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Laser-driven proton-boron (pB) fusion has been gaining significant interest for
energetic alpha particles production because of its neutron-less nature. This
approach requires the use of B- and H-rich materials as targets, and common
practice is the use of BN and conventional polymers. In this work, we chose
plasma-assisted vapour phase deposition to prepare films of oligoethylenes
(plasma polymers) on Boron Nitride BN substrates as an advanced alternative. The
r.f. power delivered to the plasma was varied between 0 and 50W to produce
coatings with different crosslink density and hydrogen content, while maintaining the
constant thickness of 1 μm. The chemical composition, including the hydrogen
concentration, was investigated using XPS and RBS/ERDA, whereas the surface
topography was analyzed using SEM and AFM. We triggered the pB nuclear fusion
reaction focusing laser pulses from two different systems (i.e., the TARANIS multi-TW
laser at theQueen’s University Belfast (United Kingdom) and the PERLA B 10-GW laser
system at the HiLASE center in Prague (Czech Republic)) directly onto these targets.
We achieved a yield up to 108 and 104 alpha particles/sr using the TARANIS and PERLA
B lasers, respectively. Radiative-hydrodynamic and particle-in-cell PIC simulations
were performed to understand the laser-target interaction and retrieve the energy
spectra of the protons. The nuclear collisional algorithm implemented in the WarpX
PIC codewas used to identify the regionwhere pB fusion occurs. Taken together, the
results suggest a complex relationship between the hydrogen content, target
morphology, and structure of the plasma polymer, which play a crucial role in
laser absorption, target expansion, proton acceleration and ultimately nuclear
fusion reactions in the plasma.
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1 Introduction

At present, the world is facing a global energy crisis due to our
dependence on non-renewable energy sources. One of the possible
solutions may be found in the exploitation of nuclear fusion energy
sources using magnetic confinement [1] or inertial confinement [2]
approaches using deuterium-tritium (DT) as fuel. Proton-boron
(pB) nuclear fusion requires a higher plasma temperature to achieve
ignition compared to DT fusion, however, remains an exciting
approach based on the generation of alpha particles, with a low
neutron yield (<0.1%), thus without radioactive activation or waste.
Additionally, the fuel isotopes are abundantly available (H and B)
[3]. The three main schemes of the reaction are:

p+11B → 3α + 8.7MeV

p+11B → α0 + 8Be + 8.6MeV → α0 + α01 + α02
p+11B → α1 + 8Be* + 5.7MeV → α1 + α11 + α12

The overall products are three energetic alpha particles. The
alpha particles can be captured by a magnetic field and used as a
source of renewable energy [4] or in general be used to build an
“ultraclean” fusion reactor [5–8]. Otherwise, fusion generated alpha
particles are extremely useful in numerous biomedical applications,
including radiobiology and cancer treatment [9–11], or could also be
used for neutron-less nuclear-fusion-based propulsion in space [12].
Additionally, the generation of an energetic alpha particles source
could pave the route towards societal applications, such as non-
destructive material analysis [13] and radioisotopes production for
imaging or therapy [14, 15]. However, such a thermal nuclear fusion
approach is difficult because of the enormous temperatures required
to trigger pB fusion when compared to DT-based approaches.

Non-thermal laser-driven pB fusion has been gaining significant
interest in recent years. The basis of the process is the irradiation of
materials rich in boron and hydrogen with high-energy pulsed
lasers. The mechanisms of laser-driven ion acceleration depend
on the target thickness and laser characteristic (pulse duration
and energy delivered on target). For macroscopic thick targets
(>100 μm), the generated ions can be accelerated in the backward
direction due to a combination of the Coulomb explosion
mechanisms and space-charge effects (hot electrons escaping the
plasma) [16, 17]. Since the first laser-driven pB fusion experiment in
2005 [18], many other experiments have been carried out with
improved diagnostics, experimental setup, targets, and laser systems
[19–24] reaching a maximum alpha particles yield of 3×1010 α/sr/
shot [25].

