combining Eqs 15, 16 with the original conditions θXkXj (0) � 1 and
ξXR,kXj (0) � 0, the development of ξXR,kXj (t) in layer X(X ∈ {A, B}) is

ξXR,kXj t( ) � γ 1 − θXkXj t( )[ ] kXj
λC

− 1⎡⎣ ⎤⎦. (17)

Combining Eq. 10, Eq. 14, and Eq. 17 will derive

ξXA,kXj t( ) � θXkXj t( ) − ξXS,kXj t( ) − ξXR,kXj t( )

� θXkXj t( ) − 1 − ρ0( )
∑
kj
→kXj PX kj

→( )Θ kj
→
t( )

〈kX〉 − γ 1 − θXkXj t( )[ ]
× kXj

λC
− 1⎛⎝ ⎞⎠.

(18)
Substituting Eq. 18 into Eq. 15, it is possible to rewrite the

evolution of θXkXj (t) in layer X(X ∈ {A, B}) as

dθXkXj t( )
dt

� −λC
kXj

θXkXj t( ) − 1 − ρ0( )
∑
kj
→kXj PX kj

→( )Θ kj
→
t( )

〈kX〉 − γ 1 − θXkXj t( )[ ] kXj
λC

− 1⎛⎝ ⎞⎠
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

� 1 − ρ0( ) λC
kXj

∑
kj
→kXj PX kj

→( )Θ kj
→
t( )

〈kX〉 + γ 1 − λC

kXj
⎛⎝ ⎞⎠ − γ + λC

kXj
1 − γ( )⎡⎢⎣ ⎤⎥⎦θXkXj t( ).

(19)

FIGURE 2
Individual status has changed three stages over time. For the same condition, the propagation time spends nine steps in subgraph (A) setting C = 5
and six steps in subgraph (B) settingC= 10. By comparison, the increase in the individual contact capacity accelerates the propagation process. The other
variables include αA = αB = 0.1, βA = βB = 0.1, and λA = λB = 0.5.
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In the whole network, the expression for state change of the
individuals is given as follows:

dR t( )
dt

� γA t( ), (20)
dA t( )
dt

� −dS t( )
dt

− γA t( ). (21)

As a result, S(t), A(t), and R(t), which represent the nodes’ states
at every given time step, can be calculated by combining and
iterating Eqs 9, 20, 21, respectively.

While t → ∞, the nodes’ states in the network will not become

any longer, meaning that
dθX

kX
j
(t)

dt → 0. R(∞) is also the ultimate
propagation size. Currently, the entire network consists solely of
individuals in the S-state and the R-state. To determine R(∞), we
must determine θXkXj

(∞) as

θXkXj ∞( ) � ξXS,kXj ∞( ) + γ 1 − θXkXj ∞( )[ ] kXj
λC

− 1⎡⎣ ⎤⎦. (22)

Then, by combining and iterating Eqs 9, 22, S(∞) and R(∞) are
derived.

The crucial propagation probability is our next problem of concern.
Moving the left side of Eq. 22 to the right side, it can be denoted as

F θXkXj ∞( )[ ] � ξXS,kXj ∞( ) − θXkXj ∞( ) + γ 1 − θXkXj ∞( )[ ] kXj
λC

− 1⎡⎣ ⎤⎦.
(23)

At the critical point θXc (∞), F[θXkXj (∞)] is tangent to the
abscissa. The critical condition can be denoted as

dF

dθXkXj ∞( )

∣∣∣∣∣∣∣∣∣∣∣
θXc ∞( )

� 0. (24)

Therefore, the critical information propagation probability is

λ � γ

A + γ + 1
, (25)

where

dξXS,kXj ∞( )
dθXkXj ∞( )

∣∣∣∣∣∣∣∣∣∣∣
θXc ∞( )

� 0. (26)

4 Parameter settings

This section simulates and evaluates the developed model through
testing on a multiple-layered contacted network such as ER [40] and SF
networks [41]. The experiment is carried out in the ER network and the
SF network with 10,000 nodes. Additionally, each layer network has
〈kX〉 � 10 as an average degree of X ∈ {A, B}. Furthermore, for
convenience, the probability of information transmission can be
given at λA = λB = λ. The experiment was conducted using double-
layer contacted networks. In an ER network, there is an equal possibility
of a connection forming between any two nodes, and the degrees of the
nodes in layer X follow PX(kX) � e−〈kX〉〈k〉

kX

kX!
. In SF networks, the

degree distribution variability of nodes is negatively correlated with the

degree exponent v. In an SF network, where ζX � 1∑
kX

kX
−v, the degrees of

nodes follow PX(kX) � ζXk
−v
X . Additionally, a relatively small number

of seeds (ρ0 = 0.001) and a recovered probability γ = 1.0 cause A-state
nodes to move to the R-state.

