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Polarisation states are described by spin expectation values, known as Stokes
parameters, the trajectories of which in a rotationally symmetric system form a
sphere named after Poincaré. Here, we show that the trajectories of broken
rotational symmetric systems can exhibit distinct topological structures in
polarisation states. We use a phase-shifter to form a polarisation circle (S1),
which interferes with the original input due to the phase change of the output
state upon rotation. By rotating the circle using a rotator, the trajectories become a
polarisation torus (S1 × S1), which was experimentally confirmed in a simple setup
using passive optical components together with the Mach–Zehnder
interferometer. We also discuss the realisations of other topological features,
such as aMöbius strip, a trefoil knot, Hopf links, and topological Dirac bosons, with
a bulk-edge correspondence.
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1 Introduction

Topology and quantum mechanics are inherently connected, and various exotic
phenomena, such as the quantum Hall effect [1–6], spin Hall effect [7–9], topological
insulator [10–14], and topological photonics [15–19], were predicted theoretically [1, 2, 4–8,
11, 12, 15] and discovered experimentally [3, 9, 13, 16, 17]. These topological orders [4–6, 10,
20–25] are different from thermodynamic spontaneous symmetry-breaking such as a
superconducting phase-transition [23, 24, 26–30], which is characterised by opening an
energy gap in the excitation spectrum to establish a long-range order [30–32], while
electronic or photonic states have a continuous spectrum in a vacuum with full
translational, time-reversal, and rotational symmetries [26–30, 33–35]. In a topological
material [1, 2, 4–6, 8, 11, 12, 15, 36], an energy gap is formed in the bulk as an insulator,
which has a different symmetry from that in a vacuum, such that the energy gap must be
closed at the edge, the state of which is topologically protected against structural
imperfections as a highly conductive metal to accommodate massless Dirac fermions
[4–6, 22]. This bulk-edge correspondence [4–6, 22] is considered to be a generic feature
of topological materials, the topological invariants of which are Chern numbers [37],
obtained by integrating the Pancharatnam–Berry geometrical phase [38–41] of
wavefunctions over the Brillouin zone [14, 42–44]. Thus, topological materials have
unique topological band structures in the momentum space [14, 42, 43], rather than
topological bonding configurations in the real space [45–55].

Here, we explore topological features in the polarisation space for spin states of coherent
photons; that is, we consider topological aspects of polarisation states. The polarisation state
is described by an SU(2) state, known as a Jones vector, which is a wavefunction of the spin
state of photons [56–82]. The wavefunction obviously has the amplitude and the phase,
which are described by the polar angle (θ) and the azimuthal angle (ϕ), respectively, to show
the average spin values as a vector to represent the state on the Poincaré sphere [56–82]. In
fact, we have recently demonstrated to realise an arbitrary polarised state by passive [81] and
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active [82] Poincaré rotators to execute an SU(2) rotation of the Lie
groups [83–88] in the combination of a U(1) phase-shifter and a
rotator. While considering the coherent polarisation state in the
power normalised configuration space, the Poincaré sphere can be
used with a unit radius (r) [60–62]. The Poincaré sphere with r = 1 is
equivalent to the Bloch sphere [72, 74, 81, 82, 89, 90], which means
that trajectories of the polarisation states upon controlling the
amplitude and the phase form a two-dimensional (2D) sphere
(S2, the surface of a ball in 3D space), which is topologically
trivial with the genus (g) of 0 with no hole, no knot, and no link.

However, there is one noticeable difference between Poincaré
and Bloch spheres, i.e., the Bose–Einstein and Fermi–Dirac statistics
for photons and an electron, respectively [23, 24, 61–63, 72–75, 78,
82, 91]. For photons, we can generate another photon with the same
phase as that of an original photon via the stimulated emission
process by using a polarisation-independent Er-doped fibre
amplifier (EDFA) [60–67, 75, 78, 82]. This corresponds to an
increase r without changing the angles of θ and ϕ, which is
impossible to achieve for an electron due to the Pauli exclusion
principle [92, 93]. The stimulated emission process requires a finite
pumping power for the amplification, such that the process is not
based on the norm-conserving unitary transformation [60, 63, 82].
Therefore, the amplification of coherent photons does not violate the
no-cloning theorem [92, 93], which prohibits copying of a quantum
state by a unitary transformation, because the prerequisite of the
notion for non-cloning is not satisfied by the injection of the
pumping power. Consequently, we consider a larger polarisation
space, where the radius of the Poincaré sphere is not restricted to be
unity, but the polar coordinate of (r, θ, ϕ) could span for the full 3D
Euclidean space of Stokes parameters S = (S1, S2, S3), which we term
as the Stokes space. In the Stokes space, points with different r can be
distinguishable, even if θ and ϕ are the same. This is not surprising
because we are dealing with signals with different intensities as for
the means of digital communications [60, 94–96], such as
quadrature amplitude modulation (QAM), pulse amplitude
modulation (PAM) for advanced multiplexing, and dual-
polarisation quadrature-phase-shift-keying (DP-QPSK) [97, 98].
Stokes parameters [60–62] can be described by energy per bit
(pJ/bit) or power (mW). Alternatively, they are also equivalent to
the spin expectation values [75, 77], which are obtained by the Dirac
constant of Z (the Planck constant of h, divided by 2π), multiplied
with the number of photons per second, passing through the area
perpendicular to the direction of the propagation, with the spin
pointing towards x, y, and z directions, respectively. In this paper, we
use power for the dimension of Stokes parameters for simplicity. In
the Stokes space, considering the difference in intensities, we can
explore topologically non-trivial trajectories for the pulse streams
generated from a device with broken rotational symmetries in
polarisation states.

As an example of non-trivial polarisation state in the Stokes
space, we first describe how to realise a polarisation torus,
T2 � S1 × S1, where S1 is a 1D sphere that represents a
polarisation circle, by using passive optical components based on
a simple representation theory of U(2) � U(1) × SU(2) states to
account for controlling the intensities by the Mach–Zehnder
interferometer. The comparison between the Stokes space and
the Poincaré sphere is also discussed. Then, we show our
experimental results to confirm the theoretical expectations to

realise the polarisation torus, which is realised as a non-trivial
topological structure as trajectories in the Stokes space. Novel
non-transverse toroidal pulses have been recently observed out of
meta-surfaces [99], while the mode of our polarisation torus is a
standard fundamental mode in a single-mode fibre, and intensities
together with phases are controlled to exhibit a torus as a set of
points in the Stokes space. We discuss the possibilities on realising
more complex topological manifolds as polarisation states in the
Stokes space, such as the Möbius strip, Hopf links, and topological
Dirac bosons, for the future. We also discuss the bulk-edge
correspondence for these states and show that the topological
invariance for the proposed topological polarisation states is the
Euler number and the genus in the Stokes space for spin expectation
values, obtained by the Gauss–Bonnet theorem [44], rather than the
Chern number [37], determined by the Pancharatnam–Berry phase
[38, 39] in the U(2) Hilbert space.

2 Theoretical designs

We consider the propagation of light in a single-mode fibre
(SMF), such that only the fundamental spatial mode of a SMF is
available [60]. It is also important to make sure that the coherence of
the wave is maintained upon separating the wave and combining the
waves for the interference. We have recently revisited the theoretical
description [75, 78, 81, 82] for the coherent state of photons, emitted
from a laser source, and confirmed that it should be treated as a
many-body coherent state with the SU(2) degrees of freedom for
polarisation [58–62, 68–74, 91]. The coherent state [63, 67, 75, 81,
82, 91] is characterised by the Gaussian distribution of the photon
number, centred at the average number of photons per second,
〈N̂〉 � N, passing through the cross-section of the SMF. Practically,
however, we do not have to employ creation and annihilation
operators in coherent states for most of considerations in
polarisation states [58–62, 68, 69], and a wavefunction

|N, γ, δ〉 � ��
N

√
eiΦ|γ, δ〉 (1)

� ��
N

√
eiΦ

cos α( )
eiδ sin α( )( ), (2)

is enough to characterise the polarisation state on the Poincaré
sphere [56–82], where Φ is the U (1) phase of the orbital
wavefunction, γ = 2α is the polar angle measured from S1, δ is
the phase-shift measured from S2, and α is the auxiliary angle for
complex electric fields. Here, we have used horizontal (H) and
vertical (V) bases as for the fundamental states to describe the
polarisation, and the normalisation of the wavefunction (N) is
related to the power intensity of the ray as P = ZωN = S0, where
ω is the angular frequency and S0 is the 0-th component of the Stokes
parameter. The SU(2) nature of the polarisation is not affected by
this normalisation, and it is straightforward to obtain the spin
expectation values for photons as

〈Ŝ〉 � Z〈σ̂〉 � ZN
cos γ

sin γ cos δ
sin γ sin δ

⎛⎜⎝ ⎞⎟⎠, (3)

where