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With the development of quantum computing, the application of quantum neural
networks will be more and more extensive, and its security will also face more
challenges. Although quantum communication has high security, quantum neural
networks may have many internal and external insecure factors in the process of
information transmission, such as noise impact during the preparation of input
quantum states, privacy disclosure during transmission, and external attacks on
the network structure, which may cause major security incidents. Because of the
possible insecurity factors of quantum neural networks, this paper proposes a
quantum sampling method to detect the state of quantum neural networks at
each stage, so as to judge whether there are security risks in quantum neural
networks and thus ensure their security. The method also provides a safe basis for
further research on the stability and reliability of quantum neural networks.
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1 Introduction

The principles of artificial neural networks (ANNs) and quantum neural networks
(QNNs) are simulations of the working mechanism of biological neural networks, and many
of their functions come from parallel information processing capabilities. Compared with
the QNN, ANN’s simulation of the human brain is relatively simple. It uses simplified
neuron models and learning methods to solve problems or make certain decisions. Up to
now, neural network theory has achieved extensive success in many research fields, such as
pattern recognition, automatic control, signal processing, assistant decision-making,
artificial intelligence, processing big data, and so on. However, compared with the
human brain, the existing artificial neural network theory still has many defects, mainly
reflected in the following aspects: 1) Learning in the traditional sense is a sequential
processing mode and the processing speed slows down gradually with the increase of
the amount of information, which is not in line with the characteristics of real-time response
and large-capacity work of the human brain. 2) The human brain takes memory and recalls
information as a part of learning. But for neural networks, the trained samples are only used
to change the connection weights and will be immediately forgotten and not stored. 3) The
neural network needs repeated training and continuous learning, but the human brain can
learn once. 4) The neural network will have a catastrophic forgetting phenomenon when
receiving new information. Therefore, to further develop the neural network theory, new
theories, and new ideas must be introduced. The combination of quantum theory and neural
networks is a useful attempt.
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QNN combines the basic knowledge of neural networks with
quantum computing and makes use of quantum computing theory,
which shows great advantages over traditional neural networks in
terms of parallel processing capacity and storage capacity. In 1995,
Kak published the paper “OnQuantum Neural Computing” and put
forward the concept of quantum neural computing for the first time
[1]. In the same year, Chrisley proposed the concept of quantum
learning and proposed the quantum neural network model of a non-
superposition state and the corresponding learning algorithm.
Narayanan proposed a quantum-inspired neural network model
[2]. In 1996, Toth proposed a quantum cellular neural network
model. The performance of the network is investigated for the two-
state cell model [3]. In the same year, Perus proposed that there is an
interesting similarity between quantum parallelism and neural
networks [4]. The collapse of the quantum wave function is very
similar to the phenomenon of neural pattern reconstruction in
human memory. In 1997, Gopathy et al proposed a quantum
neural network model based on a multi-layer excitation function
which was studied from the idea of quantum state superposition [5].
In the same year, Lagaris et al proposed an artificial neuron model
with quantum mechanical properties to solve the initial value
problem of partial differential equations and successfully applied
it to solve the Schrodinger equation [6]. Dan proposed the algorithm
of quantum associative storage. Compared with traditional storage,
quantum associative storage has exponential storage capacity [7, 8].
In 1998, Menneer comprehensively and deeply discusses how to
introduce quantum computing into an artificial neural network
from the point of view of a multi-universe. It was proved that
quantum neural network is more effective than traditional neural
network for classification problem [9]. In 1999, Li published a paper
on the quantum parallel SOM algorithm and applied it to satellite
remote sensing image recognition [10]. In the same year, Berhman
et al constructed quantum neural networks of time and space based
on the molecular model of quantum dots [11]. In 2000, Ajit et al
studied the structure and model of quantum neural networks and
put forward the idea of constructing a superimposed multi-universe
quantum neural network model from the point of view of multi-
universe quantum theory [12]. In the same year, Matsui et al of
Japan proposed a new method of quantum states as neuron states
and constructed a quantum neuron model based on qubit
description on the basis of the traditional neural network
topology. According to the characteristics of a one-bit quantum
revolving gate and two controlled non-gates, a learning algorithm
based on the complex operation is constructed, and the performance
of the model is tested by 4-bit parity and function approximation
problem [13]. In 2001, Altaisky proposed a quantum neural network
model based on the principle of quantum information processing. In
this model, the input and output are realized by photon beams with
different polarization directions, and the connection weights are
realized by beam splitters and phase shifters [14]. In 2005, Matsui
et al summarized their previous work and verified the performance
of their proposed model in more detail with 6-bit parity problems
[15]. In 2007, Maeda M and others continued to conduct in-depth
research on quantum neural networks and proposed a quantum
neural learning algorithm for solving XOR problems according to
the quantum circuit structure [16]. In the same year, Shafee pointed
out that quantum neural networks were similar to biological neural

