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Formation of neutron clusters from strongly correlated neutrons has become one
of the hottest topics in nuclear physics. They lie at the heart of understanding the
exotic structure of nuclei around the neutron drip line and provide an important
basis for testing nuclear interactions due to the absence of Coulomb interaction
and further developing theoretical models. Moreover, neutron clusters composed
purely of neutrons could serve as a mini prototype of neutron matter to study the
still elusive properties of the extremely neutron-rich nuclear matter, building a
bridge between finite nuclei and neutron stars. In this paper, we will briefly review
the recent highlights of experimental and theoretical works on neutron clusters.
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1 Introduction

The nucleus, which is the heart of the atoms and determines to which chemical elements
they belong, is basically composed of two constituents, protons and neutrons. So far,
~300 stable nuclei and ~3,000 radioactive isotopes have been discovered. While a particle-
like system made of multiple protons is unlikely to exist owing to the repulsive Coulomb
interaction, it has remained an open yet intriguing question as to whether a neutral cluster
made purely of neutrons exists despite extensive experimental and theoretical efforts for
more than half a century.

The properties of these chargeless systems serve as a stringent test for the underlying
nuclear force, particularly for the isospin-dependent component. They also provide unique
access to neutron-neutron and multi-neutron correlations, which is crucial for a deeper
understanding of exotic phenomena emerging at the limit of nuclear stability. Furthermore,
terrestrial experiments on neutron clusters can also help to bridge the gap between our
current knowledge of the finite nuclei and the neutron-rich matter in the universe that makes
up the neutron star. Neutron clusters and neutron-rich nuclei are predicted to exist in the
crust of neutron stars [1, 2]. The formation of neutron clusters in neutron stars could further
give rise to the condensation of neutron clusters [1] and the superfluidity of neutron matter
[2]. This will in turn impact the properties of the neutron-rich matter which is generally
described using the nuclear equation of state (EoS). A detailed knowledge of the nuclear
equation of state is essential for modeling the structure and thermal properties of neutron
stars [3].

Significant progress has been made on the dineutron cluster (2n) in the past decades. On
the other hand, only a few experiments on the trineutron cluster (3n) and tetraneutron cluster
(4n) were undertaken. In the multi-neutron study, researchers are confronted with two
challenges: production and detection. For the production of such exotic systems, the double-
charge-exchange (DCX) reaction, multinucleon-transfer reaction, and nucleon/cluster
knockout reactions such as (p, 2p) (p, pα) (p, 3p) are currently utilized (see also Ref. [4]
for more details). The multi-neutron detection efficiency decreases markedly as the number
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of neutrons increases since neutrons—unlike charged
particles—hardly react with the detector material. Moreover, an
advanced multi-neutron identification algorithm is indispensable
for the correct identification of true neutron signals because a single
neutron can induce multiple signals (so-called crosstalk) in the
neutron detector array [5]. In this context, it should be very
helpful to have complementary measurements based on the
missing-mass spectroscopy without direct neutron detection,
although such measurements are usually of worse resolution and
more sensitive to the reaction mechanism of the selected reaction
channel for the production (see, for example, Refs. [6, 7]). In this
mini-review, we will focus on the recent progress on neutron clusters
during the last 20 years.

2 Studies on dineutron

Dineutron (2n) [8] generally refers to a spatially compact
neutron pair with a total spin of 0. Different nuclear reactions, as
well as theoretical calculations, confirm that an isolated 2n cannot
exist as a bound or resonant state. When going away from the valley
of stability and approaching the limit of existence (the neutron drip
line) in the nuclear chart, the weak binding results in the formation
of halo. Two-neutron halo nuclei serve as an excellent candidate for
investigating the 2n clusters since the neutron correlation and
consequently the formation of 2n are expected to be enhanced in
the dilute neutron matter of the halo [9].

