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We propose a new symmetry reduction method for (1+1)-dimensional
differential-difference equations (DDEs), namely, the λ-symmetry reduction
method of solving ordinary differential equations is generalized to DDEs.
Order-reduction processes are a consequence of the invariance of the given
DDE under vector fields of the new class. These vector fields satisfy a new
prolongation formula. A simple example of order-reduction is provided to
illustrate the application.
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1 Introduction

Symmetry is closely related to the integrability of the nonlinear evolution equations
(NLEEs) in various specific meanings. For example, the existence of infinite Lie-Bäcklund
symmetry is a criterion for the integrability of NLEEs, so the study of symmetry of NLEEs is
particularly important. The symmetry of the NLEEs is studied systematically by Lie point
symmetry theory [1–3]. Although the Lie point symmetry method has relatively mature
theories, it also has great limitations [1–10].When a given NLEE does not allow enough non-
trivial Lie point symmetries, this method cannot be applied. Therefore, it is necessary to
extend the classical Lie point symmetry concept from various angles [11–20]. For example, if
the infinitesimal also depends on the higher derivative, the corresponding Lie-Bäcklund
symmetry is obtained [21, 22].

The concept of λ-symmetry proposed by Muriel and Romero [23], aims to show that
many of the known order-reduction processes can be explained by the invariance of the
equation under some special vector fields that are neither Lie symmetries nor Lie-Bäcklund
symmetries. The λ-symmetry reduction method for ordinary differential equations (ODEs)
has attracted the attention of more andmore scientists [24]. For example, Levi and Rodriguez
successfully extended this method to the case of difference equations [25]. Again, the μ-
symmetry reduction method is used to deal with partial differential equations (PDEs)
[26–30].

For the sake of readability, we will briefly introduce the λ-symmetry reduction method
for ODEs in Section 2. Then we extend the λ-symmetry reduction method to the case of
(1+1)-dimensional differential-difference equations (DDEs) in Section 3. The last section is
devoted to conclusions and discussions.
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2 The λ-symmetry reduction method of
ODEs

In this section we briefly review the λ-symmetry reduction
method of ODEs. For a given mth-order ODE

Δ1 ≡ Δ x, u 0( ), u 1( ), . . . , u m( )( ) � 0, (1)
we can set a vector field

v � X x, u( ) ∂

∂x
+ U x, u( ) ∂

∂u
, (2)

where u(i) � diu(x)
dxi , (i � 0, 1, . . . , m) means the ith-order derivative

with respect to the independent variable x. Thus we can construct
high-order infinitesimal prolongation vector field

v m( )[ ] � v +∑m
i�1

U i( )[ ] ∂

∂u i( ), (3)

where

U 0( )[ ] � U,
U i+1( )[ ] � DxU

i( )[ ] − u i+1( )DxX, i � 0, 1, . . . , m.
(4)

Here Dx means the total derivative with respect to x. So the
invariance of Eq. 1 needs

v m( )[ ] Δ1( )∣∣∣∣Δ1�0 � 0. (5)

Solving this equation, the expressions for X and U can be
derived. For complex high-order ODEs or systems, we need to
use symbolic computing software to calculate X and U.
Theoretically, all of the similarity variables be derived by solving
the following characteristic equation

dx
X

� du
U
, (6)

and then we can reduce and solve Eq. 1.
The above method is the Lie point symmetry method, also

known as the classical symmetry reduction method. In Ref. [23],
authors have introduced a new class of symmetries, that strictly
includes Lie point symmetries, for which there exists an algorithm
that lets us reduce the order of a given ODE. This method is now
called the λ-symmetry reduction method. The key step of this
generalized method is that the infinitesimal prolongation is
modified to the following form

U λ, i( )[ ] x,u i( )( )�Dx U λ, i−1( )[ ] x,u i−1( )( )( )−Dx X x,u( )( )u i( )

+λ U λ, i−1( )[ ] x,u i−1( )( )−X x,u( )u i( )( ), (7)

where λ is a smooth function that is determined
simultaneously with the coefficients of the infinitesimal
generators X and U. Thus the infinitesimal prolongation vector
field is modified to

v λ, m( )[ ] � X x, u( ) ∂

∂x
+∑m

i�0
U λ, i( )[ ] x, u i( )( ) ∂

∂u i( ). (8)

The following theorem that is important for the λ-symmetry
reduction method, which is first obtained by Muriel and
Romero [23].

