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The main objective of this manuscript is to focus on the computational study of
the interplay of spin density wave (SDW) and superconductivity using a two-band
model for SrFe2−xNixAs2. We derived mathematical statements for the
superconducting critical temperature, SDW critical temperature,
superconductivity order parameter, and the SDW order parameter using the
Hamiltonian model and Green’s function formalism for the SrFe2−xNixAs2
superconductor. A mathematical expression for the dependence of transition
temperatures on the SDW order parameter was obtained for SrFe2−xNixAs2. Using
these mathematical statements, transition temperatures versus the SDW order
parameter phase diagrams were plotted to show the dependence of the SDW
order parameter on transition temperatures. By merging these diagrams, we have
depicted the intriguing possibility of the interplay of superconductivity and
magnetism for the SrFe2−xNixAs2 superconductor. Phase diagrams of
temperature versus superconducting order parameters and the SDW order
parameter were also plotted to show the dependence of order parameters on
temperature for the SrFe2−xNixAs2 superconductor.
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1 Introduction

Superconductivity was observed for the first time by a Dutch physicist Heike Kamerlingh
Onnes. He found in 1911 that the electrical resistivity of Hg abruptly dropped to zero [1].
After 20 years of his discovery, in 1933, W. Meissner and his student R. Ochsenfeld found
that the magnetic field is repelled by superconducting materials, called the Meissner effect
[2]. This effect suggests a fundamental property of the superconducting state called perfect
diamagnetism. In 1957, L. N. Cooper, J. Bardeen, and J. R. Schrieffer, the three American
physicists, developed a quantum theory, called BCS theory, to elucidate the behaviour of
superconducting materials at the microscopic level [3]. This theory claims that the formation
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of quasiparticles termed Cooper pairs by the electrons in a material
leads to superconductivity [4]. Cooper pairs are bosons and can
aggregate in the same low-energy fundamental state (ground state
energy), which is the superconducting state. It bases on a critical
assumption that there is an attractive force between electrons.
Electrons are fermions and are subject to the Pauli exclusion
principle [5].

In the development of condensed matter physics, the discovery
of high-transition temperature Tc superconductors marks a turning
point. In 1979, the discovery of superconductivity in the heavy-
fermion compound, CeCu2Si2 [6], came as a surprise because
magnetic spin–spin interactions bind the superconducting charge
carriers in pair and is highly unlikely by BCS theory [7]. The heavy-
fermion system is the first class of unconventional superconductors.
K. A. Muller and J. G. Bednorz discovered cuprates, the second class
of high-temperature superconductors, in La2−xBaxCuO4 with Tc =
35K [8]. Iron-based superconductors (FebSc), with Tc = 26K in
LaOFeAs, are the other family of high-temperature materials. They
were identified by Hosono et al., in 2008 [9].

FebScs have various distinct systems that significantly enlarge the
class of unconventional superconducting materials. Numerous FebSc
systems with various compositions and crystal structure classes are
found still now. Different systems are distinguished for convenience
by the stoichiometric proportions of the chemical components of their
parent molecules [10, 11]. The most common FebSc systems that use
this nomenclature are 245, 1144, 42622, 12442, 1111, 111, 11, and 122
(for example, Rb2Fe4Se5, CsEuFe4As4, Sr4V2O6Fe2As2, RbCa2Fe4As4F2,
SmO1−xFxFeAs, NaFeAs, Fe1+yTe1−xSex, and SrFe2−xNixAs2) [12–16].
In the 245 FebSc system, Rb2Fe4Se5, there is a unique phase separation
phenomenon, unlike most other FebSc systems, and each phase
separation has arrived from the competition between magnetic and
superconducting ordering in the material [17, 18]. Despite having
various structural variations, all FebSc systems have one thing in
common: iron-based square-planar sheets [19]. FebSc systems
contain iron-based layers, which are essential for their
superconductivity, similar to copper oxide-based superconductors,
in which oxygen—together with copper—creates the
superconductivity layer [20].

According to theories, the parent materials of FebSc are semi-
metallic, and the density of state close to Fermi’s surface is primarily
supplied by the iron 3d electrons (orbitals) and all five of the 3d
orbitals cross Fermi’s surface [21]. Just from the most experimental
results and the band structure calculations, the results reveal three
iron 3d orbitals (dxy, dyz, and dxz) provide the primary contribution
to the density of states near the Fermi level and they ruffle weakly in
the z direction [22]. Two electron pockets are situated at the margin
of the Brillouin zone (BZ) point, and two hole pockets are
distributed evenly throughout the resultant Fermi surface. The
weights of the three orbitals, (dx2−y2 , dyz, and dxy), are almost
equal when doping is near optimum [23]. The two-orbital model
and this idea of density of state will be used in this article’s
computations.

Within the two-orbital model, the electron Fermi pocket is close
to the (π, 0) point and is made up of the orbital dyz, whereas the hole
Fermi pocket around the (0, 0) point is made up of a combination of
dxz and dyz orbitals. The inter-band spin fluctuation resulting from
this nesting is actually the particle hole scattering that occurs
between the dxz and dyz orbitals since the component of the hole

Fermi pocket coupled by the nesting wave vector (π, 0) is primarily
of the dxz orbital characteristic [24]. The amount of doping affects
how the electrical band structure is shaped. In electron-doped
materials, such as 122 Fe-based superconductor compounds, the
Fermi surface has many quasi 2D warped cylinders centred Γ point
around (k = 0, 0) and M (k = π, π), as well as a potential quasi 3D
pocket close to kz = π. For electron-doped 122 systems such as
SrFe2−xNixAs2, the electron Fermi pocket expands as the doping level
rises, while the hole Fermi pocket contracts until at the strongly
doped level, where the hole Fermi pocket eventually disappears. The
opposite is true for hole-doped systems [20].

The spin density wave (SDW) state, first proposed by
Overhauser in 1962, is where the electronic spin density forms a
static wave and makes it a type of anti-ferromagnetic state [25]. It
happens in anisotropic low-dimensional compounds at low
temperatures. The spin and SDW are coupled. It describes the
spin density periodic modulation specified by the Fermi wave
number [26]. There is no net magnetization over the entire
volume with the density varying perpendicularly as a function of
position. When delocalized or itinerant electrons, rather than
localized electrons, are responsible for the spatial spin density
modulation and the SDW transition takes place. Its origin can be
electron–hole pairing or finite wave vector singularities of the
magnetic susceptibility [27]. It is Fermi surface nesting that is
responsible for SDW stabilization. Nesting of the Fermi surface
and SDW are observed in SrFe2As2 [28]. Although the SDW
transition leads to the establishment of AFM order, which causes
the moment of the iron atoms to become still along the longer axis in
the orthorhombic phase, and the orthorhombic deformation of the
crystal lattice transforms the structure of the crystal from the
tetragonal to the orthorhombic phase [29].

