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Background: Our study aims to develop an artificial intelligence-based high-
precision cataract classification and grading evaluation network using
fundus images.

Methods: We utilized 1,340 color fundus photographs from 875 participants
(aged 50–91 years at image capture) from the Beijing Eye Study 2011. Four
experienced and trained ophthalmologists performed the classification of
these cases based on slit-lamp and retro-illuminated images. Cataracts were
classified into three types based on the location of the lens opacity: cortical
cataract, nuclear cataract, and posterior subcapsular cataract. We developed a
Dual-StreamCataract Evaluation Network (DCEN) that uses color photographs of
cataract fundus to achieve simultaneous cataract type classification and severity
grading. The accuracy of severity grading was enhanced by incorporating the
results of type classification.

Results: The DCEN method achieved an accuracy of 0.9762, a sensitivity of
0.9820, an F1 score of 0.9401, and a kappa coefficient of 0.8618 in the cataract
classification task. By incorporating type features, the grading of cataract severity
can be improvedwith an accuracy of 0.9703, a sensitivity of 0.9344, an F1 score of
0.9555, and a kappa coefficient of 0.9111. We utilized Grad-CAM visualization
technology to analyze and summarize the fundus image features of different
types of cataracts, and we verified our conclusions by examining the information
entropy of the retinal vascular region.

Conclusion: The proposed DCEN provides a reliable ability to comprehensively
evaluate the condition of cataracts from fundus images. Applying deep learning
to clinical cataract assessment has the advantages of simplicity, speed,
and efficiency.

KEYWORDS

artifcial intelligence, cataract, cataract screening, fundus image, cortical cataract,
nuclear cataract, posterior subcapsular cataract

OPEN ACCESS

EDITED BY

Roy Clarke,
University of Michigan, United States

REVIEWED BY

Tae Keun Yoo,
B&VIIT Eye center, Republic of Korea
Delia Cabrera DeBuc,
University of Miami, United States

*CORRESPONDENCE

Lan Ma,
malan@sz.tsinghua.edu.cn

Wenbin Wei,
weiwenbintr@163.com

†These authors have contributed equally to
this work

‡These authors jointly supervised this work

RECEIVED 13 June 2023
ACCEPTED 26 December 2023
PUBLISHED 09 January 2024

CITATION

Gao W, Shao L, Li F, Dong L, Zhang C, Deng Z,
Qin P, Wei W and Ma L (2024), Fundus
photograph-based cataract evaluation network
using deep learning.
Front. Phys. 11:1235856.
doi: 10.3389/fphy.2023.1235856

COPYRIGHT

© 2024 Gao, Shao, Li, Dong, Zhang, Deng, Qin,
Wei and Ma. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Abbreviations: DCEN, Dual-Stream Cataract Evaluation Network; CC, cortical cataract; NC, nuclear
cataract; PSC, posterior subcapsular cataract; CNN, Convolutional Neural Networks; CBAM,
Convolutional Block Attention Module, BAM, Bottleneck Attention Module, SENet, Squeeze-and-
excitation Network; Grad-CAM, Gradient-weighted Class Activation Mapping.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 09 January 2024
DOI 10.3389/fphy.2023.1235856

https://www.frontiersin.org/articles/10.3389/fphy.2023.1235856/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1235856/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1235856/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1235856&domain=pdf&date_stamp=2024-01-09
mailto:malan@sz.tsinghua.edu.cn
mailto:malan@sz.tsinghua.edu.cn
mailto:weiwenbintr@163.com
mailto:weiwenbintr@163.com
https://doi.org/10.3389/fphy.2023.1235856
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1235856


Introduction

Age-related cataract is the most significant cause of blindness in
the world. According to the Global Burden of Disease Study
2020 Report, the leading cause of blindness in people aged
50 and over worldwide in 2020 was cataract, with more than
15 million cases. There is also 78.8 million population suffering
from moderate and severe vision impairment due to cataracts
worldwide [1]. Cataracts are currently only effectively treated
with surgery. However, due to the uneven development of
different areas and shortage of medical resources, many cataract
patients have not received proper treatment. It is essential to
improve the ability of cataract early detection and classification.