In previous pB fusion experiments commercially available
Boron Nitride (BN) has been used in the in-target geometry [25].
The properties and benefits of BN as a boron-rich material are well
known [26]. In such targets the hydrogen concentration depends on
contamination during the material synthesis. Recent improvements
in DT fusion show the importance of target manufacturing in
optimizing the fusion yield [27]. Considering pB fusion, an area
for optimization is through controlling the hydrogen-boron ratio to
increase the alpha particles yield for a given laser. One option is
through the use of polymers which have a large diversity of chemical
composition and a wide range of inherent time and length scales
make them extremely interesting as tunable reservoirs of hydrogen
[28]. For example, poly(ethylene) is an aliphatic polymer with a very

high (67 at%) hydrogen content. The first pB experiments used
commercially available polymers in the form of macroscopic foils or
sheets and combined them with BN in a composite target (in-target
configuration) [18] or as a tandem unit (pitcher-catcher
configuration) [29]. Recently, plasma-assisted vapor phase
deposition [28], [30–32] has been used to prepare thin films of
hydrocarbon plasma polymers (ppC:H) on BN substrates and
successfully used this in-target geometry to trigger pB fusion with
a compact tabletop laser [33]. The method benefits from precise
control of the thickness and chemical composition of the deposited
plasma polymers, providing an environmentally benign workflow.
Furthermore, low-temperature plasma-based methods offer non-
equilibrium media to mix thermodynamically immiscible materials
[34, 35], boron and hydrocarbons being an example, which might be
indispensable in the future preparation of highly customized micro-
and nanostructured targets.

The research presented here is the first attempt to obtain a
deeper understanding of the role of the chemical composition,
structure, and density of ppC:H thin films in the mechanism of
the pB reaction and how the alpha particles yield can be affected
when triggered by two laser of significantly different peak powers
values (i.e., multi-TW TARANIS [36] and 10-GW PERLA B [37]
laser systems) and pulse (or prepulse) temporal shape.

2 Materials and methods

2.1 Sample preparation

Thin films of hydrocarbon plasma polymers were deposited on
BN substrates (1.5 mm thick, Fondazione Bruno Kessler FBK) using
plasma-assisted vapor phase deposition of poly(ethylene) (PE,
Sigma-Aldrich, Mn = 2 × 104 g/mol). The generic scheme of the
process is shown in Figure 1A. Before deposition, granules of PE
were loaded into a crucible which was positioned above a graphite
electrode. The deposition chamber was pumped to a base pressure of
10−4 Pa using a tandem of rotary and diffusion pumps, and then Ar
was introduced at a flow rate of 10 sccm, setting the working
pressure at 5.2 Pa. The crucible was heated to achieve a release of
oligoethylenes, which was monitored by Quartz Crystal
Microbalance (QCM). After a pre-heating stage, the temperature
of the crucible was set at 300°C to maintain the constant deposition
rate of oligoethylenes of 16 nm/min. In the case of experiments with
plasma, an r.f. discharge (13.56 MHz) was initiated by delivering
power from an r.f. power supply (R600 Kurt J. Lesker) to the
graphite covered electrode through an automatic matching unit
(R600 m KJL). Then substrates were introduced into the chamber
using a loadlock and the depositions were performed.

2.2 Sample characterization

The thickness of thin films was measured by spectroscopic
ellipsometry (Woolam M-2000DI) on samples deposited on
polished silicon substrates to avoid difficulties related with the
surface roughness. The measurements were done at three angles
ranging from 50° to 70° and in the wavelength range of
192–1690 nm. The ellipsometry data were fitted using Complete
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EASE software (J.A. Woollam) according to a Cauchy model for
silicon substrate with 1.5 nm of native oxide. For the calculations of
the film density, the samples of known thickness were deposited on
Al foils with known surface area. The density of the films was
measured gravimetrically by taking the Al foil weight difference
before and after deposition (micro-scale Sartorius, CP225D-0CE,
0.01 mg) and dividing it by the film volume.

The surface topography of ppC:H thin films on BN was
measured using Atomic Force Microscopy AFM and Scanning
Electric Microscope equipped with Energy Dispersive X-ray
detector SEM-EDX. The AFM measurements were performed in
an intermittent contact mode (Ntegra, NT-MDT) using standard
silicon cantilevers (Multi75-Al-G, BudgetSensors) in air. Images of
256 × 256 data points were acquired with different scan sizes.
Second-order polynomials were subtracted from the raw data to
remove the sample tilt. The SEM/EDX measurements (JSM-7200F
SEM with JED-2300 EDX, Jeol) were carried out in a side-view
orientation with a 10 kV acceleration voltage after the sample
metallization with a 10 nm gold layer.