The FeAs tetrahedral layers are present in the parent compounds
of the 122 iron pnictide superconductors, which also show structural
transitions from tetragonal to orthorhombic and from paramagnetic
(PM) to anti-ferromagnetic (AFM) structures [30]. It has been
demonstrated that the AFM orthorhombic phase is the parent
phase of the pnictide superconductor that produces the SDW
state, which can be suppressed to produce superconductivity by
applying pressure or through chemical doping. It has been
demonstrated that the parent pnictide compound structural and
magnetic phase transitions are crucial in causing superconductivity
[31]. The structural and magnetic transitions in our compound
SrFe2−xNixAs2 occur simultaneously at TS = TN ≈ 205K [25, 32, 33].
The transition can be tracked to the concentration x = 0.15, where TS

(TN) ≈ 40K [34], but TS (TN) disappears for x > 0.15 or it is not
observed in x = 0.16, which leads to maximum Tc [35]. In the
concentration range 0.10 ≤ x ≤ 0.22, superconductivity is observed
for SrFe2−xNixAs2. As the doping level [x in SrFe2−xNixAs2] increases,
the hole Fermi pocket continuously shrinks, whereas the electron
pocket becomes larger, and the hole pocket finally vanishes in the
heavily doped region, where superconductivity also disappears.
Magnetic transition is strongly coupled with the structural
distortion. Superconductivity has been demonstrated that the
result from the suppression of the AFM state of SrFe2As2 by
nickel substitution. The suppression of the long-range magnetic
ordering and the sudden appearance of the Sc state at the same time
are correlated, which suggests that the spin fluctuation of the Fe
moments is crucial in creating the superconductive state [36]. The
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closeness of structural and magnetic transitions suggests that spin
and lattice coupling has occurred. Lower symmetry enables the spins
to organise and, therefore, reduce magnetic frustrations, which is
assumed to be the source of the crystal deformation [37].

FebSc are so interesting because they show the coexistence of
superconductivity and magnetism. Therefore, they show a lot of
promise for applications. They are desirable for electrical power
stations and magnetic applications (Maglev trains) because they
have a substantially larger critical magnetic field than cuprates or
heavy fermions and high isotropic critical currents. Superconductivity
shows potential to have a significant impact on our community and
the realisation of a world with minimal carbon emissions [38]. In this
article, the researchers study the coexistence of superconductivity and
SDW in a two-band model for the iron-based superconductor
SrFe2−xNixAs2 by using Green’s function formalism.

Based on the concepts of electronic structure, this article is
investigated theoretically on the coexistence of superconductivity
and SDW in nickel substitution of the strontium–iron–arsenide
(SrFe2−xNixAs2) superconductor in a two-band model. By
considering a two-band model of Hamiltonian and using the
double-time temperature-dependent Green’s function formalism
methodology, researchers tried to discover the mathematical
statements for the critical temperatures (Tc and TM) and order
parameters (ΔSc and M).

2 Mathematical formulation of the
problem

We explore a two-band model that encapsulates the
fundamental physics of the multi-band unconventional
superconducting state and SDW order and has a self-consistent
solution in order to investigate the coexistence of superconductivity
and SDW. The mean-field model Hamiltonian for the interplay of
SDW and superconductivity in our compound in a two-band model
(dyz, say s and dxz, say d) can be expressed as [39–41]

Ĥ � ∑
k,σ

εs k( )ŝ†k,σ ŝk,σ +∑
k,σ

εs k( )d̂†

k,σ d̂k,σ − Δs
Sc ∑

k

ŝ†k↑ ŝ
†
−k↓ + ŝ−k↓ŝk↑( )

−Δd
Sc ∑

k

d̂
†

k↑d̂
†

−k↓ + d̂−k↓d̂k↑( ) − Δsd
Sc ∑

k

ŝ†k↑ŝ
†
−k↓ + d̂−k↓d̂k↑( )

−Δsd
Sc ∑

k

d̂
†

k↑d̂
†

−k↓ + ŝ−k↓ ŝk↑( )
−M∑

k

ŝ†
k+p( )↑, d̂k↑ + d̂

†

k+p( )↑, ŝk↑( ), (1)

where the first term indicates the energy of conduction electrons
in the s-band. The second term indicates the energy of conduction
electrons in the d-band. The third and fourth terms are the energies
involving superconductivity due to the intra-band interactions at the
s- and d-bands, respectively. The fifth and sixth terms are the
energies involving superconductivity due to the inter-band
interaction between bands s and d. The last term is the mean-
field Hamiltonian which describes the magnetic interactions. εs(k)
and εd(k) are energies of an electron measured with respect to the
Fermi energy in s and d bands, respectively. ŝ†k↑(ŝ†−k↓) are the
creation (annihilation) operators in the s-intra-band interaction
having the wave number k (−k) and spin ↑ (↓), respectively.

d̂
†

k↑(d̂
†

−k↓)are the creation (annihilation) operators in the d-intra-

band interaction having the wave number k (−k) and spin ↑ (↓),
respectively. ŝ†(k+p)↑(d̂

†

(k+p)↑) are the operators which create fermions
with momentum (k + p) in the s(d) band interaction, respectively.

Δs
Sc is the superconducting order parameter (mean field) due to

the intra-band interactions within the s band and is given by

Δs
Sc � ∑

k

Us ≪ ŝ†k↑, ŝ
†
−k↓ ≫( , (2)

where Us is the intra-band interaction potential in the s-band.
Δd
Sc is the superconducting order parameter (mean-field) due to

the intra-band interactions within the d-band and is given by

Δd
Sc � ∑

k

Ud ≪ d̂
†

k↑, d̂
†

−k↓ ≫( , (3)

where Ud is the intra-band interaction potential in the d-band.
Δsd
Sc is the superconducting order parameter (mean-field) due to

inter-band interactions between the s- band and d-bands, which is
given by

Δsd
Sc � ∑

k

Usd

2
≪ ŝ†k↑, ŝ

†
−k↓ ≫ + ≪ d̂

†

k↑, d̂
†

−k↓ ≫( )( , (4)

where Usd is the inter-band interaction potential between the two
bands.

The double-time temperature-dependent Green’s function is
used to find the equation of motion. This formalism is defined as

Rr t − t′( ) � ≪ D̂ t( ), Ê t′( )≫ � −iθ t − t′( )〈 D̂ t( ), Ê t′( )[ ]〉. (5)

Rr (t − t′) is boson operators’ retarded response function. 〈 . . . 〉
and ≪. . .≫ denote the thermodynamic average and abbreviated
notation for the Green’s function in the system, respectively. D̂(t)
and Ê(t′) are the Heisenberg notations of the field operators. They
are expressed in terms of particle creation and annihilation
operators or the quantized field function product. θ(t − t′)
represents the Heaviside step function and defined as θ(t − t′) =
1 if t > t′ and 0 if t < t′. D̂(t) can be written as D̂(t) � eiĤtD(o)e−iĤt.
[D̂(t), Ê(t′)] is the commutator or anti-commutator. This is
described as [D̂(t), Ê(t′)] � D̂(t)Ê(t′) − ςÊ(t′)D̂(t), where ς = 1
for bosons and ς = −1 for fermions. To obtain the equations of
motion, we differentiate Eq. 5 with time (t) as

d
dtRr(t − t′) � − d

dt (iθ(t − t′)〈[D̂(t), Ê(t′)]〉)
d
dtRr(t − t′) � −i ddt θ(t − t′)〈[D̂(t), Ê(t′)]〉 − iθ(t − t′)
d
dt 〈[D̂(t), Ê(t′)]〉, and this is simplified to

i _Rr t − t′( ) � d

dt
θ t − t′( )〈 D̂ t( ), Ê t′( )[ ]〉

+ θ t − t′( ) d
dt

〈 D̂ t( ), Ê t′( )[ ]〉. (6)

The Dirac’s delta function δ(t − t′) is related to the Heaviside step
function as

θ t − t′( ) � ∫t

−∞
δ t − t′( ). (7)

This implies the following:

d

dt
θ t − t′( ) � δ t − t′( ). (8)

Now let us introduce the Heisenberg equations of motion as
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d

dt
D̂ t( ) � D̂ t( ), Ĥ[ ]. (9)

Substituting Eq. 8 and Eq. 9 into Eq. 6, we have the following:

i _Rr t − t′( ) � δ t − t′( )〈 D̂ t( ), Ê t′( )[ ]〉 + ≪ D̂ t( ), Ĥ[ ], Ê t′( )≫ .

