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A hybrid axisymmetric conservative phase-field lattice Boltzmann method is
applied to investigate the influence of Marangoni number (Ma), density ratio
(ρr), and radius ratio (Rr) on thermocapillary migration of a deformable hollow
droplet with difference in variable fluid properties, where ρr (Rr) is the density
(radius) ratio of the hollow part of the droplet. The isotherms show that heat
transfer around the hollow droplet is changed from conduction to convection
with the increase in Ma. However, the temperature gradient across the hollow
droplet decreases withMa, which induces a small magnitude ofmigration velocity.
When ρr is increased, the isotherms are accumulated around the hollow droplet
front with a large temperature gradient, which enhances the hollow droplet
migration, while the migration velocity is decreased with the increase in Rr. It is
observed that thermocapillary migration of the hollow droplet finally becomes a
pure droplet with the influence of aforementioned parameters, and it experiences
interface breaking and coalescing, which causes a large transient variation in
migration velocity. Themagnitude of this transient variation inmigration velocity is
not obviously affected byMa but significantly affected by ρr and Rr. The measured
evolution of d (the dimensionless distance between inner and outer fronts of the
hollow droplet) demonstrates that ρr has a significant influence on the reduction
rate of d in comparison with the influence of Ma and Rr. Similar influences on the
relative migration velocity between the fluid of the hollow part inside the droplet
and the sealed fluid of the droplet are observed.
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1 Introduction

When a droplet/bubble is immersed into another immiscible fluid, it moves due to an
imposed temperature gradient. Due to a decreasing function of surface tension on
temperature for most fluids, the droplet/bubble moves from a low temperature region to
a high temperature region under negligible buoyancy effect. This phenomenon is well known
as thermocapillary convection or Marangoni convection. It provides a feasible way to
manipulate and control the droplet/bubble in the microgravity environment or microfluidic
devices, and it also plays an important role in practical applications such as microfluidic
system, crystal growth, space welding, and food processing. Numerous investigations using
theoretical analysis, experiment, and numerical simulation are performed to understand the
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mechanism of thermocapillary migration of a droplet/bubble in the
microgravity environment [1] or microfluidic devices [2].

The first experimental study on thermocapillary migration of a
single spherical droplet was attributed to Young et al. [3] who also
presented a theoretical prediction of terminal migration velocity for
a spherical droplet at the limit of zero Reynolds (Re) and Marangoni
(Ma) numbers. Later, the asymptotic analysis method was used to
study droplet/bubble migration at finite Re and Ma numbers [4, 5].
However, the droplet/bubble was assumed to be non-deformable
during its migration by most of the theoretical analyses, which was
only valid at large surface tension without fluid convection. In Ref.
[6], thermocapillary behavior of multiple deformable droplets was
investigated by the front-tracking/finite-difference method [7] in
two and three dimensions; it was observed that the droplets formed
layers with the effect of mono-dispersed and poly-dispersed cases at
moderate Re and Ma numbers. Yin et al. [8] developed an efficient
numerical scheme to investigate different migration processes of
isolated spherical drops with various Ma numbers, and the results
showed a more complicated process, longer time, and larger distance
for the droplet to reach the steady state at a large Ma number. Yin
and Li [9] systematically investigated the interaction of two non-
merging droplets by the front-tracking method to show the
importance of heat wake behind the leading droplet for droplet
interaction and showed different final droplet distances and
transient migration processes for various non-dimensional
parameters. The finite-volume/level-set approach was also
developed to study the thermocapillary migration and
interactions among immiscible deformable droplets with a
variable fluid property ratio [10]. In Ref. [11], a parallel three-
dimensional volume of fluid method was developed for studying
thermocapillary migration of a deformable droplet. In Refs [12, 13],
the phase-field theory-based method was applied to simulate two-
dimensional (2D) and three-dimensional (3D) thermocapillary
migration of a deformable droplet. Moreover, the lattice
Boltzmann method (LBM) was extended to investigate
thermocapillary migration of deformable droplet and droplet
interactions [14–16].

Thus, thermocapillary migration of a droplet/bubble has been
studied in various ways, and many of the underlying physical
mechanisms have been well understood. Nevertheless, the
majority of these works considered the pure bubble or droplet
immersed into an ambient fluid, and the effect of the hollow part
inside the droplet on its thermocapillary migration was not covered.
In fact, the hollow droplets are frequently observed in nature and
engineering applications such as the hollow rain droplet formed by
water and air, thermal liquid spraying, and diesel injection nozzles.
Several investigations were performed, and the dynamics and heat
transfer of the hollow droplet with those of the pure droplet were
compared [17–22]. Gulyaev et al. [17] experimentally studied a
spherical hollow droplet impinging onto a solid surface and
observed the phenomena of counter-jet features in a wide range
of Reynolds andWeber numbers. Kumar and co-workers conducted
a series of investigations on the impact behavior of a hollow droplet
onto a substrate [18–20]. They found that the impacting and
spreading of a hollow droplet on a flat surface was quite different
from the behavior of a conventional pure droplet and observed that
the droplet’s void fraction and its distribution had significant
influences on the impact dynamics and final splat shape.