The chemical composition of ppC:H thin films was studied
by Fourier-Transform Infrared spectroscopy (FTIR), X-ray
photoelectron spectroscopy (XPS), Rutherford Back-scattering
spectrometry (RBS) and Elastic recoil detection analysis (ERDA).
The FTIR measurements (Bruker Equinox 55) were performed in a
reflectance−absorbance mode on samples deposited on gold-mirror-
covered silicon with a resolution of 4 cm-1 and with 200 scans. The
XPS spectra (XPS, Phoibos 150, Specs) were acquired using an Al Kα
X-ray source (1486.6 eV, Specs). Wide and high-resolution spectra
were acquired with a pass energy of 40 eV and 10 eV, respectively.
The spectra were analyzed using CasaXPS software and charge-
referenced to aliphatic carbon at 285.0 eV. RBS/ERDA was
performed using a tandem accelerator, Tandetron MC 4130. For
RBS, He+ ions were used at an energy of 3.07 MeV for the
identification of O, whereas H+ ions were used at an energy of
1.74 MeV for the detection of C using non-Rutherford cross section
for elastic scattering advantageously offering enhancement of light

element sensitivity detection. The scattered beam ions were detected
by an ORTEC ULTRA-series detector with an active area of 50 mm2

and a thickness of the depletion layer of 300 μm. The detector was
placed at a backscattering angle of 170° out of a plane (the Cornell
geometry). In the ERDAmethod, He+ ions were used at an energy of
2.5 MeV for the depth profiling of H up to the analytical depth at
about 500 nm. The detector was placed at a backscattering angle of
30° in a plane (the IBM geometry). All samples were measured at
three different spots to avoid any damage during measurements and
the final spectrum was provided as a sum of articular spectra from
different beam spots. The RBS/ERDA recorded spectrum analysis
was done using a SIMNRA code [38].

2.3 Laser-driven pB fusion reaction

Calibrated CR-39 (polyallyl diglycol carbonate) is a solid-state
nuclear track detector able to detect and distinguish alpha particles
emitted from laser-driven pB fusion with respect to other particles
from the plasma emission [39]. Energetic nuclei disrupt chemical
bonds when passing through the polymer, leaving tracks of broken
polymer structure. These tracks can be exposed by removing the
damaged material in alkali solutions. Irradiation of CR-39 with
known sources of energetic nuclei allows for a spectroscopic
calibration, which can be subsequently used to discriminate the
traces from alpha particles obtained in pB experiments.

Experiments here described were performed focusing the laser
beam tightly to the target surface. In such a scheme, the pB reaction
occurs in the plasma environment and consequently, the generated
alpha particles are affected by the plasma conditions. This scheme is
called “in-target” configuration. The mm-thick target allows the
detection of ions only in the front side of the target (for instance the
same hemisphere of the laser direction). Two different experimental
setups were used as depicted in Figures 1B, C, respectively for the
TARANIS laser at Queen’s University Belfast (United Kingdom)
and for the PERLA B laser at HiLASE, Dolni Brezany (Czech

FIGURE 1
Design of the experiments: (A) plasma-assisted vapor phase deposition of ppC:H films on BN; (B) scheme of the TARANIS laser experiment; (C)
scheme of the PERLA B laser experiment.
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Republic). The TARANIS laser pulse has a wavelength of 1.053 μm,
temporal width of 800 fs, energy of 8 J/pulse and can reach
intensities around 2 × 1019 W/cm2 on target. The laser pulse was
focused onto the ppC:H/BN target at an incidence angle of 15° with
respect to the target normal. The CR-39 detector was placed at angle
of 85° with respect to the target normal and a distance of 50 cm. A
large detection angle relative to the target normal was used to reduce
the flux of other backwards accelerated ions (e.g., carbon, boron,
nitrogen, etc.) on the CR-39 detector. Three consecutive shots were
fired in the same target conditions to improve the statistics of traces
on the CR-39 detector with a repetition rate of 1 shot per 20 min.
The BN target used at the TARANIS laser system had a 1 μm ppC:H
layer deposition on the front surface. The PERLA B laser pulse has a
wavelength of 1.030 μm, temporal width of 1.6 ps, energy of 17 mJ/
pulse and can reach intensities around 2 × 1016 W/cm2 on target.
The incident angle was set to 45° with respect to the ppC:H/BN
target normal and several hundreds of shots were made per each
target at a repetition rate of 1 Hz. In this case the ppC:H layer was
680 nm in thickness. The CR-39 detector was positioned on the
front of the target in the laser backward direction, covering large
angle from −10°–58° as shown in Figure 1C. In both cases, diamond
detectors working in a Time of Flight (TOF) geometry were installed
to check the interaction shot-to-shot. Al foils of different thicknesses
were placed as filters in front of the CR-39 detector sensitive surface
to study the alpha particles energy distribution based on the cutoff
energy determined by the Al foil thickness, and also to avoid
saturation of the detector by undesired low energy plasma
particles. The cutoff energy of the Al filters was calculated using
LISE++ [40] and the results are shown in Table 1.

The CR-39 detectors were etched in 6.25 M NaOH at 70°C for
1 h (TARANIS) and 3 h (PERLA B). The calibration for alpha
particles and protons was performed in the range of energies
from 0.3 to 5.0 MeV, according to the described in [41]. Detailed
analysis of the calculation of the total alpha particles yield can be
found in [29].