(10)
Let Rr(ω) be the Fourier transform of Rr (t − t′), which will be
given by

Rr t − t′( ) � ∫∞

−∞
Rr ω( )e−iω t−t′( )dω. (11)

The inverse Fourier transform is

Rr ω( ) � 1
2π

∫∞

−∞
Rr t − t′( )e−iω t−t′( )d t − t′( ). (12)

The first-order derivative of Eq. 11 with time will be

i _Rr t − t′( ) � −iω∫∞

−∞
Rr ω( )e−iω t−t′( )dω. (13)

The Dirac delta function will be defined as

δ t − t′( ) � 1
2π

∫∞

−∞
e−iω t−t′( )dω. (14)

Substituting Eqs 13, 14 into Eq. 10, we have

ωRr ω( ) � 〈 D̂ t( ), Ê t′( )[ ]〉 + ≪ D̂ t( ), Ĥ[ ], Ê t′( )≫ . (15)
Last but not the least, the formalism for the double-time
temperature-dependent Green’s function is

ω≪ D̂ t( ), Ê t′( )≫ � 〈 D̂ t( ), Ê t′( )[ ]〉 + ≪ D̂ t( ), Ĥ[ ], Ê t′( )≫ .

(16)
Here, ≪ D̂(t), Ê(t′)≫ denotes the Fourier transform of Green’s
function involving the operators D̂(t) and Ê(t′). We will apply the
anti-commutation relation [ŝ†kσ , ŝ†kσ′] � [ŝkσ , ŝkσ′] � 0 and
[ŝ†kσ , ŝkσ′] � δkk′δσσ′ to solve the equation of motion, where δkk′ �
1, if k � k′
0, otherwise

{ and δσσ′ � 1, σ � σ′
0, otherwise

{
For simplification, Eq. 1 can be written as

Ĥ � Ĥs + Ĥd + Ĥsd + ĤM, (17)
where

Ĥs � ∑
k,σ

εs k( )ŝ†k,σ ŝk,σ − Δs
Sc ∑

k

ŝ†k↑ŝ
†
−k↓ + ŝ−k↓ŝk↑( ).

This is s intra-band interaction’s mean-field Hamiltonian.

Ĥd � ∑
k,σ

εs k( )d̂†

k,σ d̂k,σ − Δd
Sc ∑

k

d̂
†

k↑d̂
†

−k↓ + d̂−k↓d̂k↑( ).
This is d intra-band interaction’s mean-field Hamiltonian.

Ĥsd � −Δsd
Sc ∑

k

ŝ†k↑ŝ
†
−k↓ + d̂−k↓d̂k↑( ) − Δsd

Sc ∑
k

d̂
†

k↑d̂
†

−k↓ + ŝ−k↓ŝk↑( ).
This is the mean-field Hamiltonian in the inter-band interaction

ĤM � −M∑
k

ŝ†
k+p( )↑, d̂k↑ + d̂

†

k+p( )↑, ŝk↑( ).

This is the mean-field Hamiltonian due to the magnetic interaction
of conduction electrons.

2.1 Superconducting order parameters in
the pure superconducting region

2.1.1 Δs
Sc due to intra-band interactions within the

s-band
To describe the superconducting order parameter due to the

intra-band interaction within the s-band in the pure
superconducting region, one can use the equation of motion for
the correlation ≪ ŝ†k↑, ŝ

†
−k↓ ≫ , and the following equation can be

written:

ω≪ ŝ†k↑, ŝ
†
−k↓ ≫ � 〈 ŝ†k↑, ŝ

†
−k↓[ 〉] + ≪ ŝ†k↑, Ĥ], ŝ†−k↓ ≫ , (18)

ω≪ ŝ†k↑, ŝ
†
−k↓ ≫ � 0 + ≪ ŝ†k↑, Ĥs + Ĥd + Ĥsd + ĤM[ ], ŝ†−k↓ ≫ . (19)

The commutation relations in Eq. 19 can be solved as follows:[ŝ†k↑,Ĥs]�
[ŝ†k↑,∑k,σεs(k) ŝ†k,σ ŝk,σ−Δs

Sc∑k(ŝ†k↑ŝ†−k↓ +ŝ−k↓ŝk↑)] [ŝ†k↑,Ĥs]�∑k,σεs(k)
[ŝ†k↑,ŝ†k,σ ŝk,σ]−Δs

Sc∑k([ŝ†k↑,ŝ†k↑ŝ†−k↓]+[ŝ†k↑,ŝ−k↓ ŝk↑])[ŝ†k↑,Ĥs]�∑k,σεs(k)
([ŝ†k↑,ŝ†k,σ] ŝk,σ− ŝ†k,σ[ŝ†k↑,ŝk,σ])−Δs

Sc∑k([ŝ†k↑, ŝ†k↑]ŝ†−k↓− ŝ†k↑[ŝ†k↑,ŝ†−k↓]+
[ŝ†k↑,ŝ−k↓] ŝk↑− ŝ−k↓[ŝ†k↑,ŝk↑]

ŝ†k↑, Ĥs[ ] � −εs k( )ŝ†k↑ + Δs
Scŝ−k↓. (20)

[ŝ†k↑, Ĥd] � [ŝ†k↑,∑k,σεs(k)d̂
†

k,σ d̂k, σ − Δd
Sc∑k(d̂

†

k↑d̂
†

−k↓ + d̂−k↓d̂k↑][ŝ†k↑,
Ĥd] � ∑k,σεs(k)([ŝ†k↑, d̂

†

k,σ d̂k,σ]) − Δd
Sc∑k([ŝ†k↑, d̂

†

k↑d̂
†

−k↓] + [ŝ†k↑, d̂−k↓
d̂k↑])[ŝ†k↑, Ĥd] � ∑k,σεs(k)([ŝ†k↑, d̂

†

k,σ]d̂k,σ − d̂
†

k,σ[ŝ†k↑, d̂k,σ]) − Δd
Sc∑k

([ŝ†k↑, d̂
†

k↑]d̂
†

−k↓ − d̂
†

k↑ [ŝ†k↑, d̂
†

−k↓] + [ŝ†k↑, d̂−k↓]d̂k↑ − d̂−k↓[ŝ†k↑ , d̂k↑])
ŝ†k↑, Ĥd[ ] � 0. (21)

[ŝ†k↑, Ĥsd] � [ŝ†k↑,−Δsd
Sc∑k(ŝ†k↑ŝ†−k↓ + d̂−k↓ d̂k↑) − Δsd

Sc∑k(d̂
†

k↑d̂
†

−k↓ +
ŝ−k↓ŝk↑)][ŝ†k↑, Ĥsd] � −Δsd

Sc ∑k([ŝ†k↑, d̂
†

k↑d̂
†

−k↓] + [ŝ†k↑, d̂−k↓d̂k↑]) − Δsd
Sc∑k([ŝ†k↑, d̂

†

k↑d̂
†

−k↓] + [ŝ†k↑, ŝ−k↓ ŝk↑])[ŝ†k↑, Ĥsd] � −Δsd
Sc∑k([ŝ†k↑, d̂

†

k↑]
d̂
†

−k↓ − d̂
†

k↑[ŝ†k↑, d̂
†

−k↓] + [ŝ†k↑, d̂−k↓]d̂k↑ − d̂−k↓ [ŝ†k↑, d̂k↑]) − Δsd
Sc∑k

([ŝ†k↑, d̂
†

k↑]d̂
†

−k↓ − d̂
†

k↑[ŝ†k↑, d̂
†

−k↓])+ [ŝ†k↑, d̂−k↓]d̂k↑ − d̂−k↓[ŝ†k↑, d̂k↑])
ŝ†k↑, Ĥsd[ ] � Δsd

Sc ŝ−k↓. (22)