Recently, Li et al. [21, 22] simulated the dynamics and heat
transfer of a hollow droplet impact on a dry flat surface and
observed the counter-jet features and complex transient heat
transfer between the hollow droplet and solid surface in
comparison with an analogous pure droplet. Nasiri et al. [23]
investigated the hollow droplet impact on a solid surface through
different surface wettabilities, liquid properties, and impact
velocities, and the results showed that the mechanism of the
post-impact process was different in comparison with pure
droplet impact. Naidu et al. [24] studied the effect of air volume,
height of impact, and liquid viscosity of a hollow droplet on the
maximum spread and the volume of counter-jet.

The aforementioned findings showed a significant difference
between the hollow droplet and pure droplet in the dynamics
spreading and heat transfer. However, the author is not aware of
studies devoted to exploring the transport mechanism of hollow
droplet migration. Therefore, the aim of this paper is to investigate
the effect of hollow fluid inside the droplet on the transient
migration of the droplet together with different Ma, density
ratios (ρr), and radius ratios (Rr), and a hybrid axisymmetric
conservative phase-field LBM (ACPFLBM) is applied to study the
thermocapillary migration of the hollow droplet with difference in
variable fluid properties. The hydrodynamic Navier–Stokes
equation and the interface capturing equation are solved by
ACPFLBM, whereas the convection–diffusion equation for the
temperature field is solved by the second-order isotropic finite
difference method and the Runge–Kutta method. This hybrid
ACPFLBM model is first validated by a stationary droplet at a
uniform temperature field and thermocapillary migration of a
deformable droplet at the limit of zero Re and Ma numbers.
Subsequently, numerical simulations are carried out to investigate
the influence of Ma, ρr, and Rr on the thermocapillary migration of
the hollow droplet.

2 Theory and governing equations

In the thermal multiphase flow system, the fluid surface tension
usually varies due to the non-uniform temperature distribution, and
the effect of tangential gradient of surface tension or Marangoni
stress should be considered in the interface force F, which can be
written as [25]

F � ∇sσδ − σκdδn, (1)
where ∇s = (I − nn) ·∇ is the tangential gradient operator along the
interface, σ is the fluid surface tension, δ is the regularized delta
function, and κd = ∇ ·n is the curvature of the phase interface, with
n = ∇c/|∇c| as the outward pointing unit normal vector and c as an
order parameter. With the concept of CSF, δ is set at δ = 3D|∇c|2/2,
and the interface force F in Eq. 1 can be explicitly written as [14]

F � 3D
2

|∇c|2∇σ − ∇σ · ∇c( )∇c[ ] + μ∇c, (2)

where D is the interface thickness and μ is the chemical potential
which is defined by the variational derivative of mixing free energy E,
namely, μ = δE/δc = μ0 − κ∇2c, where μ0 = ∂E/∂c is the bulk chemical
potential and κ is the gradient coefficient. In phase-field theory, the
order parameter c is widely applied to identify the phase regions, e.g.,
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when the region is occupied by one fluid, c is equal to one (c = 1),
whereas when the region is also occupied by another fluid, c is given
by c = 0. The mixture free energy E of the two-phase flow can be
defined as [26]

E � ∫ E0 + κ

2
|∇c|2[ ]dΩ, (3)

where E0 is the bulk free energy, and it can be approximated by
E0(c) = βc2 (c − 1)2 in the phase-field theory. The relationship
between β, κ, D, and σ can be expressed as

β � 12σ
D

, κ � 3Dσ

2
. (4)

For most fluids, surface tension is a decreasing function with
temperature, and the relationship between surface tension and
temperature can be assumed as a linear relationship, which can
be given as

σ � σ0 + σT T − T0( ), (5)
where σ0 is the reference surface tension at temperature T0 and σT =
∂σ/∂T is the rate of surface tension change with temperature T. Then,
the interface force F can be further simplified as

F � 3D
2
σT |∇c|2∇T − ∇T · ∇c( )∇c[ ] + μ∇c. (6)

When the interface dynamic flow is driven by temperature
difference, the evolution of fluid–fluid interface can be captured
using the conservative Allen–Cahn equation, and the interface force
in Eq. 6 should be incorporated into the NSE as follows:

∂tc + ∇ · cu( ) � ∇ · M ∇c − s( )[ ], (7)
∇ · u � 0, (8)

ρ ∂tu + u · ∇u( ) � −∇p + ∇ · η ∇u + ∇u( )T( )[ ] + F, (9)
ρcp ∂tT + u · ∇T( ) � ∇ · λ∇T( ), (10)

whereM is the mobility, s = 4c (c − 1)n/D, ρ is the fluid density, p is
the dynamic pressure, η is the dynamic viscosity, and cp and λ are the
specific heat and thermal conductivity of the fluid, respectively.