2.4 Numerical simulations

The laser plasma interaction can be modeled using a combination
of 2D radiative-hydrodynamic and particle-in-cell (PIC) simulations.
The PERLA B laser system has a 1.5 picosecond prepulse arriving 14 ns
before the main pulse with a contrast of ~10−3. The prepulse interaction
and subsequent plasma expansion was modelled using a 2D radiative-
hydrodynamic simulation carried out with the FLASH code [42]. A

particle-in-cell simulation based on the SMILEI PIC code was used to
model the interaction with the main laser pulse thanks to the output of
the FLASH simulation. A detailed description of the simulations and
full results are presented in [33].

Similarly, the interaction between the TARANIS laser and the
ppC:H/BN targets was modelled using a combination of the FLASH
2D radiative-hydrodynamic and WarpX ([43] PIC simulations
codes respectively).

The TARANIS laser system has a ns pedestal with a contrast of
~10−7. Therefore, the effect of the pedestal on the thin ppC:H
deposition layer needs to be considered. The interaction between
a 1.5 ns pedestal with a ppC:H layer at 15° incidence to the target
normal was modelled using the FLASH code in 2D Cartesian
geometry for three ppC:H densities of 600, 900 and 1,650 kg/m3.
An initial ionization fraction of ~4% was used to ensure that the
target was not transparent to incident radiation in FLASH. The
FLASH code uses adaptive mesh refinement to increase resolution in
regions with large temperature or density gradients. In these
simulations the minimum grid cell size was 100 nm × 100 nm.

The output of the FLASH simulation was used to set the initial
conditions of the PIC simulation. Using the WarpX [43] PIC code,
the interaction between the target and the main laser pulse (8 J,
800 fs FWHM, 6.5 μm FWHM), and incident on the target at 15° to
target normal, was modeled. A simulation box of approximately
50 μm × 80 μm and cell size of 8 nm × 8 nm was used. The number
of macroparticles in the cell was set such that the number of particles
per cell (ppc) was comparable to the number density in units of
critical density (nc) for C, H, and electrons. To minimize the
computational cost, a reduced number of ppc was used for the
BN layer behind the ppC:H set to 25 ppc for B and 16 ppc for N. The
electron ppc in this region was also capped to 81 ppc. WarpX
implements a nuclear collisional algorithm outlined in [44] to
enable the calculation of fusion reactions, including the pB reaction.

3 Results

3.1 Target characterization

The concept of macroscopic kinetics of plasma polymerization
considers the energy delivered per precursor molecule during its
residence in the plasma [45]. At low specific energy, precursors
undergo little fragmentation and integrate into the growing film,
mostly preserving their chemical motif. At high specific energy,
significant fragmentation occurs, and the film grows from random
molecular fragments, losing the chemical identity of the precursor.
Plasma-assisted evaporation of polymers obeys the same
macroscopic concept, with the only difference that precursors
are not low-molar-mass molecules, but larger oligomers. Vacuum
thermal decomposition of poly(ethylene) releases a flux of
oligoethylenes with a mean molar mass of 1,400 g/mol, which
corresponds to 100 CH2 units in the macromolecular chain [28].
An essential part of the fragmentation of hydrocarbons in plasma
is the cleavage of C-H bonds with loss of atomic hydrogen, which
leads to a deficit of hydrogen in the resultant coating. Since
hydrogen is one of the only two reactants in pB fusion, special
care should be taken to maximize its retention in plasma
polymers.

TABLE 1 Cutoff energies of Al filters for different ion species calculated by
LISE++.

Ions Cutoff energy (MeV)

6.5 μm Al 14 μm Al

Proton 0.6 1.0

Alpha particles 1.8 3.7

Carbon 7.5 16.3

Nitrogen 9.0 20.0
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Three types of ppC:H samples were prepared with 15 and 50W
plasma and without plasma, and their elemental content was analyzed
by XPS and RBS/ERDA (Table 2). Although XPS is a surface-sensitive
technique (the analysis depth is up to 10 nm) and RBS/ERDA probes
the bulk of the film (the analysis depth is micrometers), both methods
provide remarkably similar results, confirming that only
hydrocarbons are present in the films. Simultaneously, XPS is not
capable of detecting H, which is done by ERDA. No contamination
from other elements is detected except for oxygen, which becomes
incorporated into the films deposited with the plasma assistance
because of post-deposition oxidation. The aging of plasma
polymers is well documented; it is attributed to reactions of
atmospheric oxygen with unquenched carbon radicals present in
such films, with the higher plasma power leading to more drastic
oxidation [46–48]. It is worth noting that in our case the
concentration of oxygen does not exceed 3 at%, even for the
highest power of 50W used, which means that the depositions are
performed in a power-deficient regime, with good retention of the
chemical pattern of the precursor. Indeed, the RBS/ERDA data
indicate that the H/C ratio is close to that of PE (H/C = 2.0) for

