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The fractional stochastic vibration system is quite different from the traditional
one, and its application potential is enormous if the noise can be deployed
correctly and the connection between the fractional order and the noise
property is unlocked. This article uses a fractional modification of the well-
known van der Pol oscillator with multiplicative and additive recycling noises
as an example to study its stationary response and its stochastic bifurcation. First,
based on the principle of theminimummean square error, the fractional derivative
is equivalent to a linear combination of damping and restoring forces, and the
original system is simplified into an equivalent integer order system. Second, the
Itô differential equations and One-dimensional Markov process are obtained
according to the stochastic averaging method, using Oseledec multiplicative
ergodic theorem and maximal Lyapunov exponent to judge local stability, and
judging global stability is done by using the singularity theory. Lastly, the stochastic
D-bifurcation behavior of the model is analyzed by using the Lyapunov exponent
of the dynamical system invariant measure, and the stationary probability density
function of the system is solved according to the FPK equation. The results show
that the fractional order and noise property can greatly affect the system’s
dynamical properties. This paper offers a profound, original, and challenging
window for investigating fractional stochastic vibration systems.
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1 Introduction

Fractional derivative [1, 2] is an extension of the theory of integer derivatives, and the
study of fractional derivatives has a history of over 300 years. Some new materials have
appeared, e.g., viscoelastic materials, nanomaterials, cement mortar, 3D-printed materials,
and porous materials [3–8], which are different from either a solid or a fluid, and their
constitutive relation is extremely difficult to be expressed correctly by the traditional calculus
though much effort has been made to solve the problem, for example, using the fractal
viscoelastic model [9] and the fractal rheological model [10]; the intractable constitutive
relation has not yet been solved.

Considering its memory property, we consider that fractional calculus might be the best
candidate for stochastic dynamical systems [11, 12]. Stochastic disturbances are widespread
in nature, and fractional stochastic systems have become a hot spot in both mathematics and
physics to deal with noise excitation. For example, energy-harvesting devices [13–15] are
always subject to random excitation, and a fractional model can effectively reveal the
bifurcation properties and multiple attractors of the energy-harvesting system, for example,
Ref. [16]. Fractional models for Gaussian white noise also caught much attention [17–21],
and the fractional convolution kernel neural network is a suitable mathematical tool for fault
diagnosis [22–24]. Duffing oscillator [25, 26] is extended to its fractional partner under noise
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[27, 28]. Van der Pol oscillator [29] is another widely used model for
the analysis of fractional stochastic P-bifurcation [30, 31].

In reality, noise exists in all aspects of practical applications,
especially in nonlinear systems. The properties of stationary response,
energy-harvesting efficiency, stability, and bifurcation will be greatly
affected by noise excitation. At present, the research on the dynamic
behavior of systems driven by recycling noise has attracted widespread
attention from domestic and foreign scholars and achieved fruitful
results, especially in the birhythmic biological system [32], stochastic
resonance in asymmetric bistable systems [33], and the double
entropic stochastic resonance phenomenon [34]. In this article, the
fractional van der Pol model with recycling noise is adopted to
investigate its dynamical properties.

2 Model description

Balthazar van der Pol is a famous electronic engineer in the
Netherlands. In 1927, he first deduced the famous van der Pol
equation in order to describe the oscillation effect of triodes in
electronic circuits, as shown below:

€x − μ 1 − x2( ) _x + x � 0

Afterward, as a classic nonlinear dynamic system, it is often
used in mathematics and some nonlinear dynamic systems to
demonstrate its dynamic behavior characteristics. In continuous
research, the highest number of nonlinear terms considered is also
constantly increasing, and there are also various methods for
solving approximate solutions of such equations [35, 36]. From
the classical van der Pol equation, changing the order of the
equation can obtain systems with different dynamic behaviors,
thereby better obtaining the dynamic behavior characteristics of
the system. Therefore, we use the following equation to introduce
the fractional generalized van der Pol model with multiplicative
and additive recycling noise:

€x − −ε + α1x
2 − α2x

4 + α3x
6 − α4x

8( ) _x + ω2x + c
0D

px

� η1 t( ) + x t( )η2 t( ), (1)
where ε is the damping coefficient, α1, α2, α3, α4 are nonlinear
damping coefficients, ω is the frequency, η1(t) and η2(t) are
independent recycling noises, i.e., D1 ≠ D2, ηi(t) � ξi(t)+
kξi(t − τ), (i � 1, 2). The power spectral density of recycling
noise is obtained as:

Si ω( ) � 2Di 1 + k2 + 2kcos ωτ( )[ ], i � 1, 2( ). (2)
c
0D

p[x(t)] is the Caputo fractional derivative [1, 2] of
p (0≤p≤ 1) order about x(t) defined as:

c
0D

p x t( )[ ] � 1
Γ m − p( )∫

t

0

x m( ) u( )
t − u( )1+p−m du, m − 1<p≤m,m ∈ N.