When thermocapillary flow has an axisymmetric property
without swirl, the following axisymmetric governing equations can
be directly derived by the coordinate transformation from Eqs 7–10

∂tci + ∂α ciuα( ) + ciur

r
� ∂α M∂αci( ) +M

∂rci − si,r
r

−M∂αsiα, (11)

∂αuα + ur

r
� 0, (12)

∂t ρuα( ) + ∂β ρuαuβ + pδαβ( ) � ∂β η ∂αuβ + ∂βuα( )[ ]
+ η

r
∂αur + ∂ruα[ ] (13)

−ρuαur

r
− 2η
r2
urδαr + �Fα,

ρcp ∂tT + uα∂αT( ) � ∂α λ∂αT( ) + λ
∂rT

r
, (14)

where �Fα is derived from Fα in an axisymmetric form, which can be
explicitly written by �Fα � 3DσT(|∇c|2∂αT − ∂βT∂βc∂αc)/2 + �μ∂αc
with �μ � μ − κ∂rc/r, and the subscript of α or β is r and z with r
and z being radial and axial coordinates, respectively. In Eqs 13, 14,
the local physical quantities of fluid density ρ, viscosity η, and

conductivity λ usually change across the fluid interface; in the
present work, these values are calculated as follows:

ρ � c~ρ1 + 1 − c( )~ρ2, η � c~η1 + 1 − c( )~η2,
λ � c~λ1 + 1 − c( )~λ2, (15)

where ~ρi, ~ηi, and
~λi represent the physical density, viscosity, and

conductivity of the ith immiscible fluid, respectively.

3 Numerical methods

3.1 Axisymmetric LBM for interface
capturing

The previous section showed that the evolution of fluid–fluid
interface can be captured by the axisymmetric conservative
Allen–Cahn equation (ACACE) shown in Eq. 11 for
thermocapillary flow in the axisymmetric system. In this work,
LBM is applied to solve the interface capturing equation, and its
evolution equation for the order parameter c can be written as [27–29]

∂hi
∂t

+ ξi · ∇hi � − 1
τh

hi − h
eq( )

i[ ] + Si, (16)

where hi is the distribution function, τh is a single relaxation time, ξi
is the molecular velocity in the axisymmetric system, and h(eq)i is the
equilibrium distribution function defined by

h
eq( )

i � rωi Hi + c
ξi · u
c2s

+ 1
2

ξ i · u
c2s

( )2

− u2

c2s
( )[ ]{ }, (17)

with

Hi � c − 1 − ω0( )Γc[ ]/ω0, i � 0,
Γc, i> 0,{ , (18)

where Γ is an adjustable parameter, u = (ux, ur) is the fluid velocity in
the x − r plane, cs is the sound speed, and ωi is the weight coefficient
of the corresponding discrete velocity model. The source term Si in
Eq. 16 is defined as follows:

Si � rωiΓξ i · s. (19)
Through the standard discretization procedure in LBM, the
discretized form of Eq. 16 can be derived by

hi x + ξ iδt, t + δt( ) − hi x, t( ) � −ωh hi − h
eq( )

i( ) + δt 1 − ωh

2
( )Si,

(20)
where ωh = 2δt/(2τh + δt). Using Eqs 17–20, the order parameter c
can be calculated by hi, which can be defined as

c � 1
r
∑
k

hi, (21)

and the relationship between mobility M and τh is M � δtΓτhc2s .

3.2 Axisymmetric LBM for hydrodynamics

The hydrodynamic equations of Eqs 12, 13 can be solved by another
incompressible axisymmetric LBM, and the discrete axisymmetric
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Boltzmann equation with the Bhatnagar–Gross–Krook collision
operator without swirl can be written as [27–29]

∂fi

∂t
+ ξ i · ∇fi � −1

τ
fi − f

eq( )
i[ ] + Fi, (22)

where fi is the density distribution function and τ is the single
relaxation time, and the equilibrium density distribution function
f(eq)
i is defined as

f
eq( )

i � rρΓi u( ), (23)
where Γi(u) is defined as

Γi u( ) � ωi 1 + ξ i · u
c2s

+ 1
2

ξ i · u
c2s

( )2

− u2

c2s
[ ]{ }. (24)

Fi is the force term, and its explicit form can be written as

Fi � ξ i − u( ) · ~F
c2s

f
eq( )

i , (25)

with ~F � (�Fx, �Fr + c2s
r (1 − 2τur

r )).
Similar to the simple transformation technique used in single/

two-phase flow to reduce the compressibility effect [26], a new
distribution function gi is defined as [30]

gi � c2sfi + r p − ρc2s( )Γi 0( ). (26)
Accordingly, the new evolution equation for gi is derived from Eq.
22as follows:

