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With the increasing repetition rate of ultra-intense laser pulses, ion beams
accelerated by these lasers show great potential for achieving high-
repetition-rate, high-average-flux muon sources. Nonetheless, generating
high-quality ion beams is a challenging feat as it demands a careful balance
among numerous physical effects. In this study, we utilize Bayesian optimization
to fine-tune laser and plasma parameters to produce high-charge energetic ion
beams, consequently leading to a high-yield muon source via pitcher-catcher
scheme. Beginning with initial points steered by Latin hypercube sampling,
Bayesian optimization conducts an adaptive, multi-parameter exploration of
input parameter space, significantly faster than univariate uniform scans, and
results in a mm-scale ps-duration laser-ion-based muon source scheme
providing 106 π± and 104 μ+ at a 10 Hz frequency, using only several tens of
simulations.

KEYWORDS

muon source, carbon-ion acceleration, bayesian optimization, laser, particle-in-cell
simulation, Monte Carlo simulations

1 Introduction

Muons have broad applications in fundamental science such as material science,
chemistry, biology, and nuclear physics [1–7], which are produced mainly through the
proton-nucleon reactions driven by RF-based accelerators in laboratories [8]. However, the
cost of improving the muon beam quality on conventional accelerators is increasingly
unaffordable. Thus, new methods of generating compact, dense short muon sources are in
high demand.

Over the past years, various muon sources have been developed using different
techniques and technologies [9]. Laser-driven muon sources have gained attention due
to their promising potential for producing bright and compact muon beams [10, 11]. In the
previous work, we proposed a novel scheme for obtaining an unprecedentedly dense and
short muon source by using a micro-scale spot, fs-duration 100s-PW-laser-driven proton
beam irradiating a typical graphite converter target [12]. However, the scheme is limited by
the low repetition rate of the high-power laser. Currently, the 100-PW-class laser can hardly
achieve a repetition rate of 1 Hz [13], while the conventional pulsed muon source can already
accomplish a repetition rate of more than 10 Hz [14, 15]. Therefore, although the
instantaneous flux of the laser-driven muon source is much higher than that of the
conventional muon source, the average flux is still much lower than the latter. This
implies that the proposed scheme is not currently suitable for some applications that
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require a high number of muons, such as neutrino generation [10]
and fusion catalysis [2]. Therefore, there is an urgent need to develop
a high-repetition-rate, high-average-flux muon source for
practical use.

With the rapid development of laser technology, several
petawatt-class lasers are now capable of delivering laser pulses at
a repetition rate of 1 Hz or more [16, 17]. Especially, HAPLS has
even reached a repetition rate of 3.3 Hz [18] and is about to reach the
target of 10 Hz [19]; ELI-ALPS is also planning to build a 10 Hz,
2 PW laser [19]. Nevertheless, reducing the laser power to increase
the repetition rate makes it challenging to obtain the required energy
and profile of the proton beam, which is necessary for generating
high-quality laser-driven muon sources. Therefore, the laser-driven
proton-based high-repetition-rate muon source has still a long way
to go before it becomes reality.

In recent years, researchers have demonstrated that it is possible
to obtain energetic ion beams by using intense laser interaction with
targets of various sizes and compositions. For instance, a linearly
polarized laser with focusing intensity of 5 × 1020 W/cm2, pulse
duration of 550 fs, and energy of 80 J irradiating a nm-scale diamond
target can generate a C6+ beam with cut-off energy of about 1 GeV
[20]. Similarly, A nearly-fully-ionized iron ion beam can be
accelerated up to 0.9 GeV by using a 200 TW-scale femtosecond
(fs) pulsed laser to interact with a micron-thick iron-impurities-
coated aluminum foil [21]. Utilizing a 40 fs, 5 × 1021 W/cm2, 12 J
laser hitting a submicron silver target [22] can lead to a 2.2 GeV
Ag45+ beam. In addition, an Al11+ beam with a peak energy of
310 MeV can be achieved by combining a 0.12 PW, 650 fs, 80 J
linearly polarized laser with a 250 nm flat Al target [23]. For
superheavy ions, an ultra-intense laser pulse with focused
intensity of 5 × 1019 W/cm2, pulse duration of 1.2 ps and energy
of 50 J obliquely irradiating a 2-mm-thick lead target can obtain 46-
valent lead ions with peak energy of 430 MeV [24]. A fs-scale laser
with intensity of 1022 W/cm2 hitting an ultrathin Au target covered
with carbon nanotube foams can accelerate 51-valent gold ions to
1.2 GeV [25]. Notably, the mass-energy conversion relation dictates
that the kinetic energy threshold of ions required to produce muons
by strong interactions in laboratory systems is about 300 MeV
[26–28]. Therefore, the experimental realization of GeV heavy
ion beams based on high-repetition-rate PW-class laser has made
it possible to obtain high-repetition-rate high-average-flux muon
sources in the future.