The most notable example is 11Li, with a very small separation
energy of S2n = 369 keV [9–11]. Its peculiar feature of being
Borromean—namely, although 11Li is a bound three-body (9Li +
n + n) system, its binary subsystems (10Li and 2n) are unbound—has
attracted much attention, suggesting an essential role of the two-
neutron correlation (dineutron correlation) in 11Li. The dineutron
correlation can be probed by measuring the electric dipole (E1)
response in the Coulomb dissociation experiment. For 11Li, the
opening angle 〈θ12〉 of two valence neutrons with respect to the core
is 48+14−18 degrees [12] deduced from the measured B (E1) strength.
This value is significantly smaller than that expected for two
uncorrelated neutrons (90°), and thus indicates the strong
dineutron correlation in the ground state of 11Li. Recently, a
kinematically complete measurement of the 11Li (p, pn)10Li
reaction was carried out [13], probing the dineutron correlation
free from the effect of final-state interactions (FSI)—that had been
under strong debate in the study of 2n—by selecting the kinematics
according to the quasi-free condition. This study reveals the well-
developed 2n in 11Li and, more importantly, that the dineutron
correlation is enhanced in a limited low-density region around the
11Li surface but gets suppressed at lower or higher densities. This
density-dependent behavior of 2n and neutron-neutron correlations
in general is consistent with the Hartree-Fock-Bogoliubov
theoretical predictions for infinite nuclear matter [9]. This
finding was further corroborated by a recent comparative
experimental study of 2n correlation in 11Li, 14Be, and 17B that
exhibit different degrees of halo structure [14].

In analogy to the α decay (the emission of preformed α clusters)
in heavy nuclei, neutron cluster emission can be expected in nuclei at
and beyond the neutron drip line. Two-neutron radioactivity is
observed in unbound nuclei such as 10He [15], 13Li [15, 16], 16Be

[17], and 26O [18, 19] and in the excited states of 8He [20] and 14Be
[21, 22]. Among them, 16Be is an ideal candidate for search of direct
dineutron emission since the sequential two-neutron emission
through the intermediate system 15Be is energetically suppressed.
In experiment, different two-neutron emission processes can be
distinguished by comparing the observed n-n energy and angular
correlation patterns with the model calculations. Following this
methodology, A. Spyrou et al. reported the observation of direct
dineutron decay in the ground state of 16Be [17]. However, Ref. [23]
argued that the observed enhancement at low two-neutron relative
energies or at small opening angles by Spyrou et al. could also be
explained by the direct three-body breakup model incorporating the
n-n FSI, as an alternative to the dineutron model of Ref. [17]
assuming 16Be decays into 14Be and a quasi-bound 2n cluster. In
the phenomenological n-n FSI model of Ref. [23], the effect of FSI
was formulated by assuming a Gaussian-type source of the two-
neutron emission and describing the n-n interaction using the s-
wave scattering length [20, 24, 25]. Important progress has been
achieved on a microscopic theoretical description of the two-
neutron decay in recent years, such as the time-dependent
approach based on the Gamow coupled-channel method [26]. In
general, the correlation pattern observed in the final state should be
determined by both the initial structure and the decay process
(including the effect of FSI) as revealed in Ref. [26], but it has
still remained a challenge for theoretical calculations to lift the effect
of FSI from that of the initial 2n structure. As such, caution should
always be taken when connecting the observed correlation patterns
in experiment to 2n clusters in the initial state. It is thus very
important to have high-quality two-neutron correlation data with
high statistics and improved detector resolutions to benchmark the
theoretical models. In this context, it is worthwhile to mention the
dineutron study of 26O which has a near-threshold ground state (the
two-neutron decay energy is only ~18 keV) [18, 27]. A particularly
designed high-resolution neutron detector array has been developed
at RIKEN Nishina Center of Japan to achieve a high-resolution
measurement of the dineutron decay in 26O. A similarly interesting
process is the two-proton emission of nuclei beyond the proton drip
line, and from the comparative study of the isobaric mirror pair such
as 6He-6Be and 12Be-12O one can investigate the isospin symmetry
breaking and the Thomas-Ehrman shift (see, e.g., Refs. [26, 28]).

3 Studies of multineutrons with focus
on tetraneutron

Explorations on heavier neutron clusters (3n, 4n . . . ) are almost
at the limits of present experimental capabilities due to the limited
radioactive beam intensities and extremely low multi-neutron
detection efficiency. In the early search for 3n and 4n using
double-charge-exchange reactions (π−, π+) [29–31] and multi-
nucleon-transfer reactions [32–35], strong neutron correlations
within the populated multi-neutron systems could be inferred
from the observed missing-mass spectrum, but these experiments
fall short of being conclusive on the presence of neutron cluster
states.