∂tgi + ξi · ∇gi � −gi − g
eq( )

i

τ
− ξi − u( ) · ∇ p − ρc2s( ) Γi u( ) − Γi 0( )( )

+ ~F · ξ i − u( )Γi u( ),
(27)

where the modified equilibrium distribution function g(eq)
i is defined as

g
eq( )

i � rωi p + ρc2s
ξk · u
c2s

+ 1
2

ξk · u
c2s

( )2

− u2

c2s
( )( )[ ]. (28)

By applying the trapezoidal discretization rule to Eq. 27, the
simplified evolution equation of LBM for hydrodynamics can be
derived assuming a lowMach number, where ∇p (Γi(u) − Γk (0)) ~O
(|u|3) has been used with δp ~|u|2:

�gi x+ ξ iδt, t+δt( )− �gi x, t( ) �−ωf �gi −g eq( )
i( )

+δt 1−ωf

2
( ) ~F · ξ i −u( )Γi u( )[

+ ξ i −u( ) ·∇ ρc2s( ) Γi u( )−Γi 0( )( )],
(29)

where ωf = 2δt/(2τ + δt), and the distribution function �gi is defined
as [30]

�gi � gi − δt

2
−gi − g

eq( )
i

τ
+ ξi − u( ) · ∇ ρc2s( ) Γi u( ) − Γi 0( )( )⎡⎢⎢⎢⎣

+~F · ξ i − u( )Γi u( )].
(30)

The dynamic pressure and velocity of the fluid can be calculated by
moments of �gi [30]:

p � 1
r
∑
i

�gi +
δt

2
u · ∇ρc2s ,

ρc2s uα � r

r2 + τδtc2sδαr
∑
i

ξ iα �gi +
δt

2
c2s r�Fα + pδαr( )⎡⎣ ⎤⎦, (31)

and the relationship between η and τ can be given by η � τc2sδt.
The evolution of Eqs 20, 29 can be easily implemented in two
substeps in LBM, i.e., the collision step: h+i � hi − ωh(hi − h(eq)i ) +
δt(1 − ωh/2)Si and the streaming step: hi(x + ξiδt, t + δt) � h+i for
the interface capturing taken as an example, where h+i is the post-
collision distribution function.

3.3 Finite-difference method for the
temperature field

In the axisymmetric thermocapillary flow, the flow motion is
driven by the temperature difference. In this work, it is assumed that
the pressure work and viscous dissipation term in the energy
equation can be ignored, and the heat transfer in the two-phase
fluid system can be governed using Eq. 14, which can be rewritten as

∂tT � −u · ∇T + λ∇2T + ∇λ · ∇T + λ∂rT/r( )/ρcp ≡ R T( ). (32)

To solve this equation, the second-order explicit Runge–Kutta (RK)
method is applied to discretize the time derivative in Eq. 32 from t to
t + δt, and the time matching can be updated by following two
substeps [14, 31]:

T t + δt/2( ) � T t( ) + 0.5δtR t, T t( )( ),
T t + δt( ) � T t( ) + δtR t + δt/2, T t + δt/2( )( ), (33)

while the spatial derivative terms inR(T) and the evolutions of LBM
for interface capturing and hydrodynamics are evaluated by the
second-order isotropic finite-difference scheme [32]. With the
second-order isotropic finite-difference method and the second-
order RK method, the local value of temperature can be updated
using the convection–diffusion heat transfer equation in Eq. 32 for
axisymmetric thermal flow.

4 Results and discussion

Thermocapillary-driven flow is usually characterized by some
dimensionless parameters such as Re,Ma, capillary number (Ca), ρr,
viscosity ratio (ηr), conductivity ratio (λr), and specific heat ratio
(cpr) which can be defined as follows:

Re � ρ2UL

η2
, Ma � ρ2cp2UL

λ2
, Ca � η2U

σ0
, (34)

ρr �
ρ1
ρ2
, ηr �

η1
η2
, λr � λ1

λ2
, cpr � cp1

cp2
, (35)

where the subscripts of 1 and 2 denote the disperse and continuous
phases and the parameters of U and L are the characteristic velocity
and length of the fluid system, respectively. Some benchmark
problems are demonstrated to validate the present hybrid
ACACE LBM by including a stationary droplet immersed into a
uniform temperature system, and thermocapillary migration of the
deformable droplet/bubble at negligible Ma and Re numbers and
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thermocapillary migration of the hollow droplet are systematically
investigated. Due to the axisymmetric property of these problems,
such flows can be viewed as quasi-two-dimensional problems in the
meridian plane. In this work, a two-dimensional nine-discrete-
velocity model is applied to the present hybrid ACACE LBM
with the corresponding weight coefficient ωi chosen as ω0 = 4/9,
ω1−4 = 1/9, and ω5−8 = 1/36.