[ŝ†k↑, ĤM] � [ŝ†k↑,−M∑k(ŝ†(k+p)↑d̂k↑+ d̂
†

(k+p)↑ŝk↑][ŝ†k↑, ĤM] � M∑k

([ŝ†k↑, ŝ†(k+p)↑d̂k↑] + [ŝ†k↑, d̂
†

(k+p)↑ŝk↑])[ŝ†k↑, ĤM] � M∑k([ŝ†k↑, ŝ†(k+p)↑]
d̂k↑ − ŝ†(k+p)↑ [ŝ†k↑, d̂k↑] + [ŝ†k↑, d̂

†

(k+p)↑]ŝk↑ − d̂
†

(k+p)↑[ŝ†k↑, ŝk↑])

ŝ†k↑, ĤM[ ] � Md̂
†

k+p( )↑. (23)

Ignoring Eq. 23 and inserting Eq. 20 to Eq. 22 into Eq. 19, we get

ω≪ ŝ†k↑, ŝ
†
−k↓ ≫ � ≪ − εs k( )ŝ†k↑ + Δs

Scŝ−k↓ + Δsd
Sc ŝ−k↓, ŝ

†
−k↓ ≫ , (24)

ω≪ ŝ†k↑, ŝ
†
−k↓ ≫ � −εs k( )≪ ŝ†k↑, ŝ

†
−k↓ ≫ + Δs

Sc ≪ ŝ−k↓, ŝ
†
−k↓ ≫

+ Δsd
Sc ≪ ŝ−k↓, ŝ

†
−k↓ ≫ , (25)

ω + εs k( )( )≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc + Δsd
Sc( )≪ ŝ−k↓, ŝ

†
−k↓ ≫ , (26)
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≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc + Δsd
Sc

ω + εs k( )≪ ŝ−k↓, ŝ
†
−k↓ ≫ . (27)

The equation of motion for the homologous ≪ ŝ−k↓, ŝ†−k↓ ≫ in Eq. 27
is described as

ω≪ ŝ−k↓, ŝ
†
−k↓ ≫� 〈 ŝ−k↓, ŝ

†
−k↓[ 〉] + ≪ ŝ−k↓, Ĥ[ ], ŝ†−k↓ ≫ , (28)

ω≪ ŝ−k↓, ŝ
†
−k↓ ≫� 1 + ≪ ŝ−k↓, Ĥs + Ĥd + Ĥsd[ ], ŝ†−k↓ ≫ . (29)

Evaluating the commutation relations in Eq. 29 which
yields,[ŝ−k↓, Ĥs] � [ŝ−k↓,∑k,σεs(k)ŝk, σ†ŝk,σ − Δs

Sc∑k(ŝ†k↑ŝ†−k↓ + ŝ−k↓
ŝk↑)][ŝ−k↓, Ĥs] � ∑k,σεs (k)[ŝ−k↓, ŝ†k,σ ŝk,σ] − Δs

Sc∑k([ŝ−k↓, ŝ†k↑ŝ−k↓ †] +
[ŝ−k↓, ŝ−k↓ŝk↑])[ŝ−k↓, Ĥs] � ∑k,σεs(k)([ŝ−k↓, ŝ†k,σ]ŝk,σ − ŝ†k,σ[ŝ−k↓, ŝk,
σ])− Δs

Sc∑k([ŝ−k↓, ŝ†k↑]ŝ†−k↓− ŝ†k↑[ŝ−k↓, ŝ†−k↓]+[ŝ−k↓, ŝ−k↓]ŝk↑− ŝ−k↓ [ŝ
− k↓, ŝk↑])

ŝ−k↓, Ĥs[ ] � εs k( )ŝ−k↓ + Δs
Scŝ

†
k↑. (30)

[ŝ−k↓, Ĥd] � [ŝ−k↓,∑k,σεs(k)d̂
†

k,σ d̂k, σ − Δd
Sc∑k(d̂

†

k↑d̂
†

−k↓ + d̂−k↓d̂k↑]
[ŝ−k↓, , Ĥd] � ∑k,σεs(k)([ŝ−k↓, d̂

†

k,σ d̂k,σ]) − Δd
Sc∑k([ŝ−k↓, d̂

†

k↑d̂
†

−k↓] +
[ŝ−k↓, d̂−k↓d̂k↑]) [ŝ−k↓, Ĥd] � ∑k,σεs(k)([ŝ−k↓, d̂

†

k,σ]d̂k,σ − d̂
†

k,σ[ŝ−k↓,
d̂k,σ]) − Δd

Sc ∑k([ŝ−k↓, d̂
†

k↑] d̂
†

−k↓ − d̂
†

k↑[ŝ−k↓, d̂
†

−k↓] + [ŝ−k↓, d̂−k↓]d̂k↑−
d̂−k↓[ŝ−k↓, d̂k↑])

ŝ−k↓, Ĥd[ ] � 0. (31)

[ŝ−k↓, Ĥsd] � [ŝ−k↓,−Δsd
Sc∑k(ŝ†k↑ ŝ†−k↓ +d̂−k↓d̂k↑) − Δsd

Sc∑k(d̂
†

k↑d̂
†

−k↓ +
ŝ−k↓ŝk↑)] [ŝ−k↓, Ĥsd] � −Δsd

Sc∑k([ŝ−k↓, d̂
†

k↑d̂
†

−k↓] + [ŝ−k↓, d̂−k↓d̂k↑]) −
Δsd
Sc∑k([ŝ−k↓, d̂

†

k↑d̂
†

−k↓] + [ŝ−k↓, ŝ−k↓ŝk↑)][ŝ−k↓, Ĥsd] � −Δsd
Sc∑k([ŝ−k↓,

d̂
†

k↑]d̂
†

−k↓ − d̂
†

k↑[ŝ−k↓, d̂
†

−k↓] + [ŝ−k↓, d̂−k↓]d̂k↑ − d̂−k↓[ŝ−k↓, d̂k↑]) − Δsd
Sc∑k([ŝ−k↓, d̂

†

k↑]d̂
†

−k↓ − d̂
†

k↑[ŝ−k↓, d̂
†

−k↓]) + [ŝ−k↓, d̂−k↓]d̂k↑ − d̂−k↓[ŝ−k↓,
d̂k↑])

ŝ−k↓, Ĥsd[ ] � Δsd
Sc ŝ

†
k↑. (32)

Inserting Eq. 30 to Eq. 32 in Eq. 29, we get

ω≪ ŝ−k↓, ŝ
†
−k↓ ≫ � 1 + ≪ εs k( )ŝ−k↓ + Δs

Scŝ
†
k↑ + Δsd

Sc ŝ
†
k↑, ŝ

†
−k↓ ≫ , (33)

ω≪ ŝ−k↓, ŝ
†
−k↓ ≫ � 1 + εs k( )≪ ŝ−k↓, ŝ

†
−k↓ ≫

+ Δs
Sc + Δsd

Sc( )≪ ŝ†k↑, ŝ
†
−k↓ ≫ , (34)

ω − εs k( )( )≪ ŝ−k↓, ŝ
†
−k↓ ≫ � 1 + Δs

Sc + Δsd
Sc( )≪ ŝ†k↑, ŝ

†
−k↓ ≫ , (35)

≪ ŝ−k↓, ŝ
†
−k↓ ≫ � 1

ω − εs k( ) +
Δs
Sc + Δsd

Sc

ω − εs k( )≪ ŝ†k↑, ŝ
†
−k↓ ≫ . (36)