(3)
There are other definitions of fractional derivatives, for example,

two-scale fractal derivative [37–41] and He’s fractional derivative
[42]. The Caputo fractional derivative has memory property [43,
44], so it is used for the present study.

The c
0D

px term in Eq. 1 can be expressed in a combination of
spring stiffness and damping terms [45–48], hence, Eq. 1 becomes:

€x − −ε + α1x
2 − α2x

4 + α3x
6 − α4x

8 + C p( )( ) _x
+ ω2 + K p( )( )x � η1 t( ) + x t( )η2 t( ), (4)

where C and K are the equivalent damping and stiffness coefficients
of fractional damping, respectively.

In order to identify C and K, we introduce an error function,
which reads

e � −C p( ) _x +K p( )x − c
0D

p x t( )[ ], (5)
According to the minimum mean square method [44], we

have

∂E e2( )/∂ C p( )( ) � 0,
∂E e2( )/∂ K p( )( ) � 0.

{ (6)

Equation 6 leads to the following equations:

E −C p( ) _x2 + K p( )x _x − _xc
0D

px[ ] � lim
T→∞

1
T
∫T

0
−C p( ) _x2 + K p( )x _x − _xc

0D
px( )dt � 0,

E −C p( )x _x + K p( )x2 − xc
0D

px[ ] � lim
T→∞

1
T
∫T

0
−C p( )x _x +K p( )x2 − xc

0D
px( )dt � 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7)

Assuming that

x t( ) � a t( ) cosφ t( ) � a t( ) cos ωt + θ( ) (8)
and _a(t) ≈ 0, we have

_x t( ) � −a t( )ω sinφ t( ),
€x t( ) � −a t( )ω2 cosφ t( ).{ (9)

Considering Eq. 8, 9, we re-write Eq. 7 in the form

lim
T→∞

1
T
∫T

0
−C p( ) _x2 +K p( )x _x − _xc

0D
px( )dt

� lim
T→∞

1
T
∫T

0
−C p( )a2 t( )ω2sin 2 φ t( ) −K p( )a2 t( )ωφ t( ) cosφ t( )(

+ a t( )ω sinφ t( )c0Dpx)dφ

≈−C p( )a2ω
2

+ 1
Γ 1−p( ) lim

T→∞
1
T
∫T

o
aωsinφ( )∫t

0

_x t−τ( )
τp

dτ[ ]dφ
� −C p( )a2ω

2
− 1
Γ 1 − p( ) lim

T→∞
1
T
∫T

0
a2ω sinφ

× ∫t

0

sinφ cos ωτ( ) − cosφ sin ωτ( )
τp

dτ( )dt � 0,

For the same reason, we have

lim
T→∞

1
T
∫T

0
−C p( )x _x + K p( )x2 − xc

0D
px( )dt

� lim
T→∞

1
T
∫T

0
−C p( )a2 t( )ω sinφ t( ) cosφ t( ) +K p( )a2 t( )cos 2 φ t( )(

− a t( ) cosφ t( )c0Dpx)dφ

≈
K p( )a2
2ω

− 1
Γ 1 − p( ) lim

T→∞
1
T
∫T

o
acosφ( )∫t

0

_x t − τ( )
τp

dτ[ ]dφ
� K p( )a2

2ω
+ 1
Γ 1 − p( ) lim

T→∞
1
T
∫T

0
a2

× cosφ ∫t

0

sinφ cos ωτ( ) − cosφ sin ωτ( )
τp

dτ( )dt � 0.

Hence
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lim
T ��→∞

1
T
∫T

0
−C p( ) _x2 +K p( )x _x− _xc

0D
px( )dt

� −C p( )a2ω
2

− 1
Γ 1−p( ) lim

T ��→∞
1
T
∫T

0
a2ωsinφ ∫t

0

sinφcos ωτ( )− cosφsin ωτ( )
τp

dτ( )dt� 0,
lim

T ��→∞
1
T
∫T

0
−C p( )x _x+K p( )x2 −xc

0D
px( )dt

�K p( )a2
2ω

+ 1
Γ 1−p( ) lim

T ��→∞
1
T
∫T

0
a2 cosφ ∫t

0

sinφcos ωτ( )− cosφsin ωτ( )
τp

dτ( )dt� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

To simplify Eq. 10 further, we use the following asymptotic
integrals

∫t

0

cos ωτ( )
τp

dτ � ωp−1 Γ 1 − p( ) sin pπ

2
( ) + sin ωt( )

ωt( )p( ) + o ωt( )−p−1( ),
∫t

0

sin ωτ( )
τp

dτ � ωp−1 Γ 1 − p( ) cos pπ

2
( ) − cos ωt( )

ωt( )p( ) + o ωt( )−p−1( ).
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(11)

In view of Eq. 11, the integral averaging of Eq. 10 with respect to
φ results in

C p( ) � −ωp−1 sin
pπ

2
( ),

K p( ) � ωp sin
pπ

2
( ).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

Hence, the equivalent system (4) can be written in the form

€x − λx + ω0
2x � η1 t( ) + x t( )η2 t( ), (13)

where

λ � −ε + α1x
2 − α2x

4 + α3x
6 − α4x

8 − ωp−1 sin
pπ

2
( ),

ω0
2 � ω2 + ωp cos

pπ

2
( ).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

3 Model processing

Now the problem becomes relatively simple; we assume that the
solution of Eq. 13 can be expressed as [49].