The yield of muon sources is determined by the energy and
profile of the driving ions, which are influenced by various laser
parameters such as intensity, focal spot, and pulse shape, as well as
by the features of the irradiated target such as density, thickness, and
shape. This implies that a sizeable number of input parameters must
be tuned to optimize the quality of the muon source. Traditionally,
researchers have used univariate uniform scans (UUS) around the
expected optimal parameters to optimize the process. However, as
the number of parameters increases, this approach leads to a sample
size explosion, requiring a sample size of the order of 10N for an UUS
based on the control variables method when investigating N
parameters. This would quickly exhaust computational and
experimental resources. Due to these constraints, only a limited
number of parameters can be scanned. To overcome this obstacle,
some researchers have employed the optimal value of each preceding
variable as a fixed one to study the optimal value of next variable.

Nevertheless, this approach cannot be generalized to all cases since
input parameters are frequently intertwined with each other. In
addition, the laser-ion acceleration process, which precedes the
muon generation process, is highly sensitive to the relevant
parameters, and slight parameter deviations may lead to
significant changes in the acceleration and muon generation
outcomes. Therefore, the sampling interval in the sweeping
process is difficult to determine, as a large interval is ineffective
in searching for the optimal value, while a small interval leads to a
substantial increase in the sampling cost. In summary, the
traditional one-dimensional optimization method is inadequate
for investigating the muon generation process.

Machine learning has demonstrated its superior ability to solve
complex problems in various fields such as plasma physics,
acceleration science, and light source applications [29–35].
Bayesian optimization [36] is a popular method for quickly
searching the parameter space and analyzing the relationship
between the coupling of parameters. One of its advantages is that
the data points sampled in the previous order can be used to build a
surrogate model to deduce the location of the next sampled point,
and then the newly sampled points can be applied to optimize the
surrogate model so as to find more valuable sample points.
Therefore, Bayesian optimization can efficiently find extreme
value points and ultimately reduce the sample size. Additionally,
the selection of an appropriate acquisition function can avoid being
trapped by local optimum.

In this paper, we combine Latin hypercube sampling (LHS)
with Bayesian optimization to further enhance the efficiency of
sampling. The improved Bayesian optimization sampling (BOS)
is applied to simultaneously tune four parameters to obtain the
required optimal laser-muon source by using the results of
particle-in-cell (PIC) simulations coupled with Monte Carlo
(MC) simulations. The dataset obtained by the BOS approach
confirms that the radiation pressure acceleration mechanism is a
promising approach to generating a significant number of
muons. The simulation results indicate that BOS has
approximately three times the sampling efficiency compared to
the UUS, which greatly reduces the investigation cost.
Furthermore, the laser-driven carbon-based muon source
deduced by BOS has a higher average flux than the laser-
driven proton-based muon source, and this result is obtained
within only several tens of simulations.

FIGURE 1
Schematics for producing high-repetition-rate high-average-
flux muon source using a laser-ion accelerator.
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2 Model and method

2.1 Overview of the scheme

The sketch of the laser-muon sources is depicted in Figure 1,
which is composed of the ion acceleration stage and the muon
generation stage.