There are three main types of cataracts based on the location of
the lens opacity: cortical cataract (CC), nuclear cataract (NC), and
posterior subcapsular cataract (PSC) [2]. CC is a wedge-shaped
opacity that grows from the outer edge of the lens toward the center
[3]. NC represents progressive opacification of the central region of
the lens and hardening of the lens nucleus. PSC is opacity in the
lens’s posterior capsule, often seen in younger individuals and
diabetics [4]. People with a history of ocular trauma were more
likely to have CC and PSC [5]. Studies have shown that both
systemic and topical steroid use are serious risk factors for
developing PSC [6, 7]. PSC can develop faster than two other
types of cataracts and is more likely to cause visual impairment
[8]. Patients are also likely to have two or three types of cataracts
simultaneously.

Studies have shown that when more than one types of cataracts
occur together, they have a more significant impact on vision-
specific functions. Individually, PSC has the greatest impact
before NC and CC [3]. This suggests that the effects of different
cataract types are additive and should be considered when assessing
the visual-specific functional levels in cataract patients [3].

Based on the type and severity of cataract, the patient’s ability to
perform vision-related tasks is affected differently, and the timing
and method of surgery vary. Therefore, individualized assessment
andmanagement of cataract patients are necessary. Different clinical
cataract classification standards have been introduced
independently based on these cataract types. Lens Opacities
Classification System III and other systems separately assess the
severity of three different types based on slit-lamp and retro-
illumination images [9–14]. However, manually identifying
cataract types and severity can be time-consuming, especially in
places without enough experienced medical power. As the cataract
gets worse, the fundus image will appear blurrier. Xu et al. [15]
propose a cataract gradation system based on fundus images by
observing the degree of blurring. The lens is located in the anterior
part of the eyeball, while the fundus is situated in the posterior part.
The use of fundus cameras for retinal imaging of cataract patients is
challenging because light scattering can severely reduce image
quality due to lens opacity, resulting in blurry image features.
The imaging of fundus images and the description of the lens
structure have been introduced in the supplementary documents.

To the best of our knowledge, all cataract studies based on
machine learning or deep learning and fundus images focus on
assessing cataract severity. For example, Yang et al. [16] built up an
ensemble learning model based on independent features extracted
from fundus images and Back Propagation Neural Network models.

Researchers attempt to add local vessel information to enhance the
recognition performance of automatic cataract grading [17].
Previous studies have also used pre-trained Convolutional Neural
Network (CNNs) and transfer learning for automatic cataract
classification [18]. Methods investigated to detect cataract types
automatically mostly were done on retro-illumination
images [19–21].

Despite efforts to utilize artificial intelligence and fundus images
for the identification of cataracts, such endeavors have largely
overlooked the distinctive characteristics of different types of
cataracts present in fundus images, as well as neglecting the
importance of distinguishing between cataract types when
evaluating their severity.

To address these gaps, this work develops a Dual-Stream
Cataract Evaluation Network (DCEN) for automatic assessment
of cataract from fundus images using modern deep learning
algorithms, which can simultaneously give a diagnosis of
cataract type and severity. In contrast to the three times manual
assessment performed by doctors using slit-lamp examination and
retro illumination imaging to evaluate cataracts, using fundus
images and artificial intelligence for assessing the type and
severity of cataracts has the advantages of being simple, fast,
and efficient. It is suitable for physical examination and
screening of various healthy populations. In addition, based on
the interpretability of the deep learning model, we summarize and
verify the characteristics of different cataracts in fundus images,
which also improves the understanding of fundus images
of cataracts.

In summary, this paper makes two key contributions:

1, This article introduces the DCEN model that can accurately
diagnose both the type and severity of cataracts. The study
demonstrates that the diagnosis of cataract type can serve as an
auxiliary signal to significantly improve the accuracy of
severity diagnosis.