X � x t( ) � a t( ) cosΦ t( ),
Y � _x t( ) � −a t( )ω0 sinΦ t( ),
Φ t( ) � ω0t + θ t( ),

⎧⎪⎨⎪⎩ (15)

where a(t) and θ(t) are the amplitude and initial phase of the
system, respectively.

We re-write Eq. 13 in the form

_x � y,
_y � λy − ω0

2x t( ) + η1 t( ) + x t( )η2 t( ).{ (16)
By Eq. 15 and the stochastic averaging method [50], Eq. 16

becomes
da

dt
� F11 a, θ( ) + G11 a, θ( )η1 t( ) + G12 a, θ( )η1 t( ),

dθ

dt
� F21 a, θ( ) + G21 a, θ( )η1 t( ) + G22 a, θ( )η1 t( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

where

F11 a, θ( ) � asin 2 Φ
−ε + α1a

2cos 2 Φ − α2a
4cos 4 Φ + α3a

6cos 6 Φ

−α4a8cos 8 Φ − ωp−1 sin
pπ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

F21 a, θ( ) � sinΦ cosΦ
−ε + α1a

2cos 2 Φ − α2a
4cos 4 Φ + α3a

6cos 6 Φ

−α4a8cos 8 Φ − ωp−1 sin
pπ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

G11 a, θ( ) � −sinΦ
ω0

, G12 a, θ( ) � −asinΦ cosΦ
ω0

,

G21 a, θ( ) � −cosΦ
aω0

, G22 a, θ( ) � −cos
2 Φ

ω0
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

The recycling noise is a stationary process and can be
approximated by a 2-D diffusion process. After stochastic
averaging, the drift and diffusion coefficients are as follows:

m1 � F11 + ∫0

−∞

−cosΦ
ω0

( ) −cosΦ t + τ1( )
aω0

( ) + −cosΦ sinΦ
ω0

( ) −asin 2Φ t + τ1( )
2ω0

( )
+ −a cos 2 Φ − sin 2 Φ( )

ω0
( ) −cos2Φ t + τ1( )

ω0
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦R τ1( )dτ1

� F11 + cos 2 Φ
aω0

2 S1 1( ) + acos 2 Φsin 2 Φ + acos 2Φcos 2 Φ
ω0

2[ ]S2 1( ),

m2 � F21 + ∫0

−∞

cosΦ
a2ω0

( ) −sinΦ t + τ1( )
ω0

( ) + sinΦ
aω0

( ) −cosΦ t + τ1( )
aω0

( )
+ 2 cosΦ sinΦ

ω0
( ) −cosΦ2 t + τ1( )

ω0
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦R τ1( )dτ1

� F21 − 2 cosΦ sinΦ
a2ω0

2 S1 1( ) − 2cos 3 Φ sinΦ
ω0

2 S2 1( ),

B11 � ∫+∞

−∞
−sinΦ
ω0

( ) −asinΦ t + τ1( )
ω0

( )R τ1( )dτ1 � 2sin 2 Φ
ω0

2 S1 1( ),

B12 � ∫+∞

−∞
−asin 2Φ

2ω0
( ) −asin 2Φ t + τ1( )

2ω0
( )R τ1( )dτ1 � 2a2cos 2 Φsin 2 Φ

ω0
2 S2 1( ),

B21 � ∫+∞

−∞
−cosΦ
aω0

( ) −cosΦ t + τ1( )
aω0

( )R τ1( )dτ1 � 2cos 2 Φ
a2ω0

2 S1 1( ),

B22 � ∫+∞

−∞
−cos 2 Φ

ω0
( ) −cos 2 Φ t + τ1( )

ω0
( )R τ1( )dτ1 � 2cos 4 Φ

ω0
2 S2 1( ),

(19)

where Si(1) is the value of power spectral density of ηi(t)
at ω � 1.

TABLE 1 Global stability analysis.