Substituting Eq. 36 in Eq. 27, we get

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc + Δsd
Sc

ω + εs k( )( ) 1
ω − εs k( ) +

Δs
Sc + Δsd

Sc

ω − εs k( )≪ ŝ†k↑, ŝ
†
−k↓ ≫( ),

(37)
≪ ŝ†k↑, ŝ

†
−k↓ ≫ � Δs

Sc + Δsd
Sc

ω + εs k( )( ) ω − εs k( )( ) +
Δs
Sc + Δsd

Sc

ω + εs k( )( )
× Δs

Sc + Δsd
Sc

ω − εs k( )≪ ŝ†k↑, ŝ
†
−k↓ ≫( ), (38)

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc + Δsd
Sc

ω + εs k( )( ) ω − εs k( )( )

+ Δs
Sc + Δsd

Sc( )2
ω + εs k( )( ) ω − εs k( )( )≪ ŝ†k↑, ŝ

†
−k↓ ≫ , (39)

1 − Δs
Sc + Δsd

Sc( )2
ω + εs k( )( ) ω − εs k( )( )

⎛⎝ ⎞⎠≪ ŝ†k↑, ŝ
†
−k↓ ≫

� Δs
Sc + Δsd

Sc

ω + εs k( )( ) ω − εs k( )( ), (40)

ω + εs k( )( ) ω − εs k( )( ) − Δs
Sc + Δsd

Sc( )2
ω + εs k( )( ) ω − εs k( )( ) ≪ ŝ†k↑, ŝ

†
−k↓ ≫

� Δs
Sc + Δsd

Sc

ω + εs k( )( ) ω − εs k( )( ), (41)

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc + Δsd
Sc

ω + εs k( )( ) ω − εs k( )( ) − Δs
Sc + Δsd

Sc( )2. (42)

By ignoring Δsd
Sc , Eq. 42 reduces to the following.

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc

ω + εs k( )( ) ω − εs k( )( ) − Δs
Sc( )2. (43)

By decoupling Eq. 43 using the partial fraction decomposition
method, we have

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc

ω + εs k( )( ) ω − εs k( )( ) − Δs
Sc( )2, (44)

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc

ω2 − ε2s k( ) − Δs
Sc( )2. (45)

Using the expression ω→ iωn, where ωn is the Matsubara frequency
and written as

ωn � 2n + 1( )π
β

, (46)

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � − Δs

Sc

ω2
n − ε2s k( ) − Δs

Sc( )2, (47)

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc

ω2
n + ε2s k( ) + Δs

Sc( )2, (48)

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � Δs

Sc

2n+1( )π
β( )2

+ ε2s k( ) + Δs
Sc( )2, (49)

≪ ŝ†k↑, ŝ
†
−k↓ ≫ � β2Δs

Sc

2n + 1( )π( )2 + β2 ε2s k( ) + Δs
Sc( )2( ). (50)

Δs
Sc is written as

Δs
Sc �

Us

β
∑
k,n

≪ ŝ†k↑, ŝ
†
−k↓ ≫ . (51)

Substituting Eq. 50 in Eq. 51, we have

Δs
Sc � Us ∑

k,n

βΔs
Sc

2n + 1( )π( )2 + β2 ε2s k( ) + Δs
Sc( )2( ). (52)

Let ξ � β
������������
ε2s(k) + (Δs

Sc)2
√

and ∑∞
−∞

1
((2n+1)π)2+ξ2 �

tanh(ξ2)
2ξ , then Eq. 52

can be written as

Δs
Sc �

Us

2
∑
k,n

Δs
Sc2β

tanh ξ
2

ξ
. (53)
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Let us change summation into integration in the region −ZωF <
εs(k) < ZωF, and at the Fermi level, the density of state, Ns(o), is∑

k

≈ ∫ZωF

−ZωF

Ns o( )dεs k( ), (54)

Δs
Sc �

Us

2
∫ZωF

−ZωF

Ns o( )Δs
Sc2β

tanh ξ
2

ξ
dεs k( ), (55)

1
UsNs o( ) � ∫ZωF

0
2β

tanh ξ
2

ξ
dεs k( ). (56)

Let α = UsNs(o), which is called the superconducting coupling
constant in the s-band intra-band interaction.

1
α
� ∫ZωF

0

tanh β
2 ε2s k( ) + Δs

Sc( )( )12( )
ε2s k( ) + Δs

Sc( )( )12 dεs k( ). (57)

Case I: If T → 0, β → ∞ this implies
that tanh(β2(ε2s(k) + (Δs

Sc))
1
2) → 1

1
α
� ∫ZωF

0

1

ε2s k( ) + Δs
Sc( )( )12 dεs k( ). (58)

By applying the integral relation ∫ 1���
x+y2

√ dx � ln(x + �����
x+y2

√ ), Eq.
58 gives

1
α
� ln

ZωF

Δs
Sc

+ ZωF

Δs
Sc

( )2

+ 1( )1
2⎛⎝ ⎞⎠, (59)

1
α
≈ ln 2

ZωF

Δs
Sc

( ), (60)

Δs
Sc � 2ZωF exp −1

α
( ). (61)

From the concept of BCS theory, the superconducting order
parameterΔs

Sc at T = 0 for a given superconductor with critical
temperature Tc is written as 2Δs

Sc(o) � 3.53KBTc.

2Δs
Sc o( ) � 3.53KBTc � 4ZωF exp −1

α
( ), (62)

This gives

Tc � 1.14
ZωF

kB
exp − 1

UsNs o( )( ), (63)

where Us = 0.323meV, Ns(o) = 1.5 (meV)−1, kB = 0.086meV/K and
ZωF = 6meV [29]. Substituting these experimental values, we get
Tc = 10.09K that agrees with the experiment.

Case 2: If 0 < T < Tc, then Eq. 57 is simplified as follows:

1
α
� 2β∫ZωF

0
∑∞
−∞

1

2n + 1( )π( )2 + γ2
dεs k( ), (64)

1
α
� 2
β
∫ZωF

0
∑∞
−∞

1

ω2
n + ε2s k( ) + Δs

Sc( )2 dεs k( ). (65)

From the Laplacian transform with theMatsubara relation result, we
can write Eq. 65 as

1
α
� 2
β
∫ZωF

0
∑∞
−∞

1
ω2
n + ε2s k( ) dεs k( ) − Δs

Sc( )22
β
∫ZωF

0

× ∑∞
−∞

1
ω2
n + ε2s k( )dεs k( ), (66)

1
α
� 2β∫ZωF

0
∑∞
−∞

1

2n + 1( )2π2 + βεs k( )( )2 dεs k( )

− Δs
Sc( )22

β
∫ZωF

0
∑∞
−∞

1

2n + 1( )2 π

β
( )2 + ε2s k( )

dεs k( ), (67)

1
α
� ∫ZωF

0

tanh β
2εs k( )( )

ε2s k( ) dεs k( ) − 2 Δs
Sc( )22

β
∫ZωF

0

× ∑∞
0

1

2n + 1( )2 π
β( )2 + ε2s k( )

dεs k( ) . (68)

Applying the following equality ∑∞
0

1
(y2+ε2s (k))2 dεs

(k) � 2∑∞
0

1
y4(1+x2)2 dεs(k)where y2 � (2n + 1)2(πβ)2 and x2 � ε2s (k)

y2 .

1
α
� ∫ZωF

0

tanh β
2εs k( )( )

ε2s k( ) dεs k( ) − Δs
Sc( )24

β
∫ZωF

0
∑∞
0

1

y4 1 + x2( )2 dεs k( ).