Furthermore, for further explanation of the critical condition
in our scenario, the relative variance is unitized and written as
follows:

χ � N
〈R ∞( )2〉 − 〈R ∞( )〉2

〈R ∞( )〉 , (27)

where 〈 . . . 〉 stands for the mean set. The important parameters of
the ultimate adoption size are implied by χ.

5 Experiments and discussion

5.1 Numerical analysis of the two-layer ER
network

In Figure 2, with the unit transmission probability λ and the
adoption threshold parameters α and β, we first investigate how the
proportion of individuals in the three states of S-state, A-state, and
R-state has changed with time.

Then, as shown in Figures 2A, B, R(t), which represents the
ultimate spreading size, changes to 1 at the end, while S(t)
increasingly decreases from 1 to 0 and A(t) progressively drops
to 0 over time. As the increase in parameter C in subgraph (a) to
subgraph (b), the evolution time costed steadily decreases from 9 to
6, while R(∞), which denotes the ultimate spreading size, increases
at the same step t. The time progress demonstrates that information
outbreak on a two-layered contacted network can be accelerated by
enhancing contact ability of individuals.

Figure 3 displays the roles of unit transmission probability in each
individual’s eventual adoption size with various IHDB values α in the
subgraphs. The ultimate spreading size R(∞) spreads to a global
network as λ rises, as shown in Figure 3A (β = 0.5) and (b) (β =
0.9). Furthermore, Figures 3A, B also indicate how IHDB can affect the
propagation phase transition. In subgraph (a), the pattern of R(∞)
always shows a second-order growth of continuous phase transition for
any IHDB behavior exhibited by the individual (αA = αB = 0.1, 0.5, 0.9).
The pattern of R(∞) in subgraph (b) indicates a second-order phase
transition in the continuous propagation pattern when an individual
exhibits a positive IHDB such as αA = αB = 0.1. This suggests that, when
there is a small λ, a positive IHDB can result in widespread behavioral
propagation. When αA = αB = 0.5, R(∞) also shows the same
propagation phenomenon. While an individual exhibits a weak
IHDB, R(∞) exhibits a first-order increase in the discontinuous
pattern, i.e., αA = αB = 0.9.

Figure 3C displays the relative variances and critical information
propagation probability of (a) and (b) individually (d). The global
adoption will emerge from the deviation of behavioral propagation,
which is represented by the top values of relative variance χ.
Additionally, the numerical values of the simulation (symbols)
agree with our theoretical analyses (lines).

For the two-layer contacted ER network, Figure 4 exhibits the joint
impacts of variable (λ, α) on R(∞). Figure 4 (a) with βA = βB = 0.5 and
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(b) with βA = βB = 0.9 depict the effects of (λ, α) on the dissemination of
information. In subgraph (a), the phase transition shows a continuous
pattern in the whole area. Then, in subgraph (b), the image can be
divided into two parts. In area I, a second-order continuous increase can

be seen in the R(∞) pattern. The critical value between region I and
region II is α* = 0.61. In area II, a first-order discontinuous increase can
be seen in the R(∞) pattern. Additionally, the individual contact
capability parameter is set at C = 5.

FIGURE 3
Effects of unit transmission probability of a multi-layer ER network on each individual’s ultimate spreading size while using various IHDB parameters.
Subgraphs (A) (β= 0.5) and (B) (β = 0.9) demonstrate how the IHDB parameter affects the propagation pattern. The critical values of subgraphs (C) and (D)
show the relative deviations and the critical values of (A) and (B), respectively.

FIGURE 4
Impact of the unit transmission probability and the dynamic IHDB parameter α on each person’s final spreading size for an ER network with
numerous layers of contacts. The impacts of subgraphs (A) (βA= βB=0.5) and (B) (βA= βB=0.9) on the ultimate spreading size are shownwith varying IHDB
parameters. In subgraph (A), the phase transition shows a continuous pattern in the whole area. In subgraphs (B), the phase transition shows two areas:
the continuous second-order pattern in area I and the discontinuous first-order pattern in area II.
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FIGURE 5
Integrative roles of the dynamic IHDB parameter α and transmission probability in each individual’s ultimate spreading size for a multiple-layered
contacted ER network. The impacts of subgraphs (A) (αA = αB = 0.5) and (B) (αA = αB = 0.9) on the ultimate spreading size are shown with varying IHDB
parameters. In subgraph (A), the phase transition shows a continuous pattern in the whole area. In subgraph (B), the phase transition shows two areas: the
continuous second-order pattern in area I and the discontinuous first-order pattern in area II.