Condition State Category Conclusion

H1/H3 < 1 ca < 1 a � 0 Attract natural
boundary

The trivial solution of Eq. 26 is stable in the sense of probability, and the original system is probabilistically stable
at the balance point

cl > − 1 a � +∞ Exclude natural
boundary

H1/H3 > 1 ca > 1 a � 0 Exclude natural
boundary

The trivial solution of Eq. 26 is unstable in the sense of probability, and the original system is probabilistically
unstable at the balance point

cl < − 1 a � +∞ Attract natural
boundary

H1/H3 � 1 ca � 1 a � 0 Strict natural boundary The critical condition of system bifurcation
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Si 1( ) � 2Di 1 + k2 + 2kcos τ( )[ ], i � 1, 2( ) (20)
For the deterministic averaging of φ(t), we have

�m11 � 1
2π

∫2π

0
F11 a, θ( ) + cos 2 Φ

aω0
2 S1 1( ) + acos 2 Φsin 2 Φ + acos 2Φcos 2 Φ

ω0
2 S2 1( )[ ]dΦ

� −1
2
a ε + ωp−1 sin

pπ

2
( )( ) + α1a

3

8
− α2a

5

16
+ 5α3a

7

128
− 7α4a

9

256
+ S1 1( )
2aω0

2 +
3aS2 1( )
8ω0

2

�m22 � 1
2π

∫2π

0
F21 a, θ( ) − 2 cosΦ sinΦ

a2ω0
2 S1 1( ) − 2cos 3 Φ sinΦ

ω0
2 S2 1( )[ ]dΦ � 0,

�B11 � 1
2π

∫2π

0

2sin 2 Φ
ω0

2 S1 1( )dΦ � S1 1( )
ω0

2 ,

�B12 � 1
2π

∫2π

0

2a2cos 2 Φsin 2 Φ
ω0

2 S2 1( )dΦ � a2S2 1( )
4ω0

2 ,

�B21 � 1
2π

∫2π

0

2cos 2 Φ
a2ω0

2 S1 1( )dΦ � S1 1( )
a2ω0

2,

�B22 � 1
2π

∫2π

0

2cos 4 Φ
ω0

2 S2 1( )dΦ � 3S2 1( )
4ω0

2 .

(21)
The corresponding Itô SDE is

da � m1 a( )dt + σ11
2 a( )dB1 t( ) + σ12

2 a( )dB2 t( ),
dθ � m2 a( )dt + σ21

2 a( )dB1 t( ) + σ22
2 a( )dB2 t( ),{ (22)

where

m1 a( ) � −1
2
a ε + ωp−1 sin

pπ

2
( )( ) + α1a

3

8
− α2a

5

16

+5α3a
7

128
− 7α4a

9

256
+ S1 1( )
2aω0

2 +
3aS2 1( )
8ω0

2 ,

m2 a( ) � 0,

σ11
2 a( ) � S1 1( )

ω0
2 , σ12

2 a( ) � a2S2 1( )
4ω0

2 ,

σ21
2 a( ) � S1 1( )

a2ω0
2, σ22

2 a( ) � 3S2 1( )
4ω0

2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

The one-dimensional Markov Process can be expressed as:

da � H1a

8
+ α1a

3

8
− α2a

5

16
+ 5α3a

7

128
− 7α4a

9

256
+ H2

2a
( )dt
+ H2( ) 1

2dB1 t( ) + H3a2

4
( )1

2

dB2 t( ), (24)
where

H1 � −4 ε + ωp−1 sin
pπ

2
( )( ) + 3S2 1( )

ω0
2 ,

H2 � S1 1( )
ω0

2 , H3 � S2 1( )
ω0

2 .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (25)

4 Stochastic stability analysis

4.1 The local stochastic stability

Considering the case of α1 � α2 � α3 � α4 � H2 � 0 and linear
Itô stochastic stability, from Eq. 24, we obtain

da � H1

8
a( )dt + H3

4
a2( )1

2

dB2 t( ),

m a( ) � H1

8
( )a, σ a( ) � H3

4
( )1

2

a.

(26)

Therefore, it isobtainedthat _m(0) � H1/8and _σ12(0) � (H3/4)1/2,
using Oseledec multiplicative ergodic theorem [51] and maximal
Lyapunov exponents to judge local stability. According to Itô
stochastic differential equation, the solution of Eq. 26 is

a t( ) � a 0( ) exp ∫t

0
_m 0( ) − _σ12 0( )( )2

2
[ ]ds + ∫t

0
_σ12 0( )dB2 s( )( ),

Then the approximate solution of the Lyapunov exponent of Itô
stochastic differential equation is obtained

λ � lim
t→+∞

1
t
ln x t, t0( )‖ ‖( ) � lim

t→+∞
1
t
ln a t( )( ) 1

2

� _m 0( ) − _σ12 0( )( )2
2

( )/2 � 1
2

H1

8
− H3

8
( ).

When H1 −H3 < 0, i.e., λ< 0, Eq. 26 is stable in the sense of
probability, and Eq. 16 is stable at the balance point. When
H1 −H3 > 0, i.e., λ< 0, the effect is just the opposite.

4.2 The global stochastic stability

4.2.1 Linear Itô stochastic stability
Judging global stability by the singularity theory, a � 0 is the first

kind of singular boundary of Eq. 26. a � +∞ is the second kind of
singular boundary problem of Eq. 26. Calculating the diffusion
index, drift indices, and characteristic value at boundary a � 0
and a � +∞, respectively, yields

αa � 2, βa � 1, ca � lim
a→0+

2ma a − 0( ) αa−βa( )
σ122 a( )

� lim
a→0+

2H1

8
a2( )/ H3

4
a2( ) � H1

H3
,

αl � 2, βl � 1, cl � − lim
a→+∞

2ma a − 0( ) αl−βl( )
σ122 a( )

� − lim
a→+∞

2H1

8
a2( )/ H3

4
a2( ) � −H1

H3
.