2, We summarized and validated the characteristics of fundus
images of different types of cataracts. This enhances our
understanding of fundus images of cataracts.

Materials and methods

Dataset

The data for development and evaluation in our research were
collected from the Beijing Eye Study 2011, conducted by Beijing
Tongren Hospital [22]. The Beijing Eye Study 2011 was a
population-based cross-sectional study conducted in five
communities in the urban district of Haidian (north of
Central Beijing) and three communities in the village area of
Yufa, Daxing District (south of Beijing). In our experiment, we
used 1,340 retinal fundus images from 875 cataract patients,
including NC (1,111), CC (194), and PSC (35). Each eye has only
one unique macula-centered fundus image. These cases were
jointly classified by four experienced and trained
ophthalmologists based on slit-lamp and retro-illuminated
images. The cortical and posterior subcapsular opacities
appeared as darkly shaded areas on a white background of

Frontiers in Physics frontiersin.org02

Gao et al. 10.3389/fphy.2023.1235856

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1235856


retro-illuminated images. The percentage of the areas with lens
opacities was measured using grids manually. In our study, the
retro-illuminated image diagnostic criterion for PSC is posterior
subcapsular opacity of 1% or more, and the criterion for CC is
cortical opacity of 5% or more. The degree of nuclear opacity of
the lens was assessed in seven grades, using the Age-Related Eye
Disease Study grading system [11]. Grade 1 indicates no nuclear
opacity in the lens, while grade 7 indicates very dense nuclear lens

opacity. The standard for diagnosing an NC is a nuclear cataract
grade of 4 or more. In this study, the acquisition of retinal fundus
images was performed using the CR6-45NM fundus camera by
Canon, Inc., slit lamp images used as diagnostic criteria were
captured using the BG-4 unit by Topcon Medical Systems, Inc.

In the severity task, based on clinical needs, we determined that
grades 4 and 5 were mild cataract, and grades 6 and 7 were severe
cataract. CC with less than 20% cortical opacity was defined as mild,

FIGURE 1
Workflow for data assignment and DCEN model. (A) Data management for training and test datasets. (B) Schematic of our DCEN model.
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and CC with greater than 20% cortical opacity was defined as severe.
Due to the relatively small number of PSC images and the fact that
all patients had less than 20% posterior subcapsular opacity, all
images with PSC were classified as mild.

The fundus dataset was allocated into two groups with an 80:
20 training-to-testing ratio. The data division is based on the fundus
image of the eye as a unit. The degree of cataracts in the left and right
eyes of the same patient are mostly different. When training and
validating the model, OD and OS are mixed based on random
assignment. The training set consisted of 888 NC fundus images,
155 CC fundus images, and 28 PSC fundus images, while the test
dataset consisted of 223 NC fundus images, 39 CC fundus images,
and 7 PSC fundus images. In the training set, 841 fundus images
were diagnosed as mild and 230 as severe; in the test set, 208 fundus
images were diagnosed as mild and 61 as severe. All participants in
this study were between 50 and 91 years old, with a median age of
67 years. Among them, 429 were female, comprising 55.3% of the
total participants. The data allocation of fundus images is random
and there is no data filtering and partitioning based on patient age,
gender, or disease history. The overall dataset is illustrated in
Figure 1A. Additional information about the study participants is
summarized in Table 1.