FIGURE 6
Effect of the unit transmission chance and the IHDB parameter α on each person’s ultimate spreading size for themultiple contacted SF network The
IHDB parameter (βA = βB = 0.9) and the same contact capacity of people (C = 5) are applied to each subgraph. The vertical subgraphs use a unique degree
distribution exponent as well, with subgraphs (A) and (B) corresponding to v = 2, 4, respectively. Subgraphs (A) and (B) display the effects on the ultimate
spreading size with unit transmission probability λ. The critical values of subgraphs (C) and (D) show the relative deviations and the critical values of
(A) and (B), respectively.
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The joint impacts of variable plane (λ, β) on R(∞) for the two-
layered ER network are shown in Figure 5. Figures 5A, B depict the
effects of (λ, β) on information propagation, respectively, with αA = αB =
0.5 and αA= αB= 0.9. In subgraph (a), the image can be divided into two
parts. There is a second-order continuous increase pattern in region I of
R(∞) phase transition. The critical value between region I and region II
is β* = 0.95. There is a first-order discontinuous increase pattern in
region II of R(∞). Then, in subgraph (b), the image can also be divided
into two parts. In area I, R(∞) exhibits a second-order continuous
spreading. The critical value between region I and region II is β* = 0.78.
In area II, R(∞) exhibits a first-order discontinuous spreading.
Additionally, the individual contact capability parameter is set at C = 5.

5.2 Numerical analysis of the two-layer SF
network

Figure 6 depicts the influence of IHDB variable α and
transmission probability λ on the ultimate spreading size of the
multi-layer contacted SF network. In each subgraph, the

fundamental parameters include C = 5 and βA = βB = 0.9.
Figures 6A, B show how the ultimate adoption size R(∞) grows
as λ increases until it achieves global adoption. When αA = αB = 0.1
and αA = αB = 0.5, the final spreading size shows a continuous
spreading with second-order. However, R(∞) pattern exhibits a
discontinuous spreading with first-order when αA = αB = 0.9. Then,
the same growth pattern is also exhibited in subgraph (b) (v = 4).
Moreover, compared with subgraph (b) (v = 4), subgraph (a) (v = 2)
shows an incomplete global adoption because of strong
heterogeneous degree distribution. Additionally, the numerical
values of the simulation (symbols) match those of our theoretical
analyses (lines).

For the multiple-layered contacted SF network, Figure 7
shows the effect of R(∞) on the behavioral parameter plane
(λ, β). The subgraphs (a) and (b), and (c) and (d) are set as the
identical contact capacity of individuals by C = 5 and C = 10,
respectively. The subgraphs (a) and (b), and (c) and (d)
demonstrate the growth tendency of R(∞). In subgraph (a)
with v = 2 and C = 5, the image can be divided into three
parts. In the phenomenon of eventual information outbreak

FIGURE 7
Combined effect of the unit transmission chance and the IHDB parameter β on the ultimate information outbreak for the two-layer contacted SF
network. The influence of (λ, β) on the ultimate adoption size is shown in subgraphs (A) and (B)with v=2 and subgraphs (C) and (D)with v= 4, respectively.
In subgraph (A)with C = 5, the phase transition shows three areas: the continuous second-order pattern in area I, the discontinuous first-order pattern in
area II, and the static pattern in area III. In subgraph (B) with C = 10, the phase transition shows two areas: the continuous second-order pattern in
area I and the discontinuous first-order pattern in area II. In subgraph (C)with C = 5, the phase transition shows two areas: the continuous second-order
pattern in area I and the discontinuous first-order pattern in area II. In subgraph (D) with C = 10, the phase transition shows two areas: the continuous
second-order pattern in area I and the discontinuous first-order pattern in area II.
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R(∞), area I displays a second-order continuous propagation
pattern. The critical value between region I and region II is β* =
0.85. Area II exhibits a first-order discontinuous phase transition in

the pattern of R(∞). The critical value between region II and region III
is β** = 0.99. In area III, the R(∞) pattern does not exhibit information
outbreak. In subgraph (b) with v = 2 and C = 10, the image can be

FIGURE 8
Effect of the unit transmission chance and the IHDB parameter α on each person’s ultimate spreading size for the two-layer contacted ER–SF
network. The IHDB parameter (βA = βB = 0.9) and the same contact capacity of people (C = 5) are applied to each subgraph. The vertical subgraphs use a
unique degree distribution exponent as well, with subgraphs (A) and (B) corresponding to the SF layer with vB = 2, 4, respectively. Subgraphs (A) and (B)
display the effects on the ultimate spreading size with unit transmission probability λ. The critical values of subgraphs (C) and (D) show the relative
deviations and the critical values of (A) and (B), respectively. The initial seed is set at ρ = 0.001.