(69)
From the above equality relations x � β εs(k)

2 and dx � β dεs(k)
2 .

1
α
� ∫βZωF

2

0

tanhx
x

dx − 4
β
∫∞

0
∑∞
0

Δs
Sc( )2

y3 1 + x2( )2 dx, (70)

� ln
βZωF

2
( )tanh βZωF

2
( ) − ∫βZωF

2

0

lnx

cosh2x
dx

− 4 Δs
Sc( )2

βy3
∑∞
0

∫∞

0

1

1 + x2( )2 dx, (71)

� ln
βZωF

2
( )tanh βZωF

2
( ) − ln

π

4γ
( )

− 4β2 Δs
Sc( )2

π3
∑∞
0

1

2n + 1( )3∫∞

0

1

1 + x2( )2 dx, (72)

� ln
βZωF

2
( )tanh βZωF

2
( ) − ln

π

4γ
( ) − 4β2 Δs

Sc( )2
π3

7
8
ξ 3( ) π

4
. (73)

For low temperature, tanh(βZωF

2 ) → 1 and γ denotes the Euler’s
constant, and its value is given by γ = 1.78. ∫∞

0
1

(1+x2)2 dx � π
4 and∑∞

0
1

(2n+1)p � (1 − 2−p)ξ(p); this means ξ(3) = 1.202. So, after some
steps, Eq. 73 can be written as

1
α
� ln 1.14

ZωF

kBTc
( ) − 1.052

Δs
Sc

πkBTc
( )2

. (74)

From Eq. 74, we have

1
α
� ln 1.14

ZωF

kBTc
( ), (75)

ln 1.14
ZωF

kBTc
( ) � ln 1.14

ZωF

kBTc
( ) − 1.052

Δs
Sc

πkBTc
( )2

, (76)

ln 1.14
ZωF

kBTc
( ) − ln 1.14

ZωF

kBT
( ) � −1.052 Δs

Sc

πkBTc
( )2

, (77)

ln
1.14 ZωF

kBTc

1.14 ZωF
kBT

(⎛⎝ ⎞⎠ � −1.052 Δs
Sc

πkBTc
( )2

, (78)

ln
T

Tc
( ) � −1.052 Δs

Sc

πkBTc
( )2

. (79)

Using logarithmic series
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ln(± k) � ± k − 1
2k

2 ± 1
3k

3 −/

ln 1 − 1 − T

Tc
( )( ) � − 1 − T

Tc
( ) − 1

2
1 − T

Tc
( )2(

−1
3

1 − T

Tc
( )3

−/ . (80)

Leaving the high-order terms, we get the following.

ln 1 − 1 − T

Tc
( )( ) ≈ − 1 − T

Tc
( ), (81)

− 1 − T

Tc
( ) � −1.052 Δs

Sc

πkBTc
( )2

, (82)

1.052
Δs
Sc

πkBTc
( ) � 1 − T

Tc
( )1

2

, (83)

Δs
Sc �

π

1.025
kBTc 1 − T

Tc
( )1

2

, (84)

Δs
Sc T( ) � 3.063kBTc 1 − T

Tc
( )1

2

. (85)

This equation tells us the superconducting order parameter Δs
Sc as a

function of temperature. As temperature increases, the order parameter
decrease and vanishes at Tc (10.09K). If T is zero, Δs

Sc � 2.658meV.

2.1.2 Δd
Sc due to intra-band interactions within the

d-band
Δd
Sc due to the intra-band interactions within the d band

provided by

Δd
Sc �

Us

β
∑
k,n

≪ d̂
†

k↑, d̂
†

−k↓ ≫ . (86)

By applying the same procedure as above, the superconducting
transition temperature Tc due to the intra-band interactions within
the d-band is written as

Tc � 1.14
ZωF

kB
exp − 1

UdNd o( )( ), (87)

where Ud = 0.267meV, Nd(o) = 1.80 (meV)−1, kB = 0.086meV/K and
ZωF= 6meV [29]. Substituting these experimental values in this equation,
we getTc = 9.92K that agrees with the experiment. The dependence of the
superconducting order parameter Δd

Sc on temperature due to the intra-
band interactions within the d-band is also given by

Δd
Sc T( ) � 3.063kBTc 1 − T

Tc
( )1

2

. (88)

Eq. 88 indicates the dependence of the superconducting order
parameter on temperature in the d-band intra-band interaction in
the pure superconducting region. The superconducting order
parameter decreases as the temperature increases. It vanishes at
Tc (9.92K). At T = 0, Δd

Sc � 2.163meV.

2.1.3 Δsd
Sc due to the inter-band interaction between

the s- and d-bands
The inter-band interaction between the s- and d-bands causes

the superconducting order parameter, which can be connected to
Green’s function as

Δsd
Sc �

Usd

2
∑
k

≪ ŝ†k↑, ŝ
†
−k↓ ≫ + ≪ d̂

†

k↑, d̂
†

−k↓ ≫( )( (89)

Applying the same procedure, the equation of motion for the
correlations ≪ (ŝ†k↑, ŝ†−k↓ ≫ and ≪ d̂

†

k↑, d̂
†

−k↓ ≫ to describe the
superconducting order parameter by using Green function
formalism similar to the previous procedures due to the inter-
band interaction is given by

≪ (ŝ†k↑, ŝ†−k↓ ≫ � Δs
Sc+Δsd

Sc

(ω+εs(k)−M)(ω−εs(k)+M)−(Δs
Sc+Δsd

Sc )2

and≪ (d̂†k↑, d̂
†

−k↓ ≫ � Δd
Sc+Δsd

Sc

(ω+εs(k)−M)(ω−εs(k)+M)−(Δd
Sc+Δsd

Sc )2
.

Ignoring the intra-band superconducting order parameter terms and
by decoupling these equations using the partial fraction decomposition
method, we will have ≪ (ŝ†k↑, ŝ†−k↓ ≫ � 1

2∑2
i�1

β2Δi(k)
((2n+1)π)2+β2(ε2s (k)+Δ2

i (k))
and≪ (d̂†k↑, d̂

†

−k↓ ≫ � 1
2∑2

i�1
β2Δi(k)

((2n+1)π)2+β2(ε2
d
(k)+Δ2

i (k))
whereΔi(k) � Δsd

Sc − 1(−1)iM,which is called the effective order
parameter. Substituting these equations into Eq. 89, we get

Δsd
Sc �

Usd

2
∑
k

1
2
∑2
i�1

β2Δi k( )
2n + 1( )π( )2 + β2 ε2s k( ) + Δ2

i k( )( )⎛⎝ ⎞⎠
+Usd

2
∑
k

1
2
∑2
i�1

β2Δi k( )
2n + 1( )π( )2 + β2 ε2d k( ) + Δ2

i k( )( )⎛⎝ ⎞⎠.