Evaluation measures

In order to measure the overall performance of our method and
comparable methods, we utilized the following metrics: accuracy
(ACC), macro sensitivity (Sen), macro F1 score (F1), and kappa
coefficient (Kappa). ACC, Sen, F1, and Kappa are the four primary
evaluation measures used to quantify the quality of classification
results. Kappa is a significant indicator for evaluating diagnostic
reliability and is suitable for assessing the accuracy of models
in situations where the classes are imbalanced. The
aforementioned evaluation metrics are defined as follows:

ACC � TP + TN
TP + TN + FP + FN

(1)

Sen � TP
TP + FN

(2)

PR � TP
TP + FN

(3)

F1 � 2 * PR * Sen( )
PR + Sen

(4)

Kappa � p0 − pe
1 − pe

(5)

PR represents precision, which refers to the proportion of true
positive samples among the samples predicted as positive by the
model. The term p0 represents the observed agreement (accuracy)
between the model’s predictions and the actual data, which is the
proportion of samples for which the model’s predictions match the
ground truth. The term pe represents the expected agreement
(accuracy) under the assumption that the model’s predictions are
made randomly.

Deep learning algorithms

Convolutional Neural Networks (CNNs) have demonstrated a
remarkable ability to recognize and classify images. By using a
convolution matrix instead of traditional nodes, they provide
better understanding of color changes, edges, and contrast. In
this study, we aim to explore whether deep learning models can
accurately identify different types of cataracts through fundus
images and characterize the distinct features of three cataract types.

For the cataract types classification task, we evaluated the
performance of ResNet34, ResNet50, ResNet101 [23], AlexNet
[24], VGG-16 [25], GoogLeNet [26], and DenseNet [27] on the
Beijing Eye Study 2011 Dataset for classifying the three cataract
types. The experimental results revealed that ResNet outperformed
other neural networks significantly.

Moreover, we employed a combination of model visualization
analysis, information entropy analysis of fundus blood vessels, and
clinical knowledge to investigate the distinctive characteristics of
cataracts in fundus images. These analyses enabled us to obtain
robust and informative descriptions of the blurry features associated
with different cataract types.

Inspired by this, in the task of identifying the severity of
cataracts, we proposed a DCEN method that distinguish the
severity of cataract based on feature fusion of the cataract
classification model and the cataract grading model. We fused
the feature vector of the type classification model with the

TABLE 1 Basic characteristics of the datasets.

Characteristics Beijing Eye study 2011

Total no. of images 1,340

No. of participants 875

Age (years) a 67 (50–91)

Females (%) 429 (55.3%)

Current smoker (%) a 157 (20.2%)

Heart rate (b.p.m.) a 72 (35–117)

Height (cm) a 162 (130–183)

Weight (kg) a 67 (33–101)

Body mass index (kgm-2) a 22.1 (15.9–29.5)

aResults are presented as median values.

TABLE 2 Comparison results of cataract type classification (The best results
are marked in bold).

Method ACC Sen F1 Kappa

VGG-16 0.7547 0.5769 0.3174 0.1084

AlexNet 0.8832 0.5356 0.5222 0.2549

GoogLeNet 0.9058 0.5801 0.6445 0.3221

DenseNet 0.9504 0.8502 0.8813 0.7090

ResNet34 0.9604 0.9158 0.8103 0.8168

ResNet101 0.9653 0.9720 0.9374 0.8382

ResNet50 0.9762 0.9820 0.9401 0.8619
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severity classification model and used the type result as auxiliary
signals to help the model distinguish the severity of cataract in a
more targeted manner.

In the first task, it was found that the ResNet series baseline
model has superior performance in identifying the degree of fundus
blur. Based on ResNet50, we experimented the performance of
different attention mechanisms, including Convolutional Block
Attention Module (CBAM) [28], Bottleneck Attention Module
(BAM) [29], and Squeeze-and-excitation Network (SENet) [30].
Attention mechanisms have been shown to significantly improve the
performance of baseline models in various tasks. The basic idea
behind attention is to allow the model to selectively focus on certain
parts of the input, rather than treating all parts equally. This is
achieved by assigning weights to different parts of the input, which
are learned during training. By doing so, attention allows the model
to effectively capture long-range dependencies and complex patterns
in the input, which can be difficult for baseline models to do. Overall,
attention mechanisms provide a powerful tool for improving the
performance of baseline models, and have become a popular
technique in modern machine learning.