FIGURE 9
Combined effect of the unit transmission chance and the IHDB parameter β on the ultimate information outbreak for the two-layer contacted ER–SF
network. The influence of (λ, β) on the ultimate adoption size is shown in subgraph (A)with v = 2 and subgraph (B)with v = 4, respectively. In subgraph (A),
the phase transition shows two areas: the continuous second-order pattern in area I and the discontinuous first-order pattern in area II. In subgraph (B),
the phase transition also shows two areas: the continuous second-order pattern in area I and the discontinuous first-order pattern in area II. Other
parameters are set at C = 5, αA = αB = 0.9, and ρ0 = 0.001.
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divided into two parts. The R(∞) pattern of individual final spreading
size in area I displays a second-order continuous increase. The critical
value between region I and region II is β* = 0.75. In the pattern of
R(∞), area II displays a first-order discontinuous increase. In
subgraph (c) with v = 4 and C = 5, the image can be divided
into two parts. While showing the pattern of information outbreak
scale R(∞), area I displays a second-order continuous propagation
pattern. The critical value between region I and region II is β* = 0.8.
A first-order discontinuous increase in area II’s pattern of R(∞) is
visible. In subgraph (d) with v = 4 and C = 10, the image can be
divided into two parts. In the pattern of individual eventual
spreading size R(∞), area I displays a second-order continuous
increase. The critical value between region I and region II is β* =
0.85. Area II exhibits a first-order discontinuous phase transition in
the pattern of R(∞). Furthermore, the heterogeneous degree
distribution alters the information propagation but cannot alter
the pattern of phase transition. Because there are some hub people
in the multi-layer contacted SF network, when it exhibits a strong
heterogeneous degree distribution (v = 2), there is a pattern of
information suppression in the phase transition.

5.3 Numerical analysis of the two-layer
ER–SF network

Figure 8 exhibits the impact of IHDB variable α and
transmission probability λ on the final spreading scope for the
two-layer contacted ER–SF network. In each subgraph, the
fundamental parameters include C = 5 and βA = βB = 0.9.
Figures 8A, B (vB = 2 and vB = 4) show how the final
spreading scope R(∞) grows as λ increases until it achieves
global adoption. When αA = αB = 0.1 and αA = αB = 0.5, the
final outbreak pattern shows a second-order continuous
propagation. However, the R(∞) pattern shows a first-order
discontinuous pattern when αA = αB = 0.9. In addition, the
numerical values of the simulation (symbols) match those of
our theoretical analyses (lines).

For the two-layer contacted ER–SF network, Figure 9 shows
the effect of R(∞) on the behavioral parameter plane (λ, β). The
subgraphs (a) and (b) are set as the identical contact capacity of
individuals by C = 5. The subgraphs (a) and (b) demonstrate the
growth tendency of R(∞). In subgraph (a) with v = 2, the image
can be divided into two parts. In the phenomenon of eventual
information outbreak R(∞), area I displays a second-order
continuous propagation pattern. The critical value between
area I and II is β* = 0.86. Area II exhibits a first-order
discontinuous phase transition in the pattern of R(∞). In
subgraph (b) with v = 4, the image can be divided into two
parts. The R(∞) pattern of individual final spreading size in area
I displays a second-order continuous increase. The critical value
between region I and region II is β* = 0.9. In the pattern of R(∞),
area II displays a first-order discontinuous increase.

6 Conclusion

Researchers have explored how transmission probability,
information type, individual psychology, and heterogeneous

behaviors affect information propagation mechanisms. In the
research on information propagation, we found that individual
behavior depends on individual psychology to show positive or
negative, linear or non-linear adoption. In this paper, we explore
how individual psychology affects the information propagation.

This paper considers the individual contact capacity, which
affects the information outbreak. More importantly, we found that
an individual can show the heterogeneous decreasing behavior on
information propagation, which is called IHDB. Then, we
proposed a non-rule trapezoidal-like probability function on the
two-layer network model. Meanwhile, we proposed a novel
generalized edge-based compartmental theory to analyze the
information propagation mechanism. Finally, the propagation
pattern on the two-layer contacted ER and SF networks was
revealed by the simulation and theoretical analysis. When
IHDB changes, the phenomenon of the ultimate information
outbreak first increases continuously in the second-order phase
transition and then increases discontinuously in the first-order
phase transition. Additionally, increasing the number of contacted
neighbors makes it easier for propagation information and
changing the propagation pattern. Furthermore, the
heterogeneous degree distribution also has influence on
information spreading but has not altered the phase transition
pattern. This paper demonstrates the impact of individual
heterogeneous decreasing behavior on information propagation.
We also present a heuristic theory to describe how individual
behavior affects the propagation of information.
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