Theorem 1. (Muriel, Romero [23]). Let us suppose that, for some
smooth functions λ, the vector field v is a λ-symmetry of the
following ODE

u m( ) � F x, u 0( ), u 1( ), . . . , u m−1( )( ). (9)
Then

v λ, m−1( )[ ], A[ ] � λ · v λ, m−1( )[ ] + μ · A, (10)

for some smooth functions μ. Here A is the vector field of Eq. 9,

A � ∂

∂x
+ u 1( ) ∂

∂u
+/ + F x, u 0( ), u 1( ), . . . , u m−1( )( ) ∂

∂u m−1( ). (11)

Conversely, if

K � X x, u( ) ∂

∂x
+ U 0( ) x, u( ) ∂

∂u
+ ∑m−1

i�1
U i( ) x, u i( )( ) ∂

∂ui
, (12)

is a vector field such that

K,A[ ] � λ · K + μ · A, (13)
for some smooth functions λ, μ, then the vector field

v � X x, u( ) ∂

∂x
+ U 0( ) x, u( ) ∂

∂u
, (14)

is a λ-symmetry of Eq. 9 and K = v[λ,(m−1)].

3 The λ-symmetry reduction method of
DDEs

In this section, we extend the λ-symmetry reduction method to
the case of (1+1)-dimensional DDEs.

Definition 1. For the following (1+1)-dimensional DDE with a
discrete variable n and a continuous variable x,

Δ2 ≡ Δ x, u 0( )
n−1, u

0( )
n , u 0( )

n+1, . . . , u
m( )
n−1 , u

m( )
n , u m( )

n+1( ) � 0, (15)
where u(i)

n � diun(x)
dxi , the vector field

v � X x, un( ) ∂

∂x
+ Un−1 x, un−1( ) ∂

∂un−1
+ Un x, un( ) ∂

∂un

+ Un+1 x, un+1( ) ∂

∂un+1

is said to be λ-symmetry for this equation if there exists a differential
function λ such that the mth λ-prolongation of the vector field satisfies.

v λ, m( )[ ] Δ2( )∣∣∣∣Δ2�0 � 0. (16)

Particularly, for the following (1+1)-dimensional DDE

u m( )
n � Fn x, u m−1( )

n−1 , u m−1( )
n , u m−1( )

n+1( ), (17)
we can set a vector field

A � d

dx
+ ∑1

n�−1
u 1( )
n+k

d

dun+k
+/

+ ∑1
k�−1

Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( ) ∂

u m−1( )
n+k

. (18)
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Here Fn(x, u(m−1)
n−1 , u(m−1)

n , u(m−1)
n+1 ) �

Fn(x, u(0)n−1, u(0)n , u(0)n+1, . . . , u
(m−1)
n−1 , u(m−1)

n , u(m−1)
n+1 ) is for ease of

writing. So we have Theorem 2.