And the following conclusions are drawn, as shown in Table 1.

4.2.2 Stability of nonlinear Itô stochastic
differential equation

When α1, α2, α3, α4, H2 ≠ 0, a � 0 is the first kind of singular
boundary of Eq. 24. When a � +∞ and ma � +∞, a � +∞ is the
second kind of singular boundary problem of Eq. 24. Calculating the
diffusion index, drift indices, and characteristic value at boundary
a � 0 and a � +∞, respectively, yields

αa � 2, βa � 1, ca � lim
a→0+

2ma a − 0( ) αa−βa( )
σ11

2 a( ) + σ12
2 a( )

� lim
a→0+

−a ε + ωp−1 sin
pπ

2
( )( ) + α1a

3

4
− α2a

5

8

+5α3a
7

64
− 7α4a

9

128
+ S1 1( )
aω0

2 + 3aS2 1( )
4ω0

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠a/ S1 1( )

ω0
2 + a2S2 1( )

4ω0
2( )

� lim
a→0+

ω0
2

−128a2 ε + ωp−1 sin
pπ

2
( )( ) + 32α1a

4 − 16α2a
6

+10α3a8 − 7α4a
10 + 128S1 1( ) + 96a2S2 1( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
128S1 1( ) + 32a2S2 1( ) � 1, limαl � 2, βl

� 9, cl � − lim
a→+∞

2ma a − 0( ) αl−βl( )
σ11

2 a( ) + σ12
2 a( )

� − lim
a→+∞

−a ε + ωp−1 sin
pπ

2
( )( ) + α1a

3

4
− α2a

5

8

+5α3a
7

64
− 7α4a

9

128
+ S1 1( )
aω0

2 + 3aS2 1( )
4ω0

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠a−7/ S1 1( )

ω0
2 + a2S2 1( )

4ω0
2( )

� − lim
a→+∞

ω0
2

−128a2 ε + ωp−1 sin
pπ

2
( )( ) + 32α1a

4 − 16α2a
6

+10α3a8 − 7α4a
10 + 128S1 1( ) + 96a2S2 1( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
128S1 1( )a8 + 32S2 1( )a10 � − 7α4ω0

2

32S2 1( ).
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Conclusion: when a � 0 and ca � 1 are a strict natural boundary;
when a � +∞ , cl > − 1, and (α4ω0

2)/S2(1)< 32/7, the boundary is
an exclude natural boundary; when cl < − 1 and (α4ω0

2)/S2(1)>
32/7, the boundary is an attract natural boundary; when cl � −1 and
(α4ω0

2)/S2(1) � 32/7, the boundary is a strict natural boundary.
Therefore, ca � 1 is a critical condition of system bifurcation.

5 Stochastic bifurcation analysis

5.1 D-bifurcation

If H2 � H3 � 0, Eq. 13 becomes a deterministic system without
a stochastic bifurcation phenomenon. Therefore, discussing the
situation of H3 ≠ 0 and α1 � α2 � α3 � α4 � H2 � 0, let σ12(a) �
(H3/4)1/2a and m(a) � (H1/8 −H3/8)a, then the continuous
dynamic system generated by Eq. 26 is

ψ1 t( )x � x + ∫t

0
m ψ1 s( )x( )ds + ∫t

0
σ ψ1 s( )x( )+dB, (27)

Equation 27 is the only strong solution of Eq. 26 with x as the
initial value. When m(0) � 0 and σ12(0) � 0, let m(a) be bounded,
for all a ≠ 0, the elliptic condition σ12(0) ≠ 0 is satisfied, so there is
only one stationary probability density. Therefore, the FPK equation
corresponding to Eq. 26 is obtained.

∂p
∂t

� − ∂
∂a

H1

8
a( )p[ ] − ∂2

∂a2
H3

4
a2( )p[ ]. (28)

Let ∂p/∂t � 0 get the stationary probability density
corresponding to Eq. 28

p a( ) � c σ12
−1 a( )∣∣∣∣ ∣∣∣∣ exp ∫a

0

2m u( )
σ122 u( )du( ). (29)

At this time, Eq. 27 has a non-trivial stationary state and a fixed-
point equilibrium state. Assuming the invariant measures of these
two kinds of stationary states are υ1 and ϑ1, respectively, the density
is Eq. 29 and ϑ1(x), respectively. Hence, the solution of Eq. 28 is

a t( ) � a 0( ) exp ∫t

0
_m a( ) + σ12 a( )€σ12 a( )

2
( )ds + ∫t

0
_σ12 a( )dB2[ ].