The simulation process begins with the two-dimensional PIC
code EPOCH2D [37], which is used to investigate the laser-ion
acceleration process. The simulation box has a dimension of
160 μm × 30μm, where a circularly polarized driving laser pulse
with a super-Gaussian spatial profile is incident from the left
boundary and then irradiates a custom-designed tape drive target
system located at 8 μm away from the left boundary. The drive laser
has an intensity of I = 2.76 × 1022 W/cm2, a wavelength of λ = 0.8 μm,
a focal spot radius of 1.2 μm at 1/e2 and a trapezoidal pulse duration
of 26.7 fs (2.67 fs linear growth—21.36 fs plateau—2.67 fs linear
decrease). These parameters correspond to a laser with a peak power
of approximately 1.24 PW and total energy of 33 J. It should be
noted that the power of the laser to be used ranges from 2 to 3 PW,
and it can be generated by upcoming 10 Hz PW-scale laser facilities
such as HAPLS and ELI-ALPS [18, 19]. The custom-designed tape
drive target system which allows for high repetition rate [38] is
composed of two motorized rotating spools and a plastic base
supporting the carbon-hydrogen (CH) planar target, in which the
density of the carbon ions nC and hydrogen ions nH are determined
by BOS. Due to the significant increase in computational cost
associated with designing the tape drive target size based on its
actual dimensions in the simulation, we set the lateral dimension of
the target in the simulation to be 10 times the laser focal spot radius.
This approach helps to avoid unnecessary waste of computational
resources caused by excessive calculations. To ensure that the grid
size along the laser propagation direction is less than the laser skin
depth, the longitudinal grid number per micron is the minimal
integer that is greater than 2π/(λ �����

nc/ne
√ ) per micron, where nc =

1.74 × 1021 cm−3 is the plasma critical density and ne = 6nC + nH is
the electron density of CH target. The horizontal grid number is set
to 32 per micron. In all simulations, Particles are represented by
8 macro-particles in each cell and ions are movable. Opening
boundary conditions are used for both electromagnetic fields and
particles, and the quantum electrodynamics (QED) module is
turned on, while the radiation reaction (RR) effect is considered
throughout the simulations.

In the second stage of the experiment, the accelerated ion beams
from the former stage impinge onto a 7 mm-thick graphite
converter target at a 45-degree angle, triggering the generation of
pions via the ion inelastic collision and further production of muons
via the pion decay. TheMC code Geant4 [39] is utilized to model the
conventional beam-converter process. It is important to note that
the laboratory ion energy threshold required for pion production is
approximately 290 MeV [26–28]. Therefore, we only consider those
ions with energy greater than 300 MeV in our simulation of the
second stage. To save the computation resources, we randomly
sample approximate 109 ions from the energetic laser-driven ion
beam. The ions input into the MC simulation are with the same ion
energy, position and momentum distributions from the PIC
simulation. It should be noted that the total charge of the ions in

the simulation is estimated by multiplying the 2D results by
10–6 [37].

2.2 Pion production model

In the beam-converter interaction process, pions can be
produced as soon as the laboratory energy of ions is above
290 MeV which can then decay into muons and muon neutrinos.
Because the De-Broglie wavelength of the incoming ions and
subsequent collision products is smaller than the average inter-
nucleon distance, one can apply MC sampling to determine the
point of collision, the type of collision, the momentum of the struck
nucleon, and the scattering angles for each collision, where the cross-
section of reactions are provided by free-particle collision
experiments [40]. However, the beam-converter interaction is
much more complicated than collisions between free nucleons. In
the converter target, the nucleons are initially bound in their orbits
due to the nuclear mean field and thus the collisions will take place
within the nuclear medium, in which some of the final states are
blocked by other nucleons on account of the Pauli exclusion
principle. Furthermore, the initial nucleon distributions will be
altered rapidly by the interactions. Therefore, it is necessary to
employ models with more accurate nucleon density distribution to
calculate the ion-nucleus reactions.

The Liège intranuclear-cascade model (INCL) [41] is suitable for
calculating the pion production in the process of ion bombarding
the solid target with nucleon number A ≤ 18. Compared with the
traditional intranuclear-cascade model, INCL has considered the
pion production process and has applied the Hartree-Fock-
Bogoliubov calculation method to describe the radial density
distribution of protons and neutrons in nucleons [42], which is
closer to the experimental results. Meanwhile, the model minimizes
the number of model parameters by using the experimental results,
e.g., the basic reaction cross-section, and theoretical results, e.g., the
stop time, so as to improve the prediction ability of the model.
Hence, we use the C++ program block INCL++ [43] based on INCL
in the following to calculate the pion production in the process of
carbon ion collision.