At the beginning of the new century, an experiment measuring
the breakup reaction of the neutron-rich unstable nucleus 14Be based
on the then emerging radioactive beam techniques was performed at
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GANIL [36, 37], which immediately triggered a boom in
tetraneutron study. In that experiment, several peculiar events
observed in the neutron detector array were found to be
consistent with a bound tetraneutron cluster or a low-lying four-
neutron resonant state at around 2 MeV. Many theories have since
then attempted to explain the experimental result. The existence of a
bound tetraneutron state has basically been ruled out [38–40]. Using
the Green’s function Monte Carlo method (GFMC) and realistic
nuclear force (AV18/IL2), S. C. Pieper revealed that drastic
modifications of known nucleon-nucleon (NN) interactions were
required to bind the four neutrons [38]. However, there is still no
consensus on the existence of a resonant tetraneutron state [38, 39,
41]. A broad 4n resonance was predicted at around 2 MeV by the
above mentioned GFMC calculation of S. C. Pieper [38]. By solving
Faddeev-Yakubovsky (FY) equations in configuration space,
Lazauskas et al. found that physically observable tetraneutron
resonances could hardly exist based on the modern nuclear
Hamiltonians [41]. Unfortunately, the follow-up experiments at
GANIL using the same approach failed to catch the 4n signals.

In 2016, a new experiment at the Radioactive Ion Beam
Factory (RIBF) of RIKEN revived the interest in this field [6].
This study utilized the DCX reaction 4He (8He, 8Be) with the
intense 8He beam to populate 4n under the recoilless condition.
The reaction channel of interest was selected by requesting the
coincidence of two α particles from the decay of 8Be, and the
energy of the four-neutron system was constructed using the
missing-mass method. Prominent excess of events was observed
near the breakup threshold, and was tentatively interpreted as a
candidate resonant 4n state with a significance level of 4.9σ. The
resonant energy was determined to be 0.83 ± 0.65 (stat) ± 1.25
(syst) MeV, while an upper limit of 2.6 MeV (FWHM) was
estimated for the width. It is noteworthy that the possibility of

tetraneutron being a bound state cannot be excluded due to the
large experimental uncertainty.

Triggered by this intriguing experimental result, increasingly
sophisticated theoretical works relevant to the tetraneutron have
been undertaken. Based on the no-core shell model (NCSM)
employing realistic two-body interaction JISP16, Shirokov et al.
predicted the tetraneutron state with a resonant energy E4n =
0.84 MeV and width Γ = 1.38 MeV [42], which agreed well with
the result of Kisamori et al. [6]. Later on, they incorporated the
modern NN interactions Daejeon16 and chiral N3LO into NCSM
[43]. As shown in Figure 1, the resonant energy and width from
various NN interactions are similar, corroborating the conclusion of
Refs. [41, 44] that 4n is not sensitive to the choice ofNN interactions.
In another work based on the ab initio no-core Gamow shell model
(NCGSM) and the density matrix renormalization group method
[44], a broad resonance-like four-neutron state with a width of Γ ≈
3.7 MeV—much larger than the reported value of Ref. [6]—was
reported, indicating that the tetraneutron was unlikely to be a
narrow resonance and may thus be difficult to observe
experimentally. The authors of Ref. [44] speculated that the low-
energy peak could be attributed to a feature of the four-neutron
scattering rather than a genuine nucleus (either bound or resonant).
Interestingly, similar conclusions were also obtained recently by
Deltuva using the Faddeev–Yakubovsky and
Alt–Grassberger–Sandhas (AGS) formalisms [45] and by Higgins
et al. within the adiabatic hyperspherical framework [46], both
questioning the existence of a 4n resonance. Using the Gaussian
ExpansionMethod, Hiyama et al. showed that an additional strongly
attractive T = 3/2 isospin-dependent three-body force—that is
remarkably inconsistent with the known properties of typical
light nuclei—was required to generate an observable 4n resonant
state [47].

In a recent work published in Nature, Duer et al. reported the
observation of a correlated four-neutron system using the quasi-free
α-particle knockout reaction 8He (p, pα) [7]. The ground state of 8He
has a well-developed cluster structure with an α particle plus four
valence neutrons, providing unique access to the four-neutron
system via the removal of the α particle. The detector setup was
optimized in order that sufficient momentum was transferred to the
α particle, ensuring its removal from the incident 8He under the
quasi-free (p, pα) condition. The four-neutron system can thus be
populated in an unperturbed way, and its energy was constructed
using the missing-mass method. A resonance-like peak near the
threshold was clearly observed, with a significance level well beyond
5σ. The extracted resonant energy (E4n) was 2.37 ± 0.38 (stat) ± 0.44
(syst) MeV and width (Γ) was 1.75 ± 0.22 (stat) ± 0.30 (syst) MeV,
compatible with the previous experiment [6] but with significantly
higher statistics. The experimental result was compared with state-
of-the-art theoretical predictions and was in good agreement with
the latest ab initio NCGSM predictions based on the chiral N3LO
two-body nuclear force [48]. Another important ingredient of the
NCGSM calculation is the treatment of the coupling to the
continuum by using the Berggren basis [49], which is critical for
the description of the resonant state.