(90)

Let εs(k) = εd(k) in the inter-band interaction between the two
bands, and Eq. 90 becomes

Δsd
Sc �

Usd

2
∑
k

1
2
∑2
i�1,2

β2Δi k( )
2n + 1( )π( )2 + β2 ε2s k( ) + Δ2

i k( )( )⎛⎝ ⎞⎠. (91)

Let μ � β
������������
ε2s(k) + Δ2

i (k)
√

and ∑∞
−∞

1
((2n+1)π)2+μ2 �

tanh(μ2)
2μ , then Eq. 91

is written as

Δsd
Sc �

Usd

4
∑

k,i�1,2
Δi k( )

tanh β
2

������������
ε2s k( ) + Δ2

i k( ))√
������������
ε2s k( ) + Δ2

i k( ))√ . (92)

Changing summation into integration in the region −ZF < εd(k) <
ZωF, at the Fermi level, the density of state in the inter-band
interaction is Nsd(o), that is, ∑k ≈ ∫ZωF

−ZωF
Nsd(o)dεs(k) The density

of state Nsd(o) is equal to
�����������
Ns(o)Nd(o)

√
, then Eq. 92 becomes

Δsd
Sc �

Usd

4
∫ZωF

−ZωF

Nsd o( )Δi k( )
tanh β

2

�����������
ε2s k( ) + Δ2

i k( )
√

�����������
ε2s k( ) + Δ2

i k( )
√ dεs k( ), (93)

2

Usd

��������
NsNd o( )√ � ∫ZωF

0

Δi k( )
Δsd
Sc

tanh β
2

�����������
ε2s k( ) + Δ2

i k( )
√

sqrtε2s k( ) + Δ2
i k( ) dεs k( ), (94)

2

Usd

��������
NsNd o( )√ � ∫ZωF

0

Δsd
Sc −M

Δsd
Sc

( ) tanh
β

2

����������������
ε2s k( ) + Δsd

Sc −M( )2√
����������������
ε2s k( ) + Δsd

Sc −M( )2√ dεs k( )

+∫ZωF

0

Δsd
Sc −M

Δsd
Sc

( ) tanh
β

2

����������������
ε2s k( ) + Δsd

Sc −M( )2√
����������������
ε2s k( ) + Δsd

Sc −M( )2√ dεs k( ).

(95)

After a couple of steps, the superconducting transition
temperature Tc is given by
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Tc � 1.14
ZωF

kB
exp − 1

Usd

��������
NsNd o( )√ − M

4KBTc
ln

ZωF +M

ZωF −M
( )( ),

(96)
where Usd = 0.297meV, Nd(o) = 1.80 (meV)−1, Ns(o) = 1.5 (meV)−1,
kB = 0.086meV/K, and ZωF = 6meV [29]. Eq. 96 clearly shows that
the superconducting transition temperature depends on the SDW
order parameter.

In the pure diamagnetism region M = 0, and Eq. 91
becomesTc � 1.14 ZωF

kB
exp (− 1

Usd

������
NsNd(o)

√ ) with Tc = 10.20K,
which agrees with the experiment.For perfect diamagnetism, M =
0, and after some steps, the superconducting order parameter will be

Δsd
Sc T( ) � 3.063kBTc 1 − T

Tc
( )1

2

. (97)

This equation shows that the dependence of the superconducting order
parameter on the temperature in the inter-band interactions between
the s- and d-bands. The superconducting order parameter suppresses as
the temperature increases. It vanishes at the superconducting transition
temperature (Tc = 10.20K). If T � 0, Δsd

Sc(0) � 2.687meV.

2.2 SDW order parameter (M)

Using the double-time temperature-dependent Green’s function
to the equation of motion for the correlation ≪ ŝ−(k+p)↑, d̂

†

−k↓ ≫ , we
will find the magnetic order parameter. To solve this problem, we
start from the equation of motion for the correlation
≪ ŝ†(k+p)↑, d̂

†

−k↓ ≫ , and from double-time temperature-dependent
Green’s function, it can be described as

ω≪ ŝ†
k+p( )↑, d̂

†

−k↓ ≫� 〈 ŝ†
k+p( )↑, d̂

†

−k↓[ ]〉 + ≪ ŝ†
k+p( )↑, Ĥ[ ], d̂†

−k↓ ≫ ,

(98)
ω≪ ŝ†

k+p( )↑, d̂
†

−k↓ ≫� 〈 ŝ†
k+p( )↑, d̂

†

−k↓[ ]〉
+ ≪ ŝ†

k+p( )↑, Ĥs + Ĥd + Ĥsd + ĤM[ ], d̂†

−k↓ ≫ .

(99)

The commutation relations in Eq. 99 can be solved as follows:

ŝ†
k+p( )↑, Ĥs[ ] � −εs k + p( )ŝ† k+p( )↑ + Δs

Scŝ− k+p( )↓, (100)

ŝ†
k+p( )↑, Ĥd[ ] � 0, (101)

ŝ†
k+p( )↑, Ĥsd[ ] � Δsd

Sc ŝ− k+p( )↓, (102)

ŝ†
k+p( )↑, ĤM[ ] � Mŝ†

k+p( )↑. (103)

Substituting Eq. 100 to Eq. 103 in Eq. 99, it gives

ω≪ ŝ†
k+p( )↑, d̂

†

−k↓ ≫� Δs
Sc + Δsd

Sc

ω + ϵs k + p( ) −M
≪ ŝ− k+p( )↓, d̂

†

−k↓ ≫ . (104)

Now, let us find the equation of motion for the correlation
≪ ŝ−(k+p)↓, d̂

†

−k↓ ≫ in Eq. 104.

ω≪ ŝ− k+p( )↓, d̂
†

−k↓ ≫� 1 + ≪ ŝ− k+p( )↓, Ĥs + Ĥd + Ĥsd + ĤM[ ], d̂†

−k↓ ≫ .

(105)
Solving the commutation relations in Eq. 105, we get

ŝ− k+p( )↓, Ĥs[ ] � εs k + p( )ŝ− k+p( )↓ + Δs
Scŝ

†
k+p( )↑, (106)

ŝ− k+p( )↓, Ĥd[ ] � 0, (107)

ŝ− k+p( )↓, Ĥd[ ] � Δsd
Sc ŝ

†
k+p( )↑, (108)

ŝ− k+p( )↓, Ĥd[ ] � Mŝ− k+p( )↓. (109)

Substituting Eq. 106 to Eq. 109 in Eq. 105, we get

ω≪ ŝ− k+p( )↓, d̂
†

−k↓ ≫ � 1
ω − ε k + p( ) +M

+ Δs
Sc + Δsd

Sc

ω − ε k + p( ) +M
≪ ŝ†

k+p( )↑, d̂
†

−k↓ ≫ .

(110)
Substituting Eq. 110 into Eq. 104 and after somemathematics, we get

FIGURE 1
Superconducting order parameters vs. temperature for each interactions of the SrFe2−xNixAs2 superconductor (A) and SDW order parameter (M) vs.
temperature in the pure magnetic region of the SrFe2−xNixAs2 superconductor (B).
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≪ ŝ− k+p( )↓, d̂
†

−k↓ ≫ � −1
2 Δs

Sc +M( )
−ω2 + ϵ2s k + p( ) + Δs

Sc +M( )2
+

1
2 Δs

Sc −M( )
−ω2 + ϵ2s k + p( ) + Δs

Sc −M( )2, (111)

where Δj(k) � Δsd
Sc − 1(−1)jM, which is called the effective

magnetic order parameter. Using the expression ω → iωn and
applying the nesting condition, ϵ2s(k + p) � ϵ2s(k). Eq. 111 gives

≪ ŝ− k+p( )↓, d̂
†

−k↓ ≫ � 1
2

∑
j�1,2

−1( )jΔj k( )
ω2
n + ϵ2s k( ) + Δ2

j k( ). (112)

The magnetic order parameter is given by

M � U

β
∑
k

≪ ŝ− k+p( )↓, d̂
†

−k↓ ≫ . (113)

Substituting Eq. 112 into Eq. 113; transforming summation into
integration in the boundary −ZωF < εs(k) < ZωF and by
presenting the density of state (DOS) at the Fermi level is
N(o), that is, ∑k ≈ ∫ZωF

−ZωF
N(o)dεs(k), and after a couple of

steps, we get

2
UN o( ) �

−1( )jΔj

M
∫ZωF

0

tanh β
2

�����������
ε2s k( ) + Δ2

i k( )
√

�����������
ε2s k( ) + Δ2

i k( )
√ dεs k( ), (114)

2
UN o( ) �

− Δs
Sc +M( )
M

∫ZωF

0

tanh
β

2

����������������
ε2s k( ) + Δs

Sc +M( )2√
����������������
ε2s k( ) + Δs

Sc +M( )2√ dεs k( )

− Δs
Sc −M( )
M

∫ZωF

0

tanh
β

2

����������������
ε2s k( ) + Δs

Sc −M( )2√
����������������
ε2s k( ) + Δs

Sc −M( )2√ dεs k( ).