2.3 Bayesian optimization

Bayesian optimization is an efficient global optimization
algorithm, which can find the next evaluation position according
to the modelling results of the current sample points, so as to achieve
the optimal solution as quickly as possible [44]. It is an operation
framework, which can obtain the optimal solution of complex
objective functions by evaluating a small number of samples. The
core idea is to use the surrogate model to fit the real objective
function according to the initial dataset, and then actively select the
extreme point of the acquisition function as the next sample point
for evaluation, so as to reduce the number of useless sample points
greatly through active optimization. The surrogate model will be
rebuilt at every iteration, which can improve the accuracy of the
model effectively and ultimately provide the maximum search rate
in the parameter space. This algorithm is efficient in basic scientific
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research and particularly in studies requiring significant
computational or experimental resources.

In the work performed here, Bayesian optimization is utilized by
the authors based on Openturns platform [45]. This algorithm is
composed of a Gaussian process regression model [46] and an
Expected improvement acquisition function. Gaussian Process
Regression, also known as Gaussian Process (GP), is a common
non-parametric model belonging to supervised learning. Gaussian
Process defines the distribution of functions, such that if we take any
two or more points X from the function, the observed output values
Y at these points follow a joint (multivariate) Gaussian distribution.
In other words, Gaussian Process is defined as a collection of sample
points that follow a joint (multivariate) Gaussian distribution.
Taking into account factors such as noise in the data points
themselves and measurement uncertainty, we assume that the
observed values are composed of an independent “signal” term
f(x) and a “noise” term ϵ. The noise term ϵ reflects the inherent
randomness in the observed values, which is present regardless of
the number of observations we make. In this context, the
relationship between the input variable x and the output y can be
described as follows.

y � f x( ) + ϵ, ϵ ~ N 0, σ2ϵ( ) (1)
The function f(x) is distributed as a Gaussian process.

f x( ) ~ G P m x( ), k x, x′( )( ), (2)
Where m(x) � E[x] represents the mean function of the Gaussian
process, and k(x, x′) � E[(f(x) −m(x))(f(x′) −m(x′))] represents
the covariance function. In order to avoid expensive posterior
computations and perform inference solely based on the covariance
function, it is common to set the prior mean function as m(x) = 0. The
covariance function k is often referred to as the kernel of the Gaussian
process. The choice of the kernel is based on assumptions about the
smoothness and patterns in the data, and it directly affects the degree of
fit between the Gaussian process and the studied data. Here, we select to
use the Matérn3

2
kernel, which is defined as follows:\

k τ( ) � σ2 1 +
�
3

√
τ

ρ
( )exp −

�
3

√
τ

ρ
( ). (3)

Based on the aforementioned definition, our first step is to sample
the function. Although the Gaussian process is continuous, the
process of sampling the function is accomplished by computing the
function values at a selected set of input points. During this process,
we do not aim to consider all mathematically possible functions, so
we predict only for a finite number of points and use the covariance
matrix generated by the multivariate normal distribution and the
kernel to draw the outputs for these points. We define X as a data set
matrix with each row representing an input point xi(i = 1, . . . ,n).
The covariance matrix can then be written as:

K X,X( ) �
k x1, x1( ) k x1, x2( ) . . . k x1, xn( )
k x2, x1( ) k x2, x2( ) . . . k x2, xn( )

..

. ..
.

1 ..
.

k xn, x1( ) k xn, x2( ) . . . k xn, xn( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Next, we perform sampling from the multivariate normal
distribution of f(x) and denote the sampled function values as f,
yielding:

f ~ N 0, K X,X( )( ) (5)
Building upon this, incorporating the noise term ϵ corresponds to
sampling the output values y, which forms the prior distribution.We
assume that the noise ϵ follows an independent and identically
distributed Gaussian distribution p(ε) � M(0, σ2). By applying
Bayes’ Rule, we obtain the posterior distribution for the new data
set D+ � X+, y+{ } as follows:

y
f+

[ ] ~ N 0,
K X,X( ) + σ2I K X,X+( )
K X+,X( ) K X+,X+( ).[ ]( ) (6)

In the equation, f+ represents the predicted function values, i.e.,

p f+ | X, y,X+( ) � M 〈f+〉, cov f+( )( )
〈f+〉 � K X+,X( ) K X,X( ) + σ2I[ ]−1y

cov f+( ) � K X+,X+( ) − K X+,X( ) K X,X( ) + σ2I[ ]−1K X,X+( )
(7)

Additionally, The acquisition function is defined as follows.