The framework of our adopted DCEN is shown in Figure 1B.
Two Resnet50 models were used to diagnose the cataract type and
severity respectively. Using the diagnostic results of cataract type
as auxiliary signals greatly improved the accuracy of severity
assessment. During the training process, two ResNet50 backbone
networks were trained in two stages: one for diagnosis of cataract
type and the other for cataract severity diagnosis. After the
diagnosis model of cataract type was trained, the 2048-
dimensional features of each fundus image in the cataract type
model inference results were concatenated in the cataract severity
model to train the severity task. The results of cataract types
classification and cataract severity gradation are presented in
Tables 2, 3, respectively. We have adopted Focal Loss [31] as the
loss function for all models. All of these experiments were
developed and trained using PyTorch [32].

Visualization technique

Gradient-weighted Class Activation Mapping (Grad-CAM)
technique can produce visual explanations for CNN-based
models and does not require any change to its architecture [33].
By using the gradients of target category flowing into different
convolutional layers, we produced final class activation maps
highlighting important regions in the fundus image. Perform a
forward pass through the ResNet50 network to obtain the output

feature map from the last convolutional layer. Since ResNet50 has
5 layers, first, we perform a forward operation to obtain the output
after the last three layers, which we write as A � A1,A2, ...,An{ },
where n is the number of pixels. A backward operation follows to
obtain the gradient of the classifier layer output for a certain class,
which is denoted by Gc � Gc

1,G
c
2, ...,G

c
n{ } . We next calculate the

average gradient over all pixels for each channel,i.e.,

Gc
j �

1
n
∑n

k�1G
c
k,j, j � 1, ...,m, (6)

where Gc
k,j is j-th channel gradient at location k. We then average A

over all channels weighted by Gc
j and set negative values to 0:

hci � ReLU ∑m

j�1G
c
jAi,j[ ], i � 1, ...., n, (7)

where Ai,j is j-th channel pixel value at location i.

TABLE 3 Comparison results of cataract severity classification (The best
results are marked in bold).

Method ACC Sen F1 Kappa

ResNet50 0.8173 0.6330 0.6570 0.3390

SE-ResNet50 0.8290 0.7085 0.7298 0.4626

BAM-ResNet50 0.7992 0.7140 0.7138 0.4276

CBAM-ResNet50 0.7806 0.5280 0.4971 0.0821

DCEN (ours) 0.9703 0.9344 0.9555 0.9111

FIGURE 2
Examples of NC, CC and PSC fundus images and their
corresponding Grad-CAM heat maps in different layers. (A)NC fundus
images, with the deepening of the network, the attention of the deep
learning model gradually focuses on the extension of the optic
disc to the temporal side. (B) CC fundus images, the heat map
attention is eventually located at the inferior region of the fundus
image and spreads toward the macula area. (C) PSC fundus images,
where the heat map shows that the model’s attention is focused near
the center of the macula. In each heat map, Red and yellow areas
represent regions the model is positively influenced by when
predicting cataract types. Red indicates a stronger contribution than
yellow, and purple regions have little to no contribution towards the
prediction.
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As shown in Figure 2, we can upsize the heatmap to the same
resolution as the input image, colorize the gray-scale heatmap and
superimpose the colored heatmap onto the original image. Convert the
normalized feature map into a heatmap, and overlay it onto the original
image to visualize which regions of the input are most important for the
given classification result. The heat map result tells us which part of the
original input image contributes to helping the model make a particular
classification decision. In this experiment, With the deepening of the
network, the heat map changes. Based on the heat map and its changes,
we can better understand how the system can classify cataract fundus
images. On this basis, we summarize and verify the characteristics of
different types of cataract fundus images.

Retinal vascular blurriness statistics

To assess retinal vascular blur in fundus images, we followed the
steps outlined below. First, we implemented Gaussian filtering to
smooth out background noise in the fundus image. This step aimed
to prevent misinterpretation of the background features as retinal
blood vessels. We then captured different areas of the fundus image
based on the three regions identified in our study. Finally, we
computed the information entropy of the extracted image for
statistical analysis.