(30)
The Lyapunov exponent of ψ1 with respect to estimate u can be

defined as follows

λψ1
u( ) � lim

t→+∞
1
t
ln a t( )‖ ‖, (31)

Substituting Eq. 30 into Eq. 31, here σ12(0) � 0 and _σ12(0) � 0,
its Lyapunov exponent of the fixed-point reads

λψ1
ϑ1( ) � lim

t→+∞
1
t

ln a 0( )‖ ‖ + _m 0( )∫t

0
ds + _σ12 0( )∫t

0
dB2 s( )[ ]

� _m 0( ) + _σ12 0( ) lim
t→+∞

B2 t( )
t

� _m 0( ) � H1

8
− H3

8
.

(32)

Invariant estimate υ1 with Eq. 29 as density. Substituting Eq. 30
into Eq. 31. Assuming that _σ and _m + σ _σ are bounded and
integrable, respectively, the Lyapunov exponent can be obtained

λψ1
υ1( ) � lim

t→+∞
1
t
∫t

0
_m a( ) + σ12 a( )€σ12 a( )[ ]ds

� ∫
R

_m a( ) + σ12 a( )€σ12 a( )
2

[ ]p a( )da � −2∫
R

m a( )
σ12 a( )[ ]2

p a( )da _m 0( ) � −2H2
3/2 H1

8
− H3

8
( ) exp 8

H3

H1

8
− H3

8
( )( ).

(33)
Let α � H1 −H3, when α< 0 and H1 <H3, ϑ1 is stable, υ1 is

unstable; when α> 0 andH1 >H3, ϑ1 is unstable, υ1 is stable. So α is
a D-bifurcation point of Eq. 13.

5.2 P-bifurcation

5.2.1 Stochastic P-bifurcation under additive
recycling noise

When additive noise just exists, D1 ≠ 0 and D2 � 0. The
following is an analysis of the stochastic P-bifurcation of the
system in this case. Eq. 22, 23 show that the Itô stochastic
differential equation corresponding to a(t) does not depend
upon θ(t), and it is a 1-D diffusion process; its corresponding
FPK equation can be expressed as

∂p a, t( )
∂t

� − ∂
∂a

m1 a( )p a, t( )[ ] + 1
2

∂2

∂a2
σ11

2 a( )p a, t( )[ ], (34)
the corresponding boundary conditions are

p � c, c ∈ −∞,+∞( ), when a � 0.

p → 0,
∂p
∂a

→ 0, when a → ∞ .

⎧⎪⎪⎨⎪⎪⎩ (35)

In view of Eq. 35, the stationary probability density of the
amplitude is

p a( ) � C

σ112 a( ) exp ∫a

0

2m1 u( )
σ112 u( ) du[ ], (36)

where C is the normalization constant,

C � ∫∞

0

1
σ112 a( ) exp ∫a

0

2m1 u( )
σ112 u( ) du[ ]( )da[ ]−1

. (37)

In view of Eq. 23, from Eq. 36, we obtain

p a( ) � Caω0
2

S1 1( ) exp − a2ω0
2Δ

7680S1 1( )[ ], (38)

where

Δ � 3840ε + 3840ωp−1 sin
pπ

2
( ) − 480α1a

2 + 160α2a
4 − 75α3 + 42α4a

8,

ω0
2 � ω2 + ωp cos

pπ

2
( ),

S1 1( ) � 2D1 1 + k2 + 2kcos τ( )[ ].

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(39)

The original system response meets a(t) � &&&&&&&&&&&
x2(t) + _x2(t)√

, in
view of Eq. 38, the joint probability density function of the system is

p a( ) � C
&&&&&&&&&&&
x2 t( ) + _x2 t( )

√
ω0

2

S1 t( ) exp − x2 t( ) + _x2 t( )( )ω0
2

3840S1 t( ) Δ[ ]. (40)
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5.2.1.1 Influence of fractional order
As fractional damping is a combination of the equivalent stiff

and equivalent damping, the fractional order is of paramount
importance; its value can be calculated by He-Liu’s fractal
formulation [52] for practical applications. According to Eq. 12,
when p � 1, fractional damping becomes a damping term, while
when p � 0, it is a stiff term.

Setting
τ � 2, k � 0.4, ε � −0.1, α1 � 1.51, α2 � 2.85, α3 � 1.693, α4 � 0.312,
and ω � 1 in Eq. 13 as that in Refs [30, 53], the stochastic
P-bifurcation is studied hereby. Keeping D1 � 0.005 constant, we
draw the joint probability density function section and top view of
Eq. 13 under the influence of different fractional orders.

When p � 0.06, the joint probability density function diagram
shows a crater shape; there is only one peak in the section, and there
is only a large limit cycle. The response is shown as a vibration far
beyond the origin (Figure 1).

When p � 0.139, from the section, it can be clearly seen that
there are two peaks, but the second peak has a much larger
amplitude. At this time, the system has a balance point and a
large limit cycle; hence, the system response switches between
two peaks, and the probability of a large amplitude vibration is
high, as shown in Figure 2.