4.1 Model validation

4.1.1 Stationary droplet at the uniform temperature
field

The first test problem is a stationary droplet immersed into another
fluid with a uniform temperature distribution, which is used to validate
the present hybrid ACACE LBM. Initially, the center of the stationary
droplet is located at xc = (Lx/2, 0) with radiusR= Lx/10, and the uniform
temperature field T0 = 1 is imposed in the Lx × Lr fluid domain. For this
case, the uniform temperature field gives a stationary droplet, andMa =
Re = Ca = 0. The symmetric boundary condition is applied to the
symmetry axis, and the non-slip boundary condition is implemented for
other boundaries. In the simulation, the computational domain is
divided into Lx × Lr = 200 × 100 mesh, the fluid properties are
chosen as ρr = 0.1, ηr = 0.1, λr = 10, and cpr = 1, and the other
model parameters are given as τh = 0.5, D = 4, and M = 0.01, with the
surface tension σ0 = 0.001. The initial profile of c is given as

c x, 0( ) � 1
2

1 − tanh 2
|x − xc| − R

D
( )[ ]. (36)

Due to the uniform temperature distribution in this case, there is no
contribution of Marangoni stress to drive the droplet, and thus it should
be stationary. When the system reaches its equilibrium state, the
distribution of c across the droplet’s center is compared with its
initial profile, as shown in Figure 1A. It is shown that the prediction
of the order parameter c by the present hybrid ACACE LBM agrees well
with the initial profile, which implies that the droplet indeed keeps
stationary during the simulation. The temperature profile across the

center of the droplet in the x direction is also plotted in Figure 1B, and the
result shows that the temperature is a constant value in this two-phase
system, which induces a zeroMarangoni stress along the phase interface.

4.1.2 Thermocapillary migration of the deformable
droplet

Thermocapillary migration of a spherical droplet/bubble in an
infinite domain with a constant temperature gradient |∇T∞| at the
limit of 0Ma and small Re numbers is widely used to validate the
numerical method. In this problem, a theoretical prediction for the
terminal migration velocity UYGB of a spherical droplet/bubble with
radius R can be given as [3]

UYGB � 2U
2 + λr( ) 2 + 3ηr( ), (37)

where U is the characteristic velocity defined as

U � −σT|∇T∞|R
η2

. (38)

Initially, the center of the spherical droplet is located at xc = (Lx/2,
0) in a fluid domain Lx × Lr = 16R × 4R, and a linear temperature
distribution is imposed in the x direction with constant temperatures Tc
and Th (Th >Tc) at the bottom and top walls, respectively. Similar to the
previous case, the symmetry boundary condition is applied to the
symmetry axis and the non-slip boundary condition is used for other
boundaries. In the simulation, the droplet radius is R = 40, the physical
properties of the fluids are set at ρr = 1, viscosity ratio ηr = 1, thermal
conductivity ratio λr = 1, and specific heat ratio cpr = 1, with Tc = 0 and
Th = 64, and the dimensionless parameters are given as Re =Ma =Ca =
0.1. Figure 2 shows the velocity pattern and temperature field around
the droplet. It is shown that fluid currents are observed around the
droplet. The surrounding fluid is moving from a high temperature
region to a low temperature region, while the droplet is rising from the
cold region to the hot region, which is the result of a decreasing function
of surface tension force on temperature along the interface. The
isotherms across the droplet are almost straight lines, which implies
that the heat transfer around the droplet is through the conduction

FIGURE 1
Steady profiles of order parameters and temperature across the droplet. (A) Profile of c across the center of the droplet in the r direction and (B)
temperature distribution T across the center of the droplet in the x direction.
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process. The aforementioned phenomena have been reported by many
researchers [8,10,15]. In Figure 3, the dimensionless migration velocity
u* versus the dimensionless time t* predicted by the present hybrid
LBM is compared with the YGB theory [3], where u* is defined as u* =
u/uYGB, with u as the droplet migration velocity computed by u =∫V,c≥0.5rcuydV/∫V,c≥0.5rcdV, and t* is defined as t* = tU/R. The
prediction of u by the present LBM is 4.280 × 10−5, while the YGB
theory gives 4.216 × 10−5, and the relative error is 1.5%, which gives a
good quantitative agreement with the YGB theory [3].

4.2 Thermocapillary migration of the
deformable hollow droplet

Once the capability of the present hybrid ACACE LBM is
demonstrated by the previous benchmark tests, then it is applied
to investigate the thermocapillary migration of a deformable hollow
droplet under a constant temperature gradient along the x direction.
As shown in Figure 4, a concentric hollow droplet is composed of

FIGURE 2
Velocity patterns and temperature fields around the rising droplet.