αt x;D1: t( ) �

v* − ξ − μt x( )( )ϕ v* − ξ − μt x( )
σt x( )( )

+σt x( )ϕ v* − ξ − μt x( )
σt x( )( ), σt x( )> 0

0, σt x( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where v* represents the current optimal function value, ϕ(·) is the
probability density function of the standard normal distribution,
and ξ is a balancing parameter utilized to balance the relationship
between the local and global search, avoiding getting trapped in local
optima.

Meanwhile, in order to improve the efficiency of Bayesian
optimization, we utilized the LHS to structure the initial dataset,
given that it generates samples that reflect the true underlying
distribution and tend to require much smaller sample sizes than
simple random sampling. The complete optimization process based
on PIC-MC simulation is illustrated below.

As depicted in Figure 2, we first get the target parameters by
15 times LHS, and then apply EPOCH2D to calculate the ion
beam profile during the laser-ion acceleration process. After
injecting the ion beam profile to Geant4, we obtain the pion
and muon yield. The entire physical simulation process is
referred to as the “PIC-MC” simulation. In our studies, The
15 sets of pion yield corresponding to the different target
parameters made up the initial dataset. Subsequently, a
surrogate model was constructed by means of the Gaussian
process regression model. Following this model, the Expected
improvement acquisition function was employed to determine
the next promising sample point. Based on this recommended
sample point, we amend the target parameter, e.g., target density
and thickness, and run the whole PIC-MC simulation again to
calculate the pion yield. The new result extends the dataset,
thereby making the surrogate model more accurate. After
15 rounds of BOS, we end up with an optimized dataset and a
relatively accurate surrogate model. A similar algorithm has been
successfully utilized to eliminate the necessity of parameter scans
and reduce the required prior information about the
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measurement’s behavior, along with associated measurement
constraints in particle accelerators [47].

3 Results

In the present work, we apply BOS to investigate the effect of the
density of carbon ions and hydrogen ions, as well as the thickness of
the CH target and the ion acceleration time on the muon generation.
Here, we choose the yield of pion source as the objective function,
since maximizing the yield of pion source would be promising to
obtain high flux muon and pion beams. In the simulations, the
parameter range considered were [0, 100nc] for the density of the
carbon ions nC and the hydrogen ions nH, and [0.01 μm, 0.2 μm] for
the thickness l of the CH target. The acceleration time t of laser-
plasma interaction was in the range of [40T0, 190T0], where T0 =
2.67 fs is the laser period. The size of the initial dataset, which was
sampled by LHS, was set as 10, and the total number of simulated
samples was 30. To compare the performance, a set of UUS was
carried out with 36 sample points, where nC = 10, 55, 100nc, nH = 10,
55, 100nc, l = 0.01, 0.2 μm and t = 40, 190T0, respectively.Visualizing
sample points in high-dimensional space is challenging. A
dimension reduction technique that fails to capture important
information can obscure the underlying distribution in low-
dimensional representations. This study uses t-Stochastic
Neighbor Embedding (t-SNE) [48], a nonlinear dimension
reduction technique that converts Euclidean distances of sample
points in high-dimensional parameter space into conditional
probabilities and characterizes the similarity between points.
Gradient descent algorithms were then used to approximate the

high-dimensional distribution in low dimensions. The results are
shown in Figures 3A, C, where the total yield of π+ is represented by
color. Figure 3A reveals that the sample points distribution of BOS is
uneven, and obvious clustering phenomenon occurs at the points 21,
24, 25, and 27, with the values of these four points being 4.22 × 106,
5.99 × 106, 5.25 × 106 and 5.98 × 106, respectively. Whereas, the
sample points distribution of UUS exhibits periodicity and low yield.
The maximum value is only 2.99 × 106, which is much less than that
of BOS. Figures 3B, D represent the change in particle number
versus the sampling sequence. π±