The concept of information entropy characterizes the amount of
information provided by a signal or image. Shannon [34] proposed it
and is widely used to evaluate the degree of ambiguity in images.
Since all our images were blood vessel samples from fundus images,
the greater the image entropy, the clearer the blood vessel
boundaries, which implies lower blurring degree of the fundus
image at that location. Specifically, for grayscale images, we
computed the image entropy using the formula below, where pi
represents its proportion in the image when the grayscale value is i:

Entropy � −∑255

i�0 pi log pi (8)

Results

Identify the characteristics of different types
of cataracts

First, we experimented with the ability of different deep learning
models to classify three different types of cataracts from fundus
images. The experimental results are shown in Table 2. The
experimental results indicate that ResNet34, ResNet50, and
ResNet101 perform much better than four other deep learning
models. The epochs, batch size, and learning rate indexes were
100, 16, and 0.0001, respectively.

Although a very good classification effect has been achieved in
the ResNet series models, the fundus characteristics of the three
types of cataracts are still unclear. To discover the difference between
three types of cataracts in fundus images, we reconstructed the heat
maps based on the ResNet50 classification system using the Grad-
CAM technique [33]. Since ResNet50 structure has five stages. We
obtained the layer 3, layer 4, and layer 5 heat map images from NC,
CC, and PSC fundus images using the Grad-CAM after the

activation feature map in stage 3, stage 4, and stage 5. Examples
of applying Grad-CAM to three types of cataracts are shown in
Figure 2. With the gradual deepening of the network, the interest
areas of the system have changed.

NC type cataract denotes the gradual clouding of the central
area of the lens and the progressive hardening of the lens nucleus.
The overall trend of blurring spreads from the center of the lens
to the periphery. As shown in the layer 3 heat maps, the system’s
attention extends from the optic disc outward along the retinal
vessels (Figure 2A). With the deepening of the network, the
attention of the deep learning model gradually focuses on the
extension of the optic disc near the temporal side. Grad-CAM
heat maps obtained by CC in layer 3 focus on the inferior region
of fundus images (Figure 2B). As the layer progresses, the heat
map attention is eventually located at the inferior region of the
fundus image and spreads toward the macula area. The PSC
occurs at the back of the lens, just in front of the posterior
capsule, usually on the visual axis (Figure 2C). As the model
deepens, the heat map shows that the model’s attention is focused
near the center of the macula.

Through the observation of fundus images, heat maps, and
clinical characteristics of various types of cataracts, we have made
the following inferences regarding the fundus features of cataracts:

1. The blurred area of NC spreads from the optic disc towards the
temporal side in the fundus image.

2. The blurred area of CC extends from the inferior region
towards the center of the fundus image.

3. The blurring of PSC occurs around the macula.

According to the heat maps of Figure 2, we define three different
areas on the fundus image. The region near the temporal side of the
optic disc is region 1, and the inferior region of the fundus image is
region 2. The original size of fundus images is 512*512, and we set
region 1 as 120*120 and region 2 as 512*120. Region 3 is a
150*150 image sample cut from the original fundus image with
the macula as the center (Figure 3A). As inferred from this study,
these three regions represent the blurred source locations of NC, CC,
and PSC, respectively.