FIGURE 3
Normalized migration velocity of the spherical droplet versus
time at Ma = Re = 0.1. The line represents the analytical prediction by
the YGB theory, and the dashed line with open circles represents the
present results.

FIGURE 4
Configuration of hollow droplet migration.

FIGURE 5
Migration velocity of the pure droplet and hollow droplet versus
time t* with Ma =100.
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inner (fluid 2) and outer (fluid 1) parts with an inner radius R2 and
outer radius R1 immersed into the surrounding fluid 2. Initially, all
fluids are stationary, and a linear temperature profile is imposed
along the x direction with a low temperature Tc and a high
temperature Th at the bottom and top walls respectively, and the
center of the hollow droplet is located at (Lx/2, 0) in a physical
domain Lx × Lr = 16R2 × 4R2. In the simulation, the parameters Re =
1.0, Ca = 0.1, cp1 = cp2 = 1.0, Tc = 0, Th = 64, T0 = 32, σT = −10–5, and
R2 = 40 are kept fixed with ηr = λr = ρ1/ρ2, and the same boundary
conditions are used as shown in Section 4.1; then, the effect of Ma,
density ratio ρr, and radius ratio Rr = R2/R1 between the inner and
outer radius of the hollow droplet on the performance of hollow
droplet thermocapillary migration is studied.

4.2.1 The influence of Ma
First, the influence ofMa varied from 1 to 1,000 on the hollow

droplet migration, and the interaction between fluid 2 of the
hollow part inside the droplet and sealed fluid 1 is investigated.
In the simulation, Rr and ρr are set to 1/2 and 1, respectively. In
Figure 5, the migration velocity (normalized to ur = U) of pure and
hollow droplets versus the dimensionless time t* is plotted atMa =
100. When the hollow droplet migrates, the interaction between
fluid 2 of the hollow part inside the droplet, sealed fluid 1 of the
droplet, and surrounding fluid 2 will appear, and some differences
are observed in the migration velocity of the pure and hollow
droplets. More specifically, it is shown in Figure 5 that the
magnitude of migration velocity of the hollow droplet is smaller

FIGURE 6
Snapshots of the temperature field around the pure droplet and hollow droplet withMa =100 at t*=1, 11, 40, and 80 (from top to bottom rows). The
columns of (A) pure droplet and (B) hollow droplet.
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than that of the pure droplet at the early time before fluid 2 of the
hollow part inside the droplet coalesces with surrounding fluid 2.
When fluid 2 of the hollow part inside the droplet crosses through
the interface formed by fluid 1 and surrounding fluid 2, the
migration velocity of the hollow droplet is suddenly accelerated
and then gradually slowed down to a lower value than that by pure
droplet migration. Figure 6 shows the comparison of time
sequences of the temperature field between the migration of
pure and hollow droplets at Ma = 100. For the pure droplet
migration, the isotherms are gradually accumulated around the
front of the droplet with a relatively large temperature gradient
along the migration direction, and a thermal wake is formed
behind the droplet with a relatively small temperature gradient
along the migration direction, which are consistent with the results
in many previous works [8,10,15]. For the hollow droplet
migration, fluid 2 of the hollow part inside the droplet migrates
faster than the sealed fluid 1 in the hollow droplet, and the
isotherms between the inner and the outer droplet fronts are a
bit denser than those in the pure droplet. Since the accumulated
isotherms are around the front of the hollow droplet, a higher
temperature gradient can lead to a larger driving force, and it is
observed that the transient migration velocity of the hollow droplet
is larger than that of the pure droplet when the interface
interaction in the hollow droplet enhances the temperature
gradient, as shown in Figures 5, 6.The effect of the Ma number
on the time evolution of hollow droplet migration velocity and the
transient temperature distribution around the hollow droplet is
shown in Figures 7, 8. The time evolution of hollow droplet
migration velocity shows that all the transient migration
velocities have a sudden enhancement and gradually reduce to a
value for different Ma numbers when fluid 2 of the hollow part
inside the droplet crosses the interface and coalesces with
surrounding fluid 2. The magnitude of migration velocity is
gradually reduced with the increase in Ma. The overshoot of
migration velocity occurs at the early state and shows a
significant difference with the increase in the Ma number. The
hollow droplet becomes a pure droplet in the later state, and the
migration velocity decreases with the increase in theMa number in