Theorem 2. Let us suppose that, for some differential functions λ,
the vector field v is a λ-symmetry of the following DDE

u m( )
n � Fn x, u m−1( )

n−1 , u m−1( )
n , u m−1( )

n+1( ), (19)
Then

v λ, m−1( )[ ], A[ ] � λ · v λ, m−1( )[ ] + μ · A. (20)

for some differential functions μ. Here A is the vector field of Eq. 19,

A � d

dx
+ ∑1

n�−1
u 1( )
n+k

d

dun+k
+/

+ ∑1
k�−1

Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( ) ∂

u m−1( )
n+k

. (21)

Conversely, if

K � X x, un( ) ∂

∂x
+ ∑1

k�−1
∑m−1

i�0
U i( )

n+k x, u i( )
n+k( ) ∂

∂u i( )
n+k

, (22)

is a vector field such that

K,A[ ] � λ · K + μ · A, (23)
for some differential functions λ and μ, then the vector field

v � X x, u( ) ∂

∂x
+ U 0( )

n−1 x, u( ) ∂

∂un−1
+ U 0( )

n x, u( ) ∂

∂un

+ U 0( )
n+1 x, u( ) ∂

∂un+1
, (24)

is a λ-symmetry of Eq. 19 and K = v[λ,(m−1)].

Proof. Compute [v[λ,(m−1)], A] as a function of
{x, un−1, un, un+1, . . . , u(m−1)

n−1 , u(m−1)
n , u(m−1)

n+1 } at each lattice point, with
v λ, m−1( )[ ], A[ ] x( ) � −A X x( )( ),

v λ, m−1( )[ ], A[ ] un+k( ) � U λ, 1( )[ ]
n+k x, u 1( )

n+k( ) − A U λ, 0( )[ ]
n+k x, un+k( )( )

� −A X x( )( )u 1( )
n+k + λ U λ, 0( )[ ]

n+k x, un+k( ) −X x( )u 1( )
n+k( ),

v λ, m−1( )[ ], A[ ] u 1( )
n+k( ) � U λ, 2( )[ ]

n+k x, u 2( )
n+k( ) − A U λ, 1( )[ ]

n+k x, u 1( )
n+k( )( )

� −A X x( )( )u 2( )
n+k + λ U λ, 1( )[ ]

n+k x, u 1( )
n+k( ) −X x( )u 2( )

n+k( ),
..
.

v λ, m−1( )[ ], A[ ] u i( )
n+k( ) � U λ, i+1( )[ ]

n+k x, u i+1( )
n+k( ) − A U λ, i( )[ ]

n+k x, u i( )
n+k( )( )

� −A X x( )( )u i+1( )
n+k + λ U λ, i( )[ ]

n+k x, u i( )
n+k( ) −X x( )u i+1( )

n+k( ),
..
.

v λ, m−1( )[ ], A[ ] u m−1( )
n+k( ) � v λ, m−1( )[ ] Fn+k λ, u m−1( )

n+k−1 , u
m−1( )
n+k , u m−1( )

n+k+1( )( )
−A U λ, n−1( )[ ]

n+k x, u m−1( )
n+k( )( ),

(25)
and

v λ, m( )[ ] u m( )
n+k( ) � Dx U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) −Dx X x( )( )u m( )

n+k
+ λ U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) − λ X x( )( )u m( )

n+k .
(26)

Since v is a λ-symmetry,

v λ, m−1( )[ ] Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ) � A U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( )
−A X x( )( )u m( )

n+k + λ U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( ) − λ X x( )( )u m( )
n+k .

(27)

Hence, if u(m)
n � Fn(x, u(m−1)

n−1 , u(m−1)
n , u(m−1)

n+1 ), Eq. 26 says that

λ, m − 1( )[ ] Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ) � A U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( )
−A X x( )( )u m( )

n+k + λ U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( ) − λ X x( )( )u m( )
n+k .

(28)
If we set μ = −A(X(x)) − λX(x), then we can write

v λ, m−1( )[ ], A[ ] x( ) � λX x( ) + μ,

v λ, m−1( )[ ], A[ ] un+k( ) � λU λ, 0( )[ ]
n+k x, un+k( ) + μu 1( )

n+k,
v λ, m−1( )[ ], A[ ] u 1( )

n+k( ) � λU λ, 1( )[ ]
n+k x, u 1( )

n+k( ) + μu 2( )
n+k,

..