When p � 0.141, the section has three peaks, showing two peaks
in addition to the origin. A balance point now coexists with a large
and small limit cycle in the system, and the system response switches
between the three peaks, which is a multimodal response. Due to the
existence of the double limit point set, the relative heights of the joint
probability density function peaks at the three peaks are different,
implying that the system response peaks are different, as shown in
Figure 3.

When p � 0.145, the section has two peaks, in contrast to
Figure 2, the relative height of the peak changes, with the second
peak being significantly smaller. At this time, the system has both a
balance point and a small limit cycle; hence, the system response
switches between two peaks, and the probability of a small amplitude
vibration is high, as shown in Figure 4.

Based on the above discussions, we conclude that the fractional
order can cause stochastic P-bifurcation behavior in the system.
From Figure 5, we find that an increasing fractional order will

change the stationary response from a single mode to a dual mode
and then to a tristable mode. The peak value changes from a single
peak to two peaks and then to three peaks, so stochastic
P-bifurcation occurs. Increasing the value of p to 0.145 again,
the tristable disappears and the bistable appears; the peak value
changes from three peaks to two peaks, so stochastic P-bifurcation
occurs.

5.2.1.2 Influence of noise intensity
Keeping the above parameters unchanged, and fixing p � 0.14,

we draw the joint probability density function section and top view
of Eq. 13 under the influence of different noise intensity.

When D1 � 0.03, the joint probability density function diagram
shows a crater shape, there is only one peak in the section, and there
is only a large limit cycle. The response is shown as a vibration far
beyond its origin, as shown in Figure 6.

When D1 � 0.015, from the section, it can be clearly seen that
there are two peaks, but the first peak is much smaller. At this time,
the system has both a balance point and a large limit cycle; hence,
the system response switches between two peaks, and the
probability of a large amplitude vibration is high, as shown in
Figure 7.

When D1 � 0.005, the section has three peaks, showing two
peaks in addition to the origin. A balance point now coexists with a
large and small limit cycle in the system, and the system response
switches among the three peaks, which is a multimodal response.
Due to the existence of the double limit point set, the relative heights
of the joint probability density function peaks at the three peaks are
different, implying that the vibration frequency of the system
response peak is different, as shown in Figure 8.

When D1 � 0.0013, the section has two peaks, in contrast to
Figure 7; the relative height of the peak changes, with the first peak
being much larger. At this point, the system has a balance point and
a small limit cycle, the system response switches between two peaks,
and the probability of a small amplitude vibration is high, as shown
in Figure 9.

Based on the above discussions, it can be verified that
changing the noise intensity affects greatly stochastic
P-bifurcation property. From Figure 10, it can also be seen
that with noise intensity being reduced, the stationary

FIGURE 1
Joint probability density function section and top view of Eq. 13 when p � 0.06.
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response of the system switches from a single mode to a dual
mode and then to a tristable mode. The peak value of the
stationary probability density function curve changes from a
single peak to two peaks and then three peaks, so stochastic
P-bifurcation occurs. Decreasing the value of D1 to 0.0013 again,
the tristable disappears and the bistable appears; the peak value

changes from three peaks to two peaks, so stochastic
P-bifurcation occurs.

5.2.2 Additive and multiplicative recycling noise
When D1 ≠ 0 and D2 ≠ 0, the expression of the stationary

probability density function of the amplitude of Eq. 13 is

FIGURE 2
Joint probability density function section and top view of Eq. 13 when p � 0.137.

FIGURE 3
Joint probability density function section and top view of Eq. 13 when p � 0.14.

FIGURE 4
Joint probability density function section and top view of Eq. 13 when p � 0.143.
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p a( ) � C

σ112 a( ) + σ122 a( ) exp ∫a

0

2m u( )
σ112 u( ) + σ122 u( )du[ ], (41)

where C is the normalization constant,

C � ∫∞

0

1
σ112 a( ) + σ122 a( ) exp ∫a

0

2m1 u( )
σ112 u( ) + σ122 u( ) du[ ]( )da[ ]−1

.

(42)
In view of Eq. 23, from Eq. 42, we have

p a( ) � 4Caω0
2 4S1 1( ) + a2S2 1( )[ ]− Δ1

S2
5 1( ) exp

Δ2

768S2
4 1( )( ), (43)

where

Δ1 � 2ω0
2 ε + ωp−1 sin

pπ

2
( )( )S24 + α1S1S2

3 + 2α2S1
2S2

2 + 5α3S1
3S2 + 14α4S1

4[ ],
Δ1 � a2ω0

2 384α1S2
3 + 768α2S1S2

2 + 1920α3S1
2S2 + 5376α4S1

3( )
+a4ω0

2 −96α2S23 − 240α3S1S2
2 − 672α4S1

2S2( )
+a6ω0

2 40α3S2
3 + 112α4S1S2

2( ) − 21a8ω0
2α4S2

3 ,

ω0
2 � ω2 + ωp cos

pπ

2
( ),

S1 1( ) � 2D1 1 + k2 + 2kcos τ( )[ ], S2 1( ) � 2D2 1 + k2 + 2kcos τ( )[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(44)

Keeping the above parameters unchanged, we draw the joint
probability density function section and top view of Eq. 13 under the
influence of different fractional orders and noise intensity.