all simulations, which has been observed by the previous works for
pure droplet migration [8, 10, 15]. From Figure 8, it is observed
that the temperature field around the droplet is different at
different Ma as the time t* increased. The isotherms show that
the heat transfer through the hollow droplet is almost a conduction
process at the early time. As time increased, the isotherms
demonstrate that the heat transfer is changed from conduction
to convection around the hollow droplet before fluid 2 of the
hollow part inside the droplet merged with surrounding fluid 2.
Later, it forms a pure droplet. The isotherms undergo less
deformation at low Ma, as shown in Figure 8A, and much
more deformation at large Ma, as shown in Figures 6B, 8B,
after the formation of the pure droplet at t* = 40 and 80, which
are similar to those in a pure droplet migration simulation [8, 10,
15]. As shown in Figure 8, it shows that the isotherms and the
shape of the hollow inside the droplet are not changed remarkably
before it coalesces, while the isotherms and interface curvature of
fluid 1 in the hollow droplet change significantly during the
coalescence process, which induces a large migration velocity
and causes a large isotherm deformation. Moreover, the
measured time evolution of the distance d (as shown in
Figure 4) between the inner and outer droplet fronts is
presented in Figure 9 which is normalized by Ro for different
Ma numbers. It is shown that d is reduced to zero faster at small
Ma numbers than that at large Ma numbers, where fluid 2 of the
hollow part inside the droplet coalesces with surrounding fluid 2.
Similar to the effect on velocity migration of the hollow droplet, the
temperature gradient across the hollow part inside the droplet is
large at small Ma numbers, while it becomes relatively small at
large Ma numbers.

4.2.2 The influence of ρr
In this section, the influence of the density ratio ρr on the transient

evolution of the hollow droplet with Rr = 1/2 and Ma = 1.0 is
performed. In the simulation, ρr varies from 1 to 100, and the
other parameters are the same as those in the previous subsection.
In Figure 10, the transient hollow droplet migration is measured at
different ρr values. The time evolution of migration velocity shows
that the magnitude of migration velocity is increased with ρr, and the
snapshots of the temperature field are presented in Figure 11. When
the density ratio is small at ρr = 1, as shown in Figure 8, the isotherms
show that the heat transfer takes place through conduction through
the hollow droplet before coalescence, while the isotherms are
accumulated around the front and back of the hollow droplet with
a large density ratio. These phenomena demonstrate that the larger
density ratio used the larger temperature gradient that occurs across
the hollow droplet, which induces a large driven force for the hollow
droplet migration. When fluid 2 of the hollow part inside the droplet
merges with the surrounding fluid 2, it also induces a large oscillation
on the migration velocity, a large shape change, and isotherm
accumulation for the droplet as shown in Figure 11, and it can be
observed that the induced amplitude variation in migration velocity is
increased with the increase in ρr. Afterward, the hollow droplet
becomes a pure droplet, and the isotherms gather around the
droplet at a large density ratio, which induces large velocity
migration. Similar results of the influence of the density ratio on
the pure droplet migration were observed, and its migration velocity
was enhanced with the large density ratio [14].

FIGURE 7
Migration velocity of the hollow droplet versus time t* with
Ma =1,10,100, and 1,000.
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FIGURE 8
Snapshots of the temperature field around the hollow droplet at t*=1, 11, 40, and 80 (from top to bottom rows). The columns of (A)Ma = 1 and (B)
Ma = 1,000.

FIGURE 9
Time evolution of d with Ma =1,10,100, and 1,000.

FIGURE 10
Migration velocity of the hollow droplet versus time t* with
ρ =1,10,50, and 100.
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In Figure 12A, the distance d is measured for different ρr
values. It is shown that d decreases fast with a large density ratio,
which implies that fluid 2 of the hollow part inside the droplet
merges faster at large ρr values than at small values. The reason is
that the large density ratio gives a large λr which can make the
isotherms accumulate around the hollow droplet as shown in
Figure 11 and induces a large migration velocity for fluid 2 of
the hollow part inside the droplet. For the comparison with large
Ma numbers, the time evolution of d is presented at Ma = 100 as
shown in Figure 12B. It is shown that the change rate of d is slowed
down at Ma = 100. It is consistent with the results of the influence
ofMa on d in the previous subsection, and this further implies that
the density ratio does not change this trend on d by the influence
of Ma.

4.2.3 The influence of Rr

The comparison of pure and hollow droplets in Section 4.2.1
shows that fluid 2 of the hollow part inside the droplet has obvious
effect on the transient thermocapillary migration, and the previous
study showed that the influence of droplet void fractions on the
impact behavior of a hollow droplet and its final splat shape onto a
substrate is significantly different from that of the pure droplet
[19]. In this subsection, the influence of Rr on thermocapillary
migration is first studied with Ma = 1, ρr = 1, and Rr varying from
0 to 3/4, where Rr is tuned by R2. The transient migration velocity is
plotted in Figure 13A, and the results show that the amplitude
variation in migration velocity is increased with Rr. The interaction
between fluid 2 of the hollow part inside the droplet and sealed
fluid 1 of the droplet is enhanced with the increase in Rr, and a large

FIGURE 11
Snapshots of temperature field around the hollow droplet at t*=1, 5, 20, and 40 (from top to bottom rows). The columns of (A) ρ = 10, (B) ρ = 50, and
(C) ρ = 100.
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FIGURE 12
Time evolution of d with ρr =1, 10, 50, and 100. (A) Ma = 1 and (B) Ma = 100.