.

v λ, m−1( )[ ], A[ ] u i( )
n+k( ) � λU λ, i( )[ ]

n+k x, u i( )
n+k( ) + μu i+1( )

n+k ,

..

.

v λ, m−1( )[ ], A[ ] u m−1( )
n+k( ) � λU λ, m−1( )[ ]

n+k x, u m−1( )
n+k( ) + μu m( )

n+k

(29)

Therefore, we conclude that [v[λ,(m−1)], A] = λ · v[λ,(m−1)] + μ · A.
The vector field

K � X x, un( ) ∂

∂x
+ ∑1

k�−1
∑m−1

i�0
U i( )

n+k x, u i( )
n+k( ) ∂

∂u i( )
n+k

, (30)

depends on three lattice points with n − 1, n and n + 1. If we apply
both elements of this equation to each coordinate function, we
obtain

μ � −A X x, u( )( ) − λX x, u( ), (31)
and, for 0 ≤ i ≤m − 2, the coordinateU(i)

n+k(x, u(i)n+k) of K must satisfy

U λ, i+1( )[ ]
n+k x, u i+1( )

n+k( ) � Dx U λ, i( )[ ]
n+k x, u i( )

n+k( )( ) −Dx X x( )( )u i+1( )
n+k

+λ U λ, i( )[ ]
n+k x, u i( )

n+k( )( ) − λ X x( )( )u i+1( )
n+k .

(32)

Hence

K � v λ, m−1( )[ ]. (33)
Then we apply both elements of [K, A] = λK + μA, to the

coordinate function u(m−1)
n−1 , u(m−1)

n and u(m−1)
n+1 , we obtain

K,A[ ] u m−1( )
n+k( ) � K Fn+k λ, u m−1( )

n+k−1 , u
m−1( )
n+k , u m−1( )

n+k+1( )( ) − A U λ, m−1( )[ ]
n x, u m−1( )

n+k( )( )
� λU λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )

− A X x( )( ) + λX x( )( ) · Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ),
(34)

where k = −1, 0, 1. The above equation yields

K Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( )
� A U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) + λU λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )

− A X x( )( ) + λX x( )( ) · Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ). (35)

Calculate

v λ, m( )[ ] u m( )
n+k − Fn+k x, u m−1( )

n+k−1 , u
m−1( )
n+k , u m−1( )

n+k+1( )( )
� Dx U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) −Dx X x( )( )u m( )

n+k
+ λ U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( ) −X x( )u m( )

n+k( )
−K Fn+k x, u m−1( )

n+k−1 , u
m−1( )

n+k , u m−1( )
n+k+1( )( ) (36)

when u(m)
n � Fn(x, u(m−1)

n−1 , u(m−1)
n , u(m−1)

n+1 ), we obtain, by Eq. 35, that

v λ, m( )[ ] Δ x, u 0( )
n−1, u

0( )
n , u 0( )

n+1, . . . , u
m( )
n−1 , u

m( )
n , u m( )

n+1( )( ) � 0,
when u m( )

n+k � Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( ). (37)
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Therefore v is a λ-symmetry of Eq. 19.
In order to reduce the mth-order DDEs to (m − 1)th-order

DDEs and first-order DDEs, we can determine invariants for the
λ-prolongation of v by deriving invariants of lower order. This
can be achieved through the application of the main tools,
Theorem 2.