all types of films. The H/C ratio decreases with plasma power,
pointing to a cleavage of C-H bonds that occurs in oligomers due
to electron impact in the gas phase and in the growing film due to ion
bombardment, and hence to a partial loss of hydrogen. As an
illustrative example, we present an RBS spectrum of the 15W
ppC:H sample showing high signal of C in non-Rutherford
scattering which is measured using H+ ions at 1.7 MeV resonant
energy in Figure 2A. We see homogeneous C distribution
accompanied with H distribution measured by ERDA in
Figure 2.b. However, its absolute concentration is still more than
60 at%, even in the 50W film, which also supports the idea that these
films belong to a class of soft plasma polymers as opposed to hard
hydrogenated carbon coatings [49]. The ppC:H can be customized
and adapted on the specific laser-driven pB experiments by simply
changing the power delivered to the plasma.

In more detail, the chemical composition of the ppC:H films was
analyzed by high-resolution XPS, NMR, and FTIR spectroscopy.
The C 1s XPS spectra (Figure 3A) are symmetric and perfectly
overlap for all three films, confirming that the plasma assistance
followed by the subtle oxidation does not influence the aliphatic

TABLE 2 Elemental content of oligoethylene thin films (in at. %) deposited with and without plasma assistance, as detected by XPS and RBS/ERDA, and density of
ppC:H films.

Sample XPS RBS/ERDA Film density [kg/m3]/Thickness ellipsometry [nm]

C O C H O H/C

no plasma 99.7 0.3 34.0 ± 0.7 66.0 ± 3.3 0.0 ± 0.0 1.94 620 ± 390/445

15 W 98.0 2.0 34.0 ± 0.7 64.0 ± 3.2 2.0 ± 0.04 1.88 890 ± 410/780

50 W 97.1 2.9 35.5 ± 0.7 62.0 ± 3.1 2.5 ± 0.05 1.76 1650 ± 285/2000

FIGURE 2
(A) RBS spectrum of pp:CH 15 W using H+ ion beam of 1.7 MeV energy shows enhanced carbon signal in the deposited layer and (B) complementary
measurement by He+ ions in ERDA shows H homogeneous distribution within the layer. The thickness was indicated as 4,900×1015 atoms/cm2.
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character of the plasma polymers. Our previous NMR studies
(Figure 3B) showed that the 13C CP/MAS spectra are dominated
by the CH2 groups with a sharp resonance at 32.6 ppm accompanied
by a weaker shoulder at 30.3 ppm [50]. The dominant peak and the
shoulder belong to the crystalline and amorphous phases of
oligoethylenes [51]. The NMR detection of the crystalline order
is also in line with our earlier XRD studies that found a high degree
of crystallinity and specified an orthorhombic structure in such films
with lattice parameters matching those of poly(ethylene) [52]. The
contribution from the amorphous phase is enhanced in the plasma
polymerized film, which reflects the deterioration of the short- and
long-range order. Nevertheless, the amorphization is not complete
in contrast to an entirely amorphous character of typical plasma
polymers.

The NMR spectra are also characterized by the presence of a
minor signal at 14.6 ppm from the CH3 groups, which serve as end-
or side-groups in branched poly(ethylenes). The resolution of the
NMR spectra does not allow us to distinguish whether the
contribution from the CH3 groups changes with plasma power;
however, complementary FTIR measurements provide such
information (Figure 3C). Expectedly, the dominant FTIR peaks at
2,905 cm−1 and 2,847 cm−1 belong to the asymmetric and symmetric
stretching vibrations of the CH2 groups, whereas weaker stretching

and deformation vibrations of the CH3 groups are manifested at
2,957 cm−1 and 1464 cm−1 [53]. With increasing plasma power, both
types of vibrations are enhanced, with stretching vibrations
submerging into those of the CH2 groups. Furthermore, a broad
band develops in the midspectral range, which is contributed by the
stretching vibrations of the C=O (1,715 cm−1) and C=C (1,655 cm−1)
functionalities. The appearance of these unprotonated moieties
agrees with the observed oxidation and deprotonation of the
ppC:H films, while the enhancement of the CH3 groups points to
an enhanced macromolecular branching and to a decrease in order.

Interestingly, subtle changes in the chemical landscape of the
ppC:H films contrast with a substantial deviation in the film density
(Table 2). The film deposited without plasma shows a density of
620 kg/m3, which is significantly lower than ~900 kg/m3 of
conventional poly(ethylene). Vapor-deposited oligoethylenes are
known to undergo self-organization phenomena at a solid
interface, forming multi-terrace islands with a large portion of
unoccupied space in between [52]. Although the porosity of thick
coatings has not been studied, it can be hypothesized that they also
contain a significant number of voids that decrease the net density of
the material. The use of plasma during deposition brings a
competing contribution of the active species from the gas phase.
Radicals participating in the recombination reactions and ions
bombarding the growing film intervene with the island growth
by inducing cross-linking and densification of the film. Thus, the
films prepared with plasma of 15 W and, to a larger extent, with
plasma of 50 W are characterized by a higher cross-link density,
shorter molecular chains between junctions, and a higher net density
of the coatings, which reaches 1650 kg/m3 for the 50 W ppC:H.

For the preparation of targets for pB fusion, the same ppC:H
films were deposited using BN as substrates, and their morphology
was investigated. Figure 4A shows the AFM height images and
compares the 15 W ppC:H 800 nm-thick film deposited on BN and
on polished Si. The surface of the ppC:H/BN sample is very rough,
with the surface profile fluctuating on a micrometer scale, as can be
seen from the z-axis of the image. The same film deposited on Si is
much smoother and its surface profile fluctuates in the tens of
nanometers scale. Thus, the intrinsic morphology of the ppC:H film
should not significantly affect the overall morphology of the targets,
which is predominantly given by the surface morphology of BN
substrates.

This finding is further supported by the dependence of the RMS
roughness of the ppC:H/BN samples measured for different AFM
scan sizes (Figure 4B). No significant difference is found between the
films deposited at different powers, evidencing that the roughness is
given by BN. For the sake of argument, it can be observed that the
dependence is linear in log-log coordinates, giving a notable value of
the roughness exponent α = 1.0, which points to a self-affine
character of the BN surface [54].

The structure of the ppC:H/BN samples was also studied by
SEM/EDX. A cross-sectional SEM image of the 15 W ppC:H sample
reveals a highly porous structure of BN, which is a result of the hot-
press sintering of BN powder used for its production (Figure 4C,
other samples are not shown as they provide similar results). The
high roughness of the surface does not allow us to distinguish the
ppC:H layer and investigate its possible penetration into the pores.
However, the EDX analysis helps to solve this issue. Figure 4D shows
the EDX images of a cross-sectional area coded in different colors for

FIGURE 3
Chemical composition of ppC:H films deposited with and
without plasma: (A) overlayed XPS C 1s spectra; (B) 13C CP/MAS NMR
spectra (adapted from [50] with permission from Wiley-VCH); (C)
FTIR-RAS spectra.
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individual elements of boron, nitrogen, and carbon, and the overlay
of all the colors. The black voids in the images correspond to the out-
of-focus areas. Boron and nitrogen are found to overlap

homogeneously in the same regions, confirming that the material
is boron nitride. The carbon signal is strongly enhanced in the
surface area, and its thickness corresponds to a 1 μm thickness of the
ppC:H film. No noticeable penetration of the plasma polymer into
deeper regions can be seen, which confirms that ppC:H grows on the
surface, replicating the morphology of the underlying BN substrate.

3.2 Laser-driven pB fusion: Experiments and
simulations

As pointed out in Section 2.3, three types of ppC:H/BN samples
were used in the experiment at TARANIS and PERLA B lasers.
Figure 5A shows an example of optical microscope image taken on
the CR-39 detector, which was irradiated by charged particles generated
during the interaction of the 15W ppC:H target with the TARANIS
laser. After the irradiation, the CR-39 were etched in a solution of
NaOH at 70°C as described in [55, 56]. The exposed tracks match the
size of the tracks in the calibration of the alpha particles pointing to an
efficient generation of pB fusion events triggered by the TARANIS laser.
The same effect was achieved using the PERLA B laser for which the
results have already been presented in [33].

The alpha particles flux recorded during the TARANIS
campaign was 7 × 107, 1 × 108 and 1 × 107 α/sr/shot using 0,
15 and 50W ppC:H, respectively. However, during the PERLA B
campaign values of 8 × 102, 6 × 103 and 5 × 102 α/sr/shot were
measured using the same types of targets. Expectedly, the alpha
particles flux was found to be many orders of magnitude lower for
the 15-mJ PERLA B laser as compared to the 8-J TARANIS laser
(Figure 5B). However, the difference becomes less drastic if the alpha
particles flux is normalized by the laser energy (Figure 5C). For
example, the 15 W ppC:H/BN sample gives 40 times difference in pB
fusion efficiency between the two laser systems. This difference can
be tentatively explained by considering the cross section of the pB
fusion. Indeed, the PERLA B laser triggers pB fusion through the

FIGURE 4
Topography and structure of ppC:H films: (A) AFM height images of 15 WppC:H film deposited on BN and on Si; (B) AFMRMS roughness vs scan size;
(C) cross-sectional SEM image of 15 W ppC:H film deposited on BN; (D) cross-sectional elemental map distribution measured by EDX on the same
sample.

FIGURE 5
(A) Optical microscope image of a CR-39 detector after
irradiation with the TARANIS laser and etching in 6.25 M of NaOH at
70°C for 1 h; (B) alpha particles flux generated from pB fusion using
TARANIS and PERLA B lasers with different Al filters on three ppC:
H/BN targets; (C) comparison of pB fusion efficiency using the
TARANIS and PERLA B lasers (normalized to the energy delivered on
the target).
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first resonant peak of 165 keV [57] with a moderate number of
protons (the proton cutoff energy is only slightly above this value),
whereas the TARANIS laser produces a high proton flux around the
main resonant peak at 670 keV (proton cutoff energies are well
above this value). Considerations about the efficiency of the
experiments with the two different lasers will be discussed in the
simulation section. The normalized alpha particles flux for 15 W is
107 α/sr/J, i.e., in line with the energy conversion values obtained in
the recent years as summarized in [22].

A somewhat surprising relationship can be found considering
the dependence of the alpha particle yield on the properties of the
ppC:H thin films. While the expected result would be a monotonous
dependence on the plasma power, our study shows that the 15 W
ppC:H sample is superior to the other two samples, and the trend is
strikingly similar for both laser systems used. Our characterization
of the targets reveals that the morphology and roughness of the
surface are governed by the structure of BN, which is similar for all
three samples. The hydrogen content decreases with power, but
gradually and to a small extent, so it can hardly explain the observed
kink in the 15 W ppC:H sample. The film density was found to be
the only parameter that changes drastically with power, although its
dependence is also monotonous.

3.3 Simulations results

Using the FLASH code, the interaction between the 1.5 ns
pedestal, with a ns contrast of 10−7, of the TARANIS laser with

the target surface was modelled. The target was composed of a 1 μm
ppC:H film, on top of a 5 μm BN layer. Note that both the BN
substrate and ppC:H are modeled as homogeneous slabs without any
voids within the simulation region. This is rationalized by the
surface roughness measurements presented in Figures 4A, B
showing that the variation of deposition thickness is on the order
of tens of nm, which will be quickly homogenized by the pedestal.
The same batch of BN was used for all depositions, therefore, the
surface variation is considerable the same for all targets. A
simulation was performed for each ppC:H density (600 kg/m3,
900 kg/m3 and 1,650 kg/m3). The density of CH2 along the target
normal for each ppC:H deposition is shown in Figure 6A. The
density profiles show that there has been some ablation and
compression of the target surface by the pedestal. However, for
all three deposition densities, despite the relatively low ns contrast of
the TARANIS laser, following a 1.5 ns pedestal, there remains a
dense region of CH2 on the target surface with which the main pulse
will interact. There appears to be minimal variation between the
simulations for the three different targets in the underdense
preplasma extending beyond 5 μm in front of the target surface.
The output of the FLASH simulations was used as initial conditions
for particle-in-cell simulations to model the interaction with the
main laser pulse using theWarpX PIC code. The boron and nitrogen
ions were given an initial ionization level of 3+ and 5+, respectively.
The hydrogen and carbon ions were fully ionized during the
hydrodynamic simulation.

Figure 6B shows the energy distribution of protons that are
within the high boron density region (i.e., > 1 μm into the target)

FIGURE 6
(A) Results of a FLASH simulation showing the effect of a 1.5 ns pedestal of the TARANIS laser on 1 μm ppC:H with different densities deposited on a
5 μm BN target. The initial density of the ppC:H deposition is provided in the figure legend. (B) Proton energy distribution, within the BN region, 1.7 ps
following the interaction of the main pulse using 15 W ppC:H-BN target. (C) A colourmap of the normalized alphas particle densities plotted over the ion
density, showing alpha particles generation occurring within the target, 600 fs after the peak intensity of the laser pulse.
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1.7 ps after the main pulse. The proton distribution has a cutoff of
above 2 MeV. Therefore, using the TARANIS laser, it is possible to
accelerate protons into the BN target with energies in excess of the
main cross-section resonance (1.4 b [57] at 670 keV in order to drive
fusion reactions in this regime. The pair-wise fusion model was
enabled in the WarpX simulation, allowing the generation of alpha
particles through the pB fusion reaction to occur within the PIC
simulation. Figure 6C displays the normalized density distribution
of alpha particles plotted over the number density of the other ions,
600 fs after the peak laser intensity. This plot shows that most of the
alpha particle generation occurs within the first 10 μm of the target
surface, driven primarily by protons accelerated forward into the BN
target. Considering the proximity of alpha particle generation to the
target surface and the reduction of electronic stopping in an ionized
plasma, which is discussed in [23], many of the alpha particles
generated within the BN target will escape the target and reach the
CR-39 detectors. It has not yet been possible to understand the trend
in alpha particle yield, the deposition density andmorphology that is
observed experimentally.

In comparison, the simulations performed in [33], modelling the
interaction between the PERLA B laser and the 680 nm ppC:H
deposition on a BN target suggest that the energy cutoff of the
protons accelerated forward is only 30 keV, whereas the backward
accelerate proton cutoff extends to 300 keV. Therefore, it is
suggested that when using the PERLA B laser, pB fusion occurs
in the preplasma driven by protons accelerated to energies above the
lower, secondary resonance peak of 0.1 b at 165 keV. The
simulations performed to model the interaction of the TARANIS
and PERLA B lasers and ppC:H-BN targets show a clear variation in
the acceleration mechanism responsible for driving the pB fusion
reactions. For future implementations of ppC:H-BN targets it will be
important to consider the density, morphology, and thickness of the
deposition to optimize the acceleration processes and the resulting
fusion yield.

As discussed in the experimental results, the alpha particle yield
normalized by laser energy is reduced when the PERLA B laser is
used compared to the TARANIS laser. Considering the PIC
simulations, the TARANIS laser can accelerate protons to
energies above the main cross section resonance (670 keV),
where the cross section is both over an order of magnitude
higher, and covers a significantly broader energy range, than the
secondary cross-section resonance. Secondly, in the PERLA B setup
[33], the density of boron ions in the preplasma, obtained in
simulations, was only 5 × 1019 cm-3 [33]. However, the
simulations performed to benchmark the TARANIS experimental
results show that fusion occurs in the solid BN target, where the
boron ion density is much higher at 5 × 1022 cm-3. This difference
also affects the alpha particle yield, which depends not only on the
density of the boron ions but also on the effective proton range
through the target.

4 Conclusion

The films were prepared using plasma-assisted vapour phase
deposition by evaporating poly(ethylene) at different discharge
powers or without using plasma. Under the chosen conditions,
soft plasma polymer films were prepared with a chemical structure

strongly resembling that of the precursor. The plasma polymerized
films are found to be prone to slight post-deposition oxidation due
to reactions of unquenched radicals with ambient oxygen.
Importantly, the films are rich in hydrogen: the hydrogen
content reaches 66 at% in the film deposited without plasma and
it slightly decreases to 62 at% as a result of the electron impact
cleavage of the C-H bonds when the plasma is applied. We
successfully triggered the pB fusion using 1 μm hydrocarbon
plasma polymer films deposited on BN and subjected to
irradiation using two different lasers: the TW-class TARANIS
and the GW-class PERLA B. Regardless of the decrease in the
hydrogen content, these films prove to be good candidates for
triggering the pB fusion. The alpha particles yield reached 105/sr/
J using PERLA B and 107/sr/J using TARANIS. An unexpected
phenomenon was registered in terms of the dependence of the alpha
particles yield on the properties of the plasma polymers: a maximum
alpha particles generation was detected for the film deposited at
medium plasma power, while the films prepared without plasma or
with higher plasma power produced a lower alpha particles yield.
The influence of the sample roughness and hydrogen content was
excluded because the films replicate the micrometer-scale
morphology of the BN substrate and retain hydrogen to a similar
extent. The films have a significantly different density, which is given
by denser packing of molecular segments at higher plasma powers. As
shown from the simulations referring to the TARANIS campaign,
protons from these deposition films can be effectively accelerated to
the desired energies to drive pB fusion reactions but could not explain
the experimentally observed variation in alpha particles yield between
the three depositions. However, ad hoc hybrid simulations capable to
implement the prepulse (Hydrodynamic), kinetics (PIC) and nuclear
fusions are under investigation and will be topic of future studies. This
work pointed out the need of customized targets optimized according
to the laser parameters and the importance of the target
characterization. Nevertheless, we have obtained encouraging
results demonstrating that environmentally benign plasma-assisted
technology can be applied to tailor the laser-target interaction, to
optimize energy absorption and promote laser-driven pB fusion, with
future direction for the synthesis of nanostructured boron/
hydrocarbon materials.
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