out and μ±out stand for the particle
number of pion and muon beams, where π± indicates the total pion
yield. It is found that the particle numbers of pion and muon beams
are positively correlated with the total yield of pions. By comparison,
UUS results reveal a suboptimal yield, with only 3 points having a
yield greater than 106. In this paper, a sample point with a yield less
than 105 is considered as a waste point. As displayed in Figure 3D,
the waste point rate of UUS is as high as 83.3%, which represents a
huge waste of computational resources. In contrast to UUS, BOS has
a much higher sampling efficiency. Besides the maximum point with
a yield of 5.99 × 106 found, 19 sample points with yield greater than
106 are obtained via BOS. Furthermore, the BOS with a waste point
rate of <30% is more efficient than UUS in numerical and
experimental studies.Efficient sampling of complex physical
processes is beneficial for investigating the laws of physics and
finding the optimal solution, especially when the sample size is finite.
Intuitively, the higher the energy and charge of the ion beam, the
more advantageous muon production becomes. Radiation pressure
acceleration mechanism is expected to produce an energetic and
high-charge ion beam, which, in turn, increases the muon
production. Therefore, we put the sampled points into the

FIGURE 2
The flow chart of Bayesian optimization applied in the PIC-MC simulations.
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electron density-target thickness phase space and compare it with
the radiation pressure acceleration condition a0λ ≈ π lne/nc, as
shown in Figure 4. Figure 4A displays that the sampled points
with higher yields are closer to the curve of radiation pressure
acceleration condition. Extreme points of yields in the two regions,
one with larger and one with smaller target thicknesses, fall around
the curve. The results of the initial sampled points in Figures 3A, B
indicate that the previous sampling did not find points with high
yields in the central region, but only obtained points with high yields
at both ends of the region. Therefore, the aggregation of sampled
points is observed at both ends of the region. While the current
result of the 30-point sampling does not extensively explore the
region, subsequent sampling using BOS will be more inclined to
explore the region due to its high level of uncertainty. Therefore, the
absence of points with high muon yield in this region can be
attributed to the limited number of sampling points. To
investigate the reasons behind the lower muon yields of certain
points on the RPA curve, such as the arrow-marked point in this
figure, these points were placed in the acceleration time-target
thickness phase space to examine the impact of acceleration time,
specifically, the duration of laser-plasma interaction before the ion
beam reaches the converter target.Figure 5 illustrates the evolution
of energy and charge for the marked points in Figure 4 of the main
text. Figure 5A reveals a rapid increase in the cut-off energy of
carbon ions before 50T0, which then approaches saturation with
minimal variation thereafter. Conversely, the charge of carbon ions
demonstrates stability for a period following a rapid increase before
25T0, after which it undergoes a rapid decrease after 80T0, as

depicted in Figure 5B. This phenomenon can be attributed to
RPA’s ability to maintain a stable acceleration structure and
generate a powerful and high-energy ion beam within tens T0, as
depicted in Figure 5C. Over time, the Rayleigh-Taylor-like
instability [49, 50] intensifies rapidly, resulting in the
deterioration of the acceleration field structure. Subsequently, the
acceleration mechanism of laser-driven ions gradually transitions to
Target-Normal Sheath Acceleration (TNSA) [51]. While a certain
degree of velocity increase still occurs at this stage, TNSA amplifies
the divergence angle of the ions. As a result, a substantial portion of
high-energy ions is unable to pass through the “collimator.” In this
study, our objective is to establish a small-scale muon source with
higher yields. To accomplish this, collimator is employed to shield
ions with significant divergence angles. The transverse size of the
simulation box is comparable to the collimator’s aperture. Thus, it
can be observed in Figure 5D that despite the increasing cutoff
energy of carbon ions, there is a substantial reduction in the overall
number of ions, particularly high-energy carbon ions, resulting in
decreased muon yield. Moreover, as illustrated in Figure 4A, the
optimal points with a target density of approximately 600nc undergo
a laser-plasma interaction time exceeding 100T0. In such cases, the
interaction time surpasses the limits sustained by the RPA
mechanism, and thus the ion charge is suboptimal. In contrast,
the optimal points with a target density of approximately 200nc
experience a laser-plasma interaction time of approximately 50T0.
This results in higher energy and charge of the ions at this point,
ultimately resulting in a greater yield of muons compared to the
former situation. These findings confirm that the radiation pressure

FIGURE 3
The t-SNE dimension reduction distribution and pion yield of BOS points (A) and UUS points (C) in four-dimensional parameter space, where the
numbers are sample orders. The total yield of pions and the number of pion beams and muon beams according to the sequence of BOS (B) and UUS (D).
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acceleration mechanism can produce an energetic high-charge
carbon ion beam within a few tens of laser cycles, facilitating the
increase of subsequent secondary particle yields. On the contrary, as
we put the UUS points into the electron density-target thickness
phase space, we can find that the data set has almost no regularity in
the case of small amounts of data in Figure 4B. Hence, the data set
sampled by BOS is more favourable and efficient for our
investigation in this study.