FIGURE 13
Migration velocity of the hollow droplet versus time t* with Rr = 3/8,1/2,5/8, and 3/4. (A) Ma = 1 and (B) Ma = 100.

FIGURE 14
Time evolution of d with Rr =3/8,1/2,5/8, and 3/4. (A) ρ =1, Ma =1; (B) ρ =1, Ma =100; and (C) ρ =50, Ma =1.
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value of Rr causes a large curvature effect which induces a large
amplitude variation in migration velocity for the hollow droplet.
When theMa number is increased to 100, as shown in Figure 13B,
the migration velocity is reduced compared to Ma = 1 at different
values of Rr. As discussed previously on the influence of Ma
numbers at Rr = 1/2 as shown in Figure 8, the temperature
gradient across the hollow droplet is decreased with the
increase in Ma, which causes a small migration velocity with a
large Ma number.

In Figure 14, the time evolution of d is measured for three cases
with Rr = 3/8, 1/2, 5/8, and 3/4: (A) ρ = 1,Ma = 1; (B) ρ = 1,Ma = 100;
and (C) ρ = 50,Ma = 1. The results show that d reaches zero at a short
time with large Rr for each case, due to the small initial value of d, and
fluid 2 of the hollow part inside the droplet with large Rr merges faster
with surrounding fluid 2 than that with the small Rr. When Ma
increases to 100, the time evolution of d is slowly reduced to zero in
comparison with Ma = 1 at different values of Rr; however, the
differences are not significant. While the density ratio is increased to
ρr = 50, fluid 2 of the hollow part inside the droplet merges faster than
that with ρr = 1. As shown in Figure 15A, Ma has no significant
influence on the relativemigration velocity betweenfluid 2 of the hollow
part inside the droplet (u2) and sealed fluid 1 of the droplet (u1) denoted
by u12 = u2 − u1, which is measured before fluid 2 of the hollow part
inside the droplet that coalesces with surrounding fluid 2, whereas ρr
and Rr have obvious influence on u12 as shown in Figures15B, C.
Compared with the effect of Rr, the change in density ratios can
significantly affect the relative migration velocity u12 in Figure 15B,
the reason why the density ratio ρr has a significant influence on the
time evolution of d in contrast to Rr and Ma.

5 Conclusion

In this work, a hybrid ACACE LBM is developed to simulate
thermocapillary migration of the hollow droplet with difference in
variable fluid properties. The interface interaction between different
phases is modeled by a potential formulation of interfacial tension force,
and the Marangoni stress is modeled by the concept of continuum
surface force. Both forces are included in the Navier–Stokes equations.
The evolution of fluid–fluid interface is captured by the conservative

Allen–Cahn equation, and the heat transfer in the two-phase system is
governed by the convection–diffusion equation. Two LBMs are applied
to solve the hydrodynamic and interface capturing equations,
respectively, whereas the convection–diffusion equation for
determining the temperature field is solved by the isotropic finite
difference method for spatial discretization and the second-order
Runge–Kutta method for time matching. The model is validated by
the stationary droplet at the uniform temperature field and
thermocapillary migration of the deformable droplet at the limit of
zero Reynolds and Marangoni numbers.

Thermocapillary migration of the hollow droplet with a constant
temperature gradient along the x direction is simulated by the present
hybrid ACACE LBM, and the influence ofMa number (Ma = 1–1,000),
ρr (ρr = 1–100), and Rr (Rr = 3/8–3/4) on the performance of hollow
droplet migration is systematically investigated. It is shown that the
aforementioned non-dimensional parameters have the effect on
thermocapillary migration for the hollow droplet. When Ma is small,
the isotherms show the heat transfer takes place through conduction
around the hollow droplet. AsMa increases, the heat transfer is changed
from conduction to convection around the hollow droplet, whereas the
time evolution of d is slowed down in comparison with smallMa. When
the density ratio is increased, the isotherms are accumulated around the
hollow droplet front with a large temperature gradient, which induces a
large driven force for the hollow dropletmigration, and the change rate of
d is fast at large ρr. On the other hand, the radius ratio ofRr can also affect
the hollow droplet migration. It is shown that the interaction between
fluid 2 of the hollow part inside the droplet and sealed fluid 1 of the
droplet is enhanced with large Rr, and a large amplitude variation in the
migration velocity of the hollow droplet is observed with the increase in
Rr. The measured time evolution of d demonstrates that the density ratio
ρr has a significant influence on the reduction rate of d in contrast to Rr
andMa, and themagnitude of relativemigration velocity u12 is obviously
affected by ρr and Rr compared to Ma.
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FIGURE 15
Relative migration velocity u12 between the inner and outer droplets versus time t*. (A) Effect of Ma, (B) effect of ρr, and (C) effect of Rr.
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