Entropy is a scientific concept and measurable physical
property that represents the level of uncertainty, disordered, or
chaos. Here we use image entropy to evaluate the clarity of blood
vessels in different areas of a fundus image. To evaluate the
characteristics of NC and CC, we selected 50 NC images and
50 CC images. Three doctors randomly selected two blood vessel
locations in region 1 and region 2 of the fundus images according
to Figure 3A (LS, LD, CZ). For consistency purposes, doctors are
required to select from the temporal inferior vein and the small
veins extending from the optic disc to the macula in the designated
area. After recording the coordinates, the original images were
filtered using a Gaussian filter. Subsequently, we extracted 30 ×
30 pixel images from the locations of blood vessels, which
represented blood vessel samples from two distinct positions
within the original fundus images. The statistical results of the
blood vessel information entropy of regions 1 and 2 are shown in
Figure 3B. As this scatter-plot shows, the information entropy of
CC is lower than that of NC in two different areas, and this
tendency is more pronounced in region 2.
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A new index is obtained by dividing the information entropy of
region 1 by the information entropy of region 2. The larger the
index, the clearer the center of the fundus image and the blurrier, the
inferior region. The information entropy ratio of the CC is
significantly greater than that of the NC (Figure 3C). The blur
trend of NC spreads from the optic disc to the temporal side, while
the blur trend of CC spreads from the inferior region of the
periphery to the center.

To evaluate this feature of PSC, we selected 50 NC samples with
grade 4 and 50 CC samples with cortical opacity less than 50% and
15 PSC samples with posterior subcapsular opacity less than 10%.
We perform Gaussian filtering on the original fundus image and
then take a sample image of region 3. Then we calculate the
information entropy of these sample images. The information
entropy of the PSC sample is significantly lower than two other
types of cataracts, which means that the number of observable
vessels in region 3 of PSC are less than that of two other
cataracts (Figure 3D). This result is in line with our deduction
on the characteristics of the PSC fundus image.

Cataract severity grading

Based on our research, we found that the blurry appearance of the
fundus varies greatly due to different types of cataracts. In order to
improve the accuracy of cataract severity diagnosis based on fundus
images, we consider fusing the feature vectors from the classification
model into a severity grading network, namely, DCEN, a Dual-Stream
Cataract Evaluation Network. This is a method that utilizes a highly
accurate cataract three-classification diagnostic model to achieve a
binary-classification of cataract severity. The final result is able to
output both the cataract type and the binary-classification of severity
level. Its specific workingmode is shown in Figure 1B. Firstly, we locked
in the parameters of the diagnosis model of type and trained another
ResNet50 model by connecting the diagnosis results with the severity
model parameters. Since the classification network for cataract types
based on ResNet50 achieves an accuracy of 0.9762 and an F1 value of
0.9401, we believe that this deep learning model effectively captures the
fundus image features. We used the 2048 parameter output of each
image in the trained model as an auxiliary signal to participate in the

FIGURE 3
Information entropy statistics of three different regions of fundus images. (A) Example of fundus image region division. Region 1 represents the blur
location of the NC, spreads from the optic disc to the temporal side in the fundus image. Region 2 represents the blur location of the CC, inferior region of
the fundus image. Region 3 represents the blur location of the PSC, in the center of the macula. (B) Information entropy statistics of NC and CC vessel
extractions in region 1 and region 2. (C)Divide the information entropy obtained by the blood vessel sample of region 1 by the information entropy of
the blood vessel sample of region 2. This ratio was used to evaluate the blur relationship between two locations. (D) the statistical results of information
entropy of three types of cataracts in region 3 represented by box plot.
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training of cataract severity. By utilizing auxiliary signals, the severity of
different types of cataracts can be learned in a targeted manner.

As shown in Table 3, due to the distinct features of NC and CC in
fundus images, ResNet alone, even when combined with different

attention mechanisms, cannot effectively distinguish cataract severity.
However, by using DCEN, which concatenates the final 2048-
dimensional vector generated from the inference results of the
cataract type model with the severity of cataract and then trains the

FIGURE 4
Comparison of confusionmatrix results for cataract severity grading task across differentmodels. (A) ResNet50 (B) BAM-ResNet50 (C) SE-ResNet50
(D) CBAM-ResNet50 (E) DCEN.
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severity model, can significantly improve the diagnostic accuracy of
cataract severity. We achieved a 97.03% ACC, 93.44% Sen, 95.55% F1,
and 91.11% Kappa. The comparison between DCEN and different
attention mechanisms based on ResNet is shown in Figure 4. Please
refer to the additional file for the ROC curves. Moreover, DCEN shows
strong ability to recognize the severity of cataracts in both OS and OD
fundus images. We have summarized the confusion matrix for cataract
severity classification for OS and OD in the attached file. A highly
accurate cataract type inference model can produce vector results that
serve as an attention mechanism based on prior knowledge, enabling
targeted evaluation of the severity of different types of cataract fundus
images. Therefore, for a potential cataract fundus image, our model can
not only diagnose its type tendency but also provide a clear distinction
of its severity.