networks, and quantum neural networks can be constructed by
AND gates and controlled non-gates [17].

In 2014, Schuld et al introduced a systematic approach to the
study of quantum neural networks, mainly about Hopfield networks
and associative memory tasks. They also summarized the difficulties
of combining the nonlinearity of neural computing with the linearity
of quantum computing [18]. In 2018, Steinbrecher et al proposed a
quantum optical neural network. Experimental results showed that
it is a powerful quantum optical system design tool [19]. Beer et al
proposed a real quantum simulation of classical neurons, which can
form a quantum feed forward neural network capable of general
quantum computation [20]. In 2021, Kashif et al proposed a method
of designing quantum layers in hybrid quantum-classical neural
networks. The experimental results show that, compared with the
traditional model, the addition of the quantum layer in the mixed
variant provides a significant computational advantage [21]. Fard
et al proposed a quantum neural network with multi-neuron
interaction and applied it to pattern recognition tasks [22]. Silva
et al proposed a quantum neural network model [23], which is
directly extended by classical perceptrons, which can solve some
problems in the existing quantum perceptron models. To apply
random quantum circuits to medical image detection, Houssein et al
proposed a hybrid quantum-classical convolution neural network
model [24].

Generally speaking, the current research in the field of QNN is
mainly focused on the following aspects: 1) To study the problems in
quantum computing through the neural network model. 2) To make
full use of the ultra-high-speed, super-parallel, and exponential
storage capacity of quantum computing to improve the structure
and performance of the neural network. 3) By introducing quantum
theory into the traditional neural network, a new network model is
constructed, and an efficient learning algorithm is designed to
improve the intelligence level of the network.

However, when developing QNN, we should also consider the
security problems of QNN itself and the security problems that
QNN may cause to the outside world. For example, QNN’s own
structure is damaged, information leaks and attacks, which may
cause major security incidents in the future. Another problem is the
“quantum advantage” of quantum computers, that is, the ability of
quantum computers to handle some problems that conventional
computers cannot. This capability can pose a threat to current
information security technologies such as encryption algorithms
and digital signatures. Therefore, in the development of quantum
computing and quantum neural networks, security issues must be
paid attention to.

2 Quantum neural network model

This paper enumerates a quantum neural network model and
takes this model as an example. Zhou and Ding [25] proposed a
quantum M-P neural network model based on the traditional M-P
neural network and using the quantum linear superposition
property. They not only give the working principle of the
quantum neural networks but also give examples to describe the
weight updating algorithm when the input state is orthogonal and
non-orthogonal basis set, respectively.

Frontiers in Physics frontiersin.org02

Zhang and Lu 10.3389/fphy.2023.1236828

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1236828


2.1 Inner product

The inner product of two quantum states, φi(x) and φj(x), is
defined as follows:

φi x( ) · φj x( ) � ∫
Ω
φi x( ) · φj x( )dx

The above is the inner product of a continuous function, which
can be simplified to a discrete function:

φi x( ) · φj x( ) ≈ ∑
x

φi x( ) · φj x( )

If the φ(x) is expressed in the form of a vector, that is
φi(x) � (x1, x2, · · ·xn), φj(y) � (y1, y2, · · ·yn), then

φi x( )φj y( ) � x1y1 + x2y2 + · · · + xnyn

2.2 Traditional M-P network model

Based on the analysis and summary of the basic
characteristics of neurons, McCulloch and Pitts first proposed
the M-P model [26], the model is shown in Figure 1. This model
had a great influence on the research in the fields of brain models,
automata, and artificial intelligence, which leads the era of
neuroscience theoretical research. In Figure 1, each input of a
neuron has a weighting coefficient, the weight ωi, whose positive
and negative values simulate the excitation and inhibition of
synapses in biological neurons. And its size represents the
strength of synaptic connections. As the basic processing unit
of a neural network, all input signals must be integrated and Sj
represents the sum of combined input signals. Whether the
neuron is activated or not depends on a certain threshold, that
is, only when the total input exceeds the threshold, the neuron
will be activated to send out a pulse signal, otherwise the neuron
will not produce an output signal. The output of an artificial
neuron is the same as that of a biological neuron, such as Oj for
neuron output. The relationship between input and output can
generally be represented by a non-linear transfer function f.