Theorem 3. Let v be a vector field defined on M and let λ is a
differential function, If

α � α x, u k( )
n−1, u

k( )
n , u k( )

n+1( ), β � β x, u k( )
n−1, u

k( )
n , u k( )

n+1( ), (38)
are such that

v λ, k( )[ ] α x, u k( )
n−1, u

k( )
n , u k( )

n+1( )( ) � v λ, k( )[ ] β x, u k( )
n−1, u

k( )
n , u k( )

n+1( )( ) � 0,

(39)
then

v λ, k+1( )[ ] Dxα x, u k( )
n−1, u k( )

n , u k( )
n+1( )

Dxβ x, u k( )
n−1, u

k( )
n , u k( )

n+1( )⎛⎝ ⎞⎠ � 0. (40)

Proof 3. By Theorem 2, we have

v λ, k+1( )[ ], Dx[ ] � λv λ, k+1( )[ ] + μDx, (41)

where μ = −Dx(v(x)) − λv(x). Therefore,

v λ, k+1( )[ ] Dxα

Dxβ
( ) � 1

Dxβ( )2 Dxβ · v λ, k+1( )[ ] Dxα( ) −Dxα · v λ, k+1( )[ ] Dxβ( )( )
� 1

Dxβ( )2 Dxβ · v λ, k+1( )[ ] , Dx[ ] α( ) −Dxα · v λ, k+1( )[ ] , Dx[ ] β( )( )
� 1

Dxβ( )2 Dxβ · μ ·Dxα( ) −Dxα · μ ·Dxβ( )( ) � 0.

(42)

Proposition 1. Let v be a λ-symmetry. Let

y � y x, un−1, un, un+1( ) and w

� w x, un−1, un, un+1, u 1( )
n−1, u

1( )
n , u 1( )

n+1( )
be two functionally independent first-order invariants of v[λ,(m)]. By
solving an equation of Δr(y, w(m−1)) � 0 and an auxiliary equation
w � w(x, un−1, un, un+1, u

(1)
n−1, u(1)

n , u(1)
n+1), the general solution of the

equation can be obtained.

With the help of independent first-order invariant, we
demonstrate a simple application of λ-symmetry. Considering a
(1+1)-dimensional DDE

u 2( )
n � x + x2( )eun+1[ ]x, (43)

Eq. 43 has the from

u 2( )
n � Dx Fn x, un+1( )( ), (44)

which admits the obvious order reduction

u 1( )
n � Fn x, un+1( ) + C, C ∈ R. (45)

Letting X(x) = 0, Un−1(x, un−1) = 1, Un(x, un) = 1,Un+1(x, un+1) =
1 and λ � Fn,un+1(x, un+1), we have the following λ-prolongation
vector field

v λ, 2( )[ ] � ∂

∂un−1
+ ∂

∂un
+ ∂

∂un+1
+ Fn,un+1

∂

∂u 1( )
n−1

+ ∂

∂u 1( )
n

+ ∂

∂u 1( )
n+1

( )
+ F2

n,un+1 + u 1( )
n+1Fn,un+1un+1 + Fn,xun+1( ) ∂

∂u 2( )
n−1

+ ∂

∂u 2( )
n

+ ∂

∂u 2( )
n+1

( ),
(46)

We can easily prove that the vector field v is the λ-symmetry of
Eq. 43. The λ-symmetry generator has two obvious invariants z = x,
w � u(1)n − Fn(x, un+1). Furthermore, the differential invariant
wz � Dxw

DxZ
� u(2)n −Dx(Fn(x, un+1)). Therefore, Eq. 43 can be

reduced to Eq. 45.

4 Conclusion

λ-symmetry reduction method is useful in establishing effective
alternative methods analyze ODEs without using Lie point
symmetries. At present, there is no programmatic algorithm
package to solve λ-symmetry directly. Therefore, it is difficult to
determine the general form of λ.

There are many examples of DDEs, without Lie point symmetries,
that can be completely integrated. So we have to study the reduction of
these DDEs. In this paper, we have extended the λ-symmetry
reduction method to the case of (1+1)-dimensional DDEs. We
have obtained some theorems Theorem 2, 3 and Proposition
1 which can be used to reduce and solve DDEs in Section 3. By
comparison, DDEs can be more complex. Here we have just listed a
simple example to illustrate the method. How to combine the
integrating factor method and the λ-symmetry reduction method
of DDEs to construct more effective examples will be the next work.
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