Discussion

We report a DCEN model can achieve robust performance in
cataract comprehensive evaluation from fundus images. The key
findings of our study are as follows. Firstly, we achieved both high-
precision cataract type classification and severity grading based on
fundus images. Since different types of cataracts have different
fundus manifestations, we use the results of type inference to
assist in the assessment of severity, which greatly improves the
accuracy of severity classification. And this severity grading is based
on strict nuclear hardness ratings and cortical area blur ratios.

Furthermore, based on the Grad-CAM technique, we summarized
the imaging features of three types of cataracts in the form of heat maps.
We verified these difficult-to-detect features through information
entropy statistics of the sample images. Although it has always been
known clinically that the blurring trends of different cataracts are
different, since these differences are too subtle on the fundus images,
there has not been any research pointing out these differences. Our
description and evaluation of blurred fundus images in cataracts offer
excellent medical imaging explanations for the clinical characteristics of
various types of cataracts.

Existing work on cataract grading based on fundus images uses
machine learning or deep learning methods to assess the overall
degree of blurring [35]. These works ignore the differences in the
characteristics of different types of cataracts, and the severity
standards are mostly based on the subjective judgment of
doctors, without providing clear indicators.

Our study found that feature fusion for type classification is an
effective method for cataract severity grading from fundus images,
which is expected to become a standard approach for cataract
assessment based on fundus images. This automatic cataract
classification model provides a feasible technical solution for
early detection of cataracts, which has the potential to provide
more convenient cataract assessment in areas with insufficient
medical resources in the face of a large population of cataracts.

Cataract patientsmay also suffer from other blinding eye diseases,
so ophthalmologists have to diagnose thembefore surgery. The cloudy
lens in cataract patients causes a hazy degeneration in the fundus
image, making it difficult to observe the patient’s retinal vessels.
Previous researchers have proposed different methods to enhance
fundus images of cataract patients [36–41]. However, these works did
not consider the fuzzy characteristics of different types and degrees of

cataracts. There have been no studies that have found differences in
blurry features of different types of cataracts on fundus images. Our
study also contributes to inspiring research on enhancing fundus
images in cataract patients by providing prior knowledge about the
haze features of different types of cataracts.

This analysis has limitations and there are opportunities for future
improvements. The three different types of cataracts used in this model
are unevenly distributed in quantity. Although the model ultimately
achieved high capabilities in assessing cataract status, richer data would
lead to even better results. The feature differences of patient age, sex, and
other factors may bias deep learning algorithms. Trapped by limited
data volume, no deeper exploration has been conducted on this issue.
Another limitation of our study is that all retinal fundus images were
obtained using the same instrument, so further research is needed to
investigate the differences in cataract characteristics under different
instruments. Moreover, the retinal fundus images may have artifacts,
and other lesions caused by eye diseases such as hemorrhage or drusen
may also affect the effectiveness of the model. Further validation of the
diagnostic ability of cataract types and severity using fundus images
requires the collection of richer fundus image data, as well as extensive
performance validation in multiple centers. We hope that further data
collection can address these limitations.

Conclusion

We demonstrate a DCENmethod for a cataract clinical assessment
model based on fundus images and deep learning algorithms, which can
simultaneously provide 97.62% accuracy of cataract type classification
and 97.03% accuracy of cataract severity classification. Our method has
exhibited promising results and has the potential to become a reliable
technical solution for artificial intelligence-based cataract screening or
preoperative evaluation in clinical applications.
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