The above can be expressed in mathematical expressions as
follows:

Sj � ∑
n

i

xiωi, Oj � f Sj − θ( )

where θ represents the threshold of the neuron.

2.3 Quantum M-P neural network model

Quantum M-P neural network model is an artificial neural
network model based on quantum computing, which uses
quantum superposition and entanglement properties to process
information and learning. Its basic structure is similar to the
traditional M-P neural networks, while its neurons and
connection weights are expressed in qubits as shown in Figure 2.

The expression is

Oi � ∑
j

ωijφj, j � 1, 2, 3,/2n

where n is the total number of qubits to be needed. Four
combinations of input neurons represented by two qubits are
given, that is | 00〉, | 01〉, | 10〉, | 11〉, as shown in Figure 3.

The output can be expressed as:

O � ω1φ1 x1, x2( ) + ω2φ2 x1, x2( ) + ω3φ3 x1, x2( ) + ω4φ4 x1, x2( )
The expression can also be expressed as:

O � ω1φ00 x1, x2( ) + ω2φ01 x1, x2( ) + ω3φ10 x1, x2( ) + ω4φ11 x1, x2( )

FIGURE 1
M-P network model.

FIGURE 2
Quantum M-P neural network model.

FIGURE 3
M-P neural network model with two qubits.

Frontiers in Physics frontiersin.org03

Zhang and Lu 10.3389/fphy.2023.1236828

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1236828


where x1, x2 is the input qubit and ωi � (ωi1,ωi2,/ωij) represents
the vector.

2.4 Model with the orthogonal state

In the quantum field, the quantum state output of the quantum
M-P neural network model is expressed as follows:

Oi � ∑
j

ωij x1, x2,/, xn| 〉, j � 1, 2, 3,/2n

That is,

Oi � ωi1 0, 0,/, 0| 〉 + ωi2 0, 0,/, 1| 〉 +/ωi2n 1, 1,/, 1| 〉

If ω forms a unitary matrix, then the above equation is a
quantum unitary evolution, which can complete the quantum
computing task of the network.

2.5 Model with the non-orthogonal state

In the analysis of the previous section, it was assumed that
states φi are orthogonal to each other. For example, | 00〉 and
| 01〉 are orthogonal to each other and the output shown above. If
it is a state non-orthogonal network, that is, the quantum state of
the input is α | 0〉 + β | 1〉, which is not orthogonal with the
ground state | 0〉 or | 1〉, then the input-output relationship of
the network should be:

Oik � ∑
j

ωijφjφk, j � 1, 2,/, 2n

where φjφk is the inner product of two states, φj and φk.

2.6 Weight learning algorithm

Similar to the traditional learning mechanism, the neural
network usually has a weight set, which is constantly modified
and updated through learning in the training process, so that the
error between the actual output of the network and the target
output is acceptable. Zhou and Ding proposed a weight-updating
algorithm for a quantum M-P network [25]. The input-output
relationship of the quantum M-P network model can be
simplified as follows:

O| 〉 � W φ
∣∣∣∣ 〉

The process of the weight learning algorithm is as follows:

a. Initialize a weight matrix W0;
b. A pair of actual input and output values ( |φ〉, |O〉) is given;
c. Calculate the actual output |ψ〉 � Wt |φ〉, where is the number

of iterations of the network algorithm, starting with t = 0;
d. Update the network weight Wt+1

ij � Wt
ij + η(|O〉i − |ψ〉i) |φ〉j,

whichWij represents the element values of row i and column j in
the weight value matrix, and η is the learning constant;

e. Repeat steps c and d until the error of the output is within an
acceptable range.