When p � 0.05, let D1 � 0.5 and D2 � 1. The joint probability
density function diagram shows a crater shape; there is only one
peak in the section, and there is only a large limit cycle. The response
is shown as a vibration far away from the origin. At the same time,
reducing the value of noise intensity reveals that the peak of the joint

FIGURE 5
Stationary probability density function diagram of Eq. 13 when
D1 � 0.005.

FIGURE 6
Joint probability density function section and top view of Eq. 13 when D1 � 0.03.

FIGURE 7
Joint probability density function section and top view of Eq. 13 when D1 � 0.015.
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probability density does not change with only one peak. However,
the system only has a limit cycle, which has been in a monostable.
Therefore, there is no stochastic P-bifurcation phenomenon
occurring, as shown in Figure 11.

When p � 0.1, let D1 � 0.002 and D2 � 0.01. From the section,
it can be clearly seen that there are two peaks, but the second peak
has a much larger amplitude. At this time, the system has both a
balance point and a limit cycle; hence, the system response switches
between two peaks, and the large amplitude vibration has a higher
probability. When the simultaneous improvement of the noise
intensifies to D1 � 0.008 and D2 � 0.2, the peak value of the
stationary probability density function curve changes from two
peaks to one peak. There is only a large limit cycle, and the
system response becomes a vibration far from the origin.
Therefore, increasing the noise intensity induces a stochastic
P-bifurcation property, as shown in Figure 12.

When p � 0.14, let D1 � 0.003 and D2 � 0.01. The section has a
peak near the origin. There is only a balance point in the system at this
time, and the response is shown as a vibration closer to the origin.
When simultaneously improving its noise intensity toD1 � 0.004 and
D2 � 0.1, the peak value of the stationary probability density function
curve changes from a single peak to two peaks. At this time, the system
has both a balance point and a limit cycle; hence, the system response
switches between two peaks, and the probability of a large amplitude
vibration is small. Therefore, increasing the noise intensity induces the
stochastic P-bifurcation phenomenon. Further increasing the noise
intensity to D1 � 0.006 and D2 � 0.15, the peak value of the section
changes relatively, and the first peak is lower. The system response
switches between two peaks, and the probability of a small one is

FIGURE 9
Joint probability density function section and top view of Eq. 13 when D1 � 0.0013.

FIGURE 8
Joint probability density function section and top view of Eq. 13 when D1 � 0.005.

FIGURE 10
Stationary probability density function diagram of Eq. 13 when
p � 0.141.
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small. Continuing to increase the value of noise intensity toD1 � 0.04
andD2 � 0.3, the peak value of the curve changes from two peaks to a
single peak. There is only a limit cycle in the system at this time, and
the response is shown as a vibration far away from the origin.
Therefore, increasing the noise intensity induces the second
stochastic P-bifurcation phenomenon, as show in Figure 13.

6 Conclusion

In this paper, the stationary response and the stochastic bifurcation of
the fractional van der Pol equation under multiplicative and additive
recycling noise excitations are investigated. By the least square method,
we obtain an equivalent integral nonlinear stochastic system. The Itô

differential equation and One-dimensional Markov process are obtained
according to the stochastic averaging method. We discuss the local and
global stochastic stability and analyze the conditions for inducing
D-bifurcation and P-bifurcation in the system. The analysis shows
that when α< 0 and H1 <H3, the point equilibrium state becomes
stable, and the non-trivial stationary state becomes unstable; when α> 0
andH1 >H3, the result is the opposite. So α is a D-bifurcation point of
the original system. When only additive noise exists, the fractional order
and the noise intensity will greatly affect the system’s property. It was
found that reducing the order p or increasing the noise intensityD1 can
cause nonlinear jumping or significant oscillation in the system, leading
to system instability. Through increasing the order p or reducing the
noise intensityD1, the system response is in amonostable state or a small
disturbance near the balance point. Similarly, when additive and

FIGURE 11
Joint probability density function section and top view of Eq. 13 when p � 0.05.

FIGURE 12
Joint probability density function section and top view of Eq. 13 when p � 0.1.

FIGURE 13
Joint probability density function section and top view of Eq. 13 when p � 0.14.
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multiplicative noise coexist, selecting appropriate parameters can
maintain the system response at a monostable or small disturbance
near the balance point. Therefore, in practical engineering, to avoid the
potential adverse effects of high noise intensity on the system, the
occurrence of stochastic bifurcation behavior can be controlled by
changing the noise intensity or fractional order. In the future, we will
combine theory with practice to explore the impact of recycling noise on
the stationary response and stochastic bifurcation of systems in wind
turbines. We will study the impact of changing noise intensity and
fractional order on the system, and how to handle these adverse effects to
achieve optimal system performance.
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