FIGURE 4
The relationship between the electron density ne, the target thickness l and ion acceleration time t corresponding to (A) the BOS points and (B) the
UUS points.

FIGURE 5
Evolution of the energy (A) and number (B) of the carbon ions in
the simulation box. The energy spectrum of carbon ions at 50 T0 (C)
and 190 T0 (D).

FIGURE 6
The energy spectrum of the carbon ions which can generate the
pions with a maximum yield.
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4 Discussion

For further investigation, we analyze the optimal muon source
profile deduced by BOS and present the results in Figures 6, 7.
Compared to the pure heavy ion targets, it has been demonstrated
that by the use of a circularly polarized laser, a mixed target
consisting of light and heavy ions can achieve higher ion
velocities via the radiation pressure acceleration mechanism [52,
53]. It has been also observed that the higher the proton content in
the mixed target, the better the acceleration of the heavy ions [53].
Therefore, the role of hydrogen ions in the target is to assist the
carbon ions to form a more stable accelerating field structure, thus
enhancing the energy and charge of the carbon ions, which are
advantageous for muon production in the following stage. The
results obtained from BOS are consistent with the
aforementioned theory. We find that after a 10 Hz PW-class laser
irradiates a 0.18 μm-thick CH target with a carbon ion density of

26.65 nc and the hydrogen ion density of 38.44 nc corresponding to
an electron density ne = 198.34nc, the resulting carbon ion beam can
be accelerated up to 6 GeV at 50T0. Subsequently, it impinges on the
graphite conversion target and produces 5.99 × 106 pions in the
target. The positive muon beam detected at the target rear has a mm-
scale spot size, while the full width at half maximum (FWHM) of the
beam duration is about 200 ps as obtained from the pulse duration fit
using the kernel density estimation (KDE) based on the Gaussian
kernel function as shown in Figure 7A, B.

Moreover, both the positive pion beam and negative pion beams
have mm-sized beam spots with the corresponding pulse duration are
only 60 ps at FWHM, as illustrated in Figures 7C–F. These excellent
beam characteristics imply that the 10Hz-PW-laser-driven carbon-
based muon source not only acts as a high-repetition-rate source
but also shows promise as a high-density and ultra-short pulse
muon source. The results imply that the BOS is an excellent method
in the investigation of laser-drivenmuon sources and other laser-driven

FIGURE 7
The flux density of μ+ beam (A), π+ beam (C) and π− beam (E), the color represents the number of particles in each small grid. The pulse duration of μ+

beam (B), π+ beam (D) and π− beam (F). The orange line in Figure (B, D, F) is the result of fitting with kernel density estimation based on the Gaussian kernel
function.
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secondary particle sources such as positron sources [54] and neutron
sources [55].On account of the limitation in computational resources,
we have chosen to translate the 2D simulation results obtained from
EPOCH2D into 3D by multiplying the results by 10–6 [37] before
inputting them into Geant4. This operation reduces the cost of
calculation in the following simulations. It is worth noting, however,
that there is a considerable difference between the 2D and 3D
simulations. In order to assess the feasibility of this method, we
carry out a full 3D simulation using the same parameters. The
results demonstrate that the total pion yield in the 3D simulation is
just 1.59 × 106, that is because the acceleration of carbon ions is
suppressed in the 3D simulation due to the serious instabilities such as
Rayleigh-Taylor-like instability [49]. Though the cut-off energy is lower
than 2D simulation results, the number of carbon ions exhibiting energy
greater than 300MeV is higher, as depicted in Figure 8A. Therefore, the

π+ yield in the full 3D simulation still remains on the order of 106. At the
rear of the graphite target, the emitted pion beams are still on the
millimeter scale with a pulse width of about 90 ps, as displayed in
Figures 8B–E. Although this is slightly worse than the results calculated
from the 2D simulation, it nevertheless falls within the same order of
magnitude. Therefore, given that a series of full 3D simulations may be
unsupported, the use of PIC simulation 2D results as substitutes in
subsequent simulations proves to be a feasible approach.