In the quantum M-P neural network model, the input data is
encoded as qubits and then operated through a series of quantum
gates. Each quantum neuron can perform certain calculations and
transformations, and the final output is also in the form of qubits.
Through the combination and adjustment of multiple quantum
neurons, we can realize the classification, recognition, regression,
and other tasks of input data. Compared with the traditional M-P
neural network model based on classical computation, quantum
M-P neural network model has more powerful computing power
and higher learning efficiency. However, due to the limitations of
current quantum computing technology, it is still a great challenge
to realize large-scale quantum M-P neural network models. At the
same time, the network model also has a lot of security problems,
such as external intrusion when the weight is updated,
environmental noise impact, etc., will seriously affect the
performance of the network.

3 Insecurity factors in quantum neural
network

The development of artificial neural network is earlier than
quantum neural network, and it is widely used in all walks of life.
Although the technology is becoming more mature, ANN still faces
significant security problems. Similarly, with the development of
quantum computing, the application of quantum neural network
will be more and more extensive, and its security will also face more
challenges. In particular, due to the special working mechanism of
QNN, there may be more security issues involved. One of the major
security concerns is the potential for privacy breaches of data when
using quantum neural networks for machine learning. Because
quantum neural networks can process data through properties
such as superposition and entanglement of quantum states, there
may be a risk that some private information will be leaked. Another
security issue is the “quantum advantage” of quantum computers,
that is, the ability of quantum computers to handle some problems
that conventional computers cannot. This capability can pose a
threat to current information security technologies such as
encryption algorithms and digital signatures.

In addition to the two main security issues mentioned above,
there are also external security factors that may be suffered:

Malicious use: Hackers and other bad actors are beginning to use
quantum neural networks to attack systems and networks. For
example, hackers can use neural networks to forge identity
information, gain access to protected systems, and steal sensitive
information.

Adversarial attacks: Adversarial attacks are attacks against
quantum neural networks in which an attacker tricks the neural
network by adding noise or deleting data. Such attacks can lead to
model inaccuracies or miscalculations.

Data privacy: Neural networks require a lot of training data, but
this data often contains sensitive information. Attackers can steal
training data by attacking neural networks, thereby compromising
personal privacy.

Backdoor attacks: An attacker can embed a backdoor in a neural
network to perform malicious actions while performing certain
specific tasks. This type of attack can allow an attacker to take
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control of a system remotely, steal sensitive information or
compromise the system.

Adversarial example: An adversarial example is an attack against
a neural network in which the attacker tricks the neural network by
using special techniques to generate misleading samples.

In general, in the application of quantum computers and
quantum neural networks, security issues need to be highly
valued and guaranteed.

4 Sampling checks to protect the
securityof QNN

A quantum neural network is not the same as the traditional
neural network, it does not use weighted and biased neurons but
encodes the input data into a series of qubits. QNN applies a series of
quantum gates and then changes the parameters of the gate to
minimize the loss function. In quantum neural networks, the
quantum circuit structure usually consists of three parts, and the
basic structure is shown in Figure 4.

The feature mapping part is the coding circuit, which is used to
encode the classical data into quantum data; the transformation part
is the training circuit, which is used to train the parameters with a
parametric quantum gate; and the measurement part is used to
detect whether the measured value is close to the expected value of
the target.

In order to further study the security performance of each part of
the quantum neural network, this paper combined with the
performance of the quantum M-P neural network model, firstly
from the coding part of the neural network structure, the stability of
the data processed by the coding part is discussed: Any given input is
randomly sampled at the output end after passing through the coded
circuit, so as to simulate the original distribution of the quantum
states at the input end. At this time, the training circuit does not
contain reference quantum gates.

Quantum neural networks include quantum states and
quantum gate manipulation processes, which can describe the
evolution of quantum states through operations in the form of
their matrices:

ψt

∣∣∣∣ 〉 � e−iHt ψ0

∣∣∣∣ 〉

We can simply understand this process as a matrix and a vector
performing a point multiplication operation to obtain an updated
state vector:

x′
→ � A �x

Under the framework of quantum computing, since the general
quantum gate operations are unitary, whether it is a pre-update or post-
update operation, the resulting state vector is always normalized:

〈ψ
∣∣∣∣ψ〉 � 1

When considering sampling in this paper, in order to facilitate
calculation, we convert the state vector to a probability vector first,
and then sample. The characteristics of the probability vector are as
follows:

∑
2n−1

i�0
pi � 1

FIGURE 4
The basic structure of the quantum neural network mainly consists of three parts, feature mapping, transformation, and measurement, and the left
and right ends of the structure can be the classical network as the input and output.

FIGURE 5
Each element represents the probability of obtaining the current
binary quantum state.
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where n represents the number of bits of that quantum system.
After conversion to a probability amplitude vector, each element

represents the probability of obtaining the current binary quantum
state. In this way, when obtaining the state vector or probability
amplitude vector of a quantum state, it is actually obtaining the
probability distribution of the system. Through this probability
distribution, we can perform Monte Carlo simulation: first
perform uniform random scattering points on [0, 1), while
converting the probability amplitude vector into its corresponding
cumulative distribution map, and finally calculate the position of the
cumulative distributionmap corresponding to the randomly scattered
points, we can obtain the simulation sampling under the current
probability, which is implemented as follows.

Assume the distribution of a probability amplitude and then
sample it. Given the distribution of probability amplitudes for an
exponential descent, select a probability distribution function
e−x (it could be any other type of function), note that we are

taking probability amplitudes, so to normalize it, only need to
calculate yi � yi∑j≤ i

yj
. The distribution of quantum state as shown

in Figure 5.

Next, a uniform random number between [0, 1) is generated as
shown in Figure 6, and the more scattered points, the more obvious
the uniformly distributed result presented.

Then, the cumulative distribution function is used to do a
cumulative superposition operation on the probability vector
obtained earlier, and the corresponding calculation method is as
follows:

yi � ∑
j<�i

yj

FIGURE 6
Perform uniform random scattering points.

FIGURE 7
The cumulative distribution function.

FIGURE 8
The probability distribution function and the analog sampling
results.

FIGURE 9
Fitting effect of multiple sampling.
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It is easy to predict that the end point of the cumulative
distribution function must be 1, because of the previous

definition ∑
2n−1

i�0
pi � 1, as shown in Figure 7.

Finally, the quantum state sampling process directly compares
the probability distribution function and the analog sampling results
together, as shown in Figure 8:

The simulation results are already very close, and if you continue
to increase the number of samples, the results will be closer to the
true distribution, as shown in Figure 9:

Therefore, after obtaining the probability amplitude, we can
sample the probability amplitude according to the precision
requirements of the scene, and all the functions are
completed here.

Next up is the transformation part. Quantum circuits
constructed in quantum neural networks contain parametric
gates, whose parameter values can be adjusted according to needs
after the circuits are established. This part of the quantum circuit can
not only be transmitted forward, but also can be propagated back:
the gradient of each parameter relative to the objective function
(generally the expected value of a mechanical quantity in a quantum
state) can be obtained by derivation methods such as “central
difference,” and then the parameters can be updated with an
optimizer. After training, the model learns a set of parameters
for a quantum circuit, which it controls to make accurate
categorical predictions about unknown inputs. This is much like
a classic neural network: you define a variable name and then update
its parameters according to the back propagation algorithm. At
present, there are many quantum computing frameworks for
studying quantum neural networks, and the deep integration
with classical machine learning frameworks makes the updating
of quantum circuit parameters more convenient. This paper does
not conduct simulation training for a certain kind of quantum
neural network.

In this section, we simulate the original distribution of quantum
states at the input of the quantum neural network by sampling
quantum data at the output. The sampling results show that with the
increase of the number of iterations, QNN can almost completely
approximate the real distribution of the input values. Each part of
QNN is randomly sampled by quantum sampling to judge whether
there are security risks in the quantum neural network and ensure its
security.

5 Discussion

In this paper, a protection method is proposed to solve the
possible security problems of quantum neural networks. The
quantum sampling algorithm is used to randomly sample the

structure of each part of the quantum neural network. The
sampling results show that the probability distribution of the
data processed by the quantum neural network is almost
identical to that of the original data, which also shows that the
method provides security for the quantum neural network.
Although the above security issues are real, researchers are
constantly looking for solutions to ensure the security of neural
networks. For example, they are developing adversarial training
techniques to help neural networks better cope with adversarial
attacks and researching encryption technology to ensure secure
communication.
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