(115)
After some steps, we get

1
UN o( ) � ln 1.14

ZωF

kBTM
( ) − 1.052

M

πkBTM
( )2

+ βM

4
ln

ZωF +M

ZωF −M
( ).

(116)
For small values of M, we ignore the M2 term. Thus, Eq. 116

reduces to

TM � 1.14
ZωF

kB
exp − 1

UN o( ) +
βM

4
ln

ZωF +M

ZωF −M
( )( ), (117)

where UN(o) = 1.68 [29] and it is the SDW coupling parameter. Eq.
117 shows that the SDW order parameter increases as the SDW
transition temperature increases.

For the pure magnetic region Δs
Sc � 0 and Eq. 115 becomes

1
UN o( ) � −∫ZωF

0

tanh β
2

���������
ε2s k( ) +M2

√���������
ε2s k( ) +M2

√ dεs k( ). (118)

This is simplified to

− 1
UN o( ) � ln 1.14

ZωF

kBT
( ) − 1.052

M

πkBT
( )2

. (119)

For a little value of M, M2 → 0 and T → TM. Eq. 119 reduces

− 1
UN o( ) � ln 1.14

ZωF

kBTM
( ). (120)

This implies that

ln 1.14
ZωF

kBTM
( ) � ln 1.14

ZωF

kBT
( ) − 1.052

M

πkBTM
( )2

. (121)

Eq. 121 simplifies to

M � πkBTM

1.052
1 − T

TM
( )1

2

, (122)

M T( ) � 3.063kBTM 1 − T

TM
( )1

2

. (123)

Eq. 123 indicates that if temperature rises, the SDW order parameter
suppresses.

3 Results and discussion

In this part, we discussed how temperature (T) affects
superconducting order parameters (ΔSc) and the SDW order
parameter (M), and M affects on both the SDW transition
temperature (TM) and superconducting transition temperature
(Tc). We expand on the analysis. In a two-band model for
SrFe2−xNixAs2, we created the theoretical examination of the
coexistence of superconductivity and SDW. With the aid of a
two-band Hamiltonian model and the double-time temperature-
dependent Green’s function formal consideration, we were able to
derive the mathematical expressions for the superconducting
transition temperature (Tc), superconducting order parameters
for each intra- and inter-band interactions, SDW order
parameter (M), and SDW transition temperature (TM).

From Eqs 63, 87, 96, we obtain the superconducting
transition (critical) temperatures for each intra- and inter-
band interactions of SrFe2−xNixAs2. Using these (Tc) values
and Eqs 85, 88, 97, respectively, we plotted the phase diagram
of ΔSc versus T within each intra-band and inter-band
interactions, Figure 1A.

TABLE 1 Superconducting transition temperature Tc values and the superconducting order parameter at T = 0 in different interactions for our compound
SrFe2−xNixAs2. The mean value of Tc is nearly 10K.

Interaction Theoretical Tc value (K) ΔSc at T = 0 (meV)

Intra-band interactions within the s-band 10.09 2.658

Intra-band interactions within the d-band 9.92 2.613

Inter-band interaction between the s- and d-bands 10.20 2.687
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As illustrated in Figure 1A, the superconducting order
parameter decreases as the temperature increases. It vanishes as
the temperature is equal to the critical temperature. For the s intra-
band interaction, the maximum value of the superconducting order
parameter, (Δs

Sc) � 2.658 meV, occurs at T = 0, and it vanishes at the
superconducting transition temperature Tc = 10.09K. For the d
intra-band interaction, the maximum value of the
superconducting order parameter,Δd

Sc � 2.613 meV, occurs at T =
0, and Δd

Sc � 0 at the superconducting transition temperature Tc =
9.92K. Moreover, Δsd

Sc � 2.687meV at T = 0 and Δsd
Sc � 0 at the

superconducting transition temperature Tc = 10.20K for the
inter-band interaction. For each intra-band and inter-band
interactions of the SrFe2−xNixAs2 superconductor, the theoretical
values of superconducting transition temperatures agree with the

experimental value, which is around Tc = 10K, as discussed in
Table 1 [34].

Based on Eq. 123, we plotted the phase illustration for the
dependence of the magnetic order parameter (M) on temperature in
the pure magnetic region illustrated in Figure 1B. As illustrates from
this figure, magnetism decreases as the temperature enhances and
vanishes at the SDW transition temperature TM = 205K. The
maximum value of the SDW order parameter, M = 54meV,
occurs at T = 0. This finding is also in agreement with
experimental observations [34, 37].

Based on Eq. 96, we plotted the phase diagrams of Tc versus M.
As illustrated from Figure 2A, when the value of the SDW order
parameter enhances, the superconducting transition temperature is
suppressed for SrFe2−xNixAs2. From this figure, one can see the SDW

FIGURE 3
Superconducting critical temperature and magnetic transition temperature vs. the SDW order parameter for the SrFe2−xNixAs2 superconductor.

FIGURE 2
Superconducting transition temperature (TC) versus the SDWorder parameter(M) for the inter-band interaction of the SrFe2−xNixAs2 superconductor
(A) and SDW transition temperature (TM) versus SDW order parameter(M) of SrFe2−xNixAs2 (B).
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order parameter promotes the magnetic nature and suppresses
superconductivity in the system.

Using Eq. 117, we also plotted the phase plotting of the SDW
transition temperature (TM) versus the SDW order parameter (M),
as seen in Figure 2B. As demonstrated from this figure, (TM)
progressively gets bigger with the SDW order parameter of the
SrFe2−xNixAs2 superconductor.

Finally, by combining Figures 2A, B, this article depicted a region
where both SDW and superconductivity coexist, as shown in Figure 3.
Because of their coexistence, the iterating superconducting electrons and
spins are thought to have a weak exchange coupling for SrFe2−xNixAs2.
This figure shows that the possible interplay of superconductivity and
SDW for SrFe2−xNixAs2. As indicated in this figure, our finding is in
agreement with experimental observations [34, 37]. This figure also
depicts there are regions that show the superconducting and anti-
ferromagnetic states segregate, which indicates that there are regions
where magnetic and superconducting phases are not mixed.

4 Conclusion

In this work, we have studied the possibility of coexisting
superconductivity and magnetism for the iron-based
superconductor SrFe2−xNixAs2. The superconductivity order
parameter for FebSc SrFe2−xNixAs2 is suppressed as the
temperature raises and vanishes at the superconducting critical
temperature. The magnitude of the SDW order parameter for
SrFe2−xNixAs2 is suppressed as the superconducting critical
temperature increases and increases with increasing the SDW
transition temperature. We depicted the possibility of coexisting
superconductivity and magnetism in the SrFe2−xNixAs2
superconductor. For the iron-based superconductor
SrFe2−xNixAs2, we further studied the reliance of the SDW order

parameter M on temperature in the pure magnetic region. When
temperature increases, the SDW order parameter is suppressed and
is zero at the SDW transition temperature of the SrFe2−xNixAs2
superconductor.
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