Finally, we obtained a mm-scale pion beam with a pulse width of
about 90 ps at FWHM in a full 3D simulation. The results are
summarized in Table 1. Adjacently, we compare the pion and muon
beams produced using our scheme with those obtained from the
laser-driven proton-based muon source described in Ref. [12] and
the laser-driven electron-based muon source [11, 56]. As illustrated
in the table, although the particle number of the laser-driven carbon-

FIGURE 8
Full 3D simulation of carbon and pion beam properties. (A)Carbon ion energy spectrum. The flux densities of π+ beam (B) and π− beam (C), the color
represents the number of particles in each small grid. The pulse durations of π+ beam (D) and π− beam (E). The orange lines in figure (D) (E) are the fitting
result with the kernel density estimate based on the Gaussian kernel function.

TABLE 1 Comparison of full 3D simulation results of laser-driven muon sources.

Power Repetition rate π+ π− μ+ μ−

Our scheme 1.24 PW 10 Hz 1.32 × 106 1.21 × 106 1.56 × 104 1.3 × 103

Laser-driven proton-based muon source [12] 138 PW <0.017 Hz 7.91 × 108 1.14 × 108 4.27 × 106 1.09 × 105

Laser-driven electron-based muon source [11] PW-class — — — 3.8 × 103 3.8 × 103

Laser-driven electron-based muon source [56] 10 PW 0.017 Hz — — 104 104

The average flux ratio for Scheme 1 and Scheme 2 > 0.98 >6.24 >2.15 >7.02

The average flux ratio for Scheme 1 and Scheme 4 — — >917.65 >76.47
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based muon source is smaller than that of the laser-proton-driven
muon source, i.e., the instantaneous flux is smaller than that of the
latter, the average flux of the laser-driven carbon-based muon source
is comparable to the latter in π+, while π− is 6 times larger than that of
the latter, μ+ is 2 times higher than the latter, and μ− is 7 times higher
than the latter with a reduction in laser power by two orders. Thus
this research provides guidance for the muon source design.

5 Conclusion

The laser-driven ion acceleration and pion generation evolve
many parameters of laser and targets, making the results
unpredictable. Meanwhile, the whole system is highly sensitive to
parameter changes, which can lead to a sudden change in the carbon
ion beam quality and therefore, the pion and muon generation.
These require a huge investigation cost in simulations and
experiments. In this paper, we introduced an enhanced BOS via
coupled with LHS, aimed at seeking the most optimal values in the
multi-dimensional parameter space. We compared the results from
30 samplings by BOS with that from 36 samplings by UUS in the
same parameter space and observed that BOS has a higher sampling
efficiency and a more favourable resulting dataset for scientific
research. Furthermore, following the results of BOS, it is found
that a CH target with a thickness of 0.18 μm, a carbon ion density of
26.65 nc and a hydrogen ion density of 38.44 nc irradiated by a 10 Hz
PW-class laser after 50 T0 will generate an energetic high-charge
carbon ion beam. Subsequently, through bombarding the graphite
converter target, the carbon ion beam can produce a mm-scale 60-
ps-duration π+ beam with number of 5.27 × 106, a mm-scale 60-ps-
duration π− beam with number of 5 × 106, a mm-scale 200-ps-
duration μ+ beam with number 3.31 × 104 and a μ− beam with
number of 4.97 × 103 in 2D simulation. The full 3D simulation with
the same parameters generates a mm-scale 90-ps-duration beam of
1.32 × 106 π+, a mm-scale 90-ps-duration beam of 1.21 × 106 π−, a
beam of 1.56 × 104 μ+ and a beam of 1.3 × 103 μ−. Compared with the
laser-driven proton-based muon source, the laser-driven carbon-
based muon source has the comparable average flux of π+, 6 times
that of π−, 2 times that of μ+, and 7 times that of μ −, with a reduction
in laser power by two orders of magnitude. Therefore, the high-
average-flux muon source is suitable for neutrino generation and
fusion catalysis that require a large number of muons.
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