Notably, subsequent theoretical research by Lazauskas et al. [50]
proposed an alternative explanation for the prominent low-energy
peak in the missing-mass spectrum of Duer et al. By constructing a
reaction model based on the realistic nuclear forces such as

FIGURE 1
Energy versus width of the 4n resonance from experiments and
theories. Experimental results of [6, 7, 51] are shown by red symbols,
and for [6] the upper limit of the width is indicated by the arrow. For
theoretical predictions, we include the results of NCGSM in [48]
(green triangle), NCSM in [42, 43] (blue rhombuses), QMC in [53] (blue
dashed line together with a shaded band showing the uncertainty).
Theories that do not support the existence of a 4n resonance (e.g., [41,
45–47]) are not presented.
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AV18 and N3LO chiral nuclear force to describe the 8He (p, pα)
reaction used by Duer et al., Lazauskas et al. attributed the observed
sharp low-energy peak dominantly to the effect of the reaction
mechanism (e.g, the final-state interaction among the four neutrons)
rather than the formation of a four-neutron resonant state.
Lazauskas et al. also pointed out that the initial dineutron cluster
structure (α + 2n + 2n) of 8He was playing an important role and,
accordingly, the energy distribution of the four-neutron system was
strongly dependent on the n-n scattering length [50].

4 Outlook

Remarkable progress has been made on neutron clusters in the
first 20 years of the new century, but more questions still remain to
be answered. The most prominent one is the existence of a
tetraneutron resonance. The current state of experimental and
theoretical studies on tetraneutron is summarized in Figure 1.
The supporting evidence has been provided by two missing-mass
experiments [6, 7]. From the experimental point of view, new
experiments using different production and measurement
methods—particularly an invariant-mass measurement with the
four constituent neutrons directly detected—are needed to
reinforce or refute these positive evidences. A hint of positive
signal was also reported recently by Faestermann et al. using the
multi-nucleon-transfer reaction 7Li (7Li, 10C) [51]. From the
theoretical point of view, the apparent discrepancies between
many state-of-the-art models have to be resolved. It would also
be important to go beyond the energy and width of the four-neutron
system and peep into the internal neutron correlations. Such few-
nucleon systems provide important benchmark information for the
two-body and few-body interactions and the emergent correlations.
In this respect, it is worthwhile to mention that, despite the
conflicting results regarding the existence of a tetraneutron
resonance, many theoretical models consistently find that the
characteristics of the four-neutron system are insensitive to the
three-body force [46, 48, 50], and Lazauskas et al. further pointed
out that it can basically be determined by the n-n scattering length
[50, 52]. Interestingly, a trineutron resonance has also been
predicted by the ab initio calculations [48, 53]—both predicting a
3n resonance even lower than 4n, hinting at the working interactions
or correlations beyond two neutrons. Such many-body interactions
or correlations could be enhanced in a system with more neutrons
and may thus give rise to more pronounced resonant structures in
heavier neutron clusters (6n and 8n) or maybe a bound neutron
cluster state at a certain number of neutrons.

It is also interesting to consider a multi-neutron cluster
accommodated in a nuclear environment such as the low-density
surface of neutron-rich nuclei. The neutron correlations are expected
to be enhanced under such conditions [9, 13], and multiple dineutron
clusters could form that can further lead to a condensate-like cluster

state. For example, Refs. [54, 55] predicted a dineutron-condensate
structure in the 0+2 state of 8He, in close analogy to the well-known
Hoyle state with a 3-α-condensate cluster structure [56]. Besides, some
extremely neutron-rich nuclei (e.g., 7H and 28O) exhibit exotic four-
neutron radioactivity. Dineutron and tetraneutron clusters may be
liberated in the disintegration of these nuclei. It would thus be
interesting to study the multi-neutron emission and correlations in
various nuclear systems.

The operating and forthcoming facilities worldwide, such as RIBF
(Japan), FRIB (United States), HIAF (China), FAIR (Germany), and
RAON (Korea), will provide massive opportunities to study the structure
of neutron-rich systems, the neutron correlations, and multi-neutron
clusters. With the operation of the next-generation neutron detector
arrays (for example, NEBULA-Plus and NeuLAND [57]), direct
detection on multiple neutrons will become feasible. New experiments
with better resolution, higher statistics, or complementary reaction probes
are under way. For example, the experiment on multi-neutron clusters
using (p, 3p) reaction from He isotopes is now under plan at RIBF. The
concerted effort of experiment and theory would eventually elucidate the
nature of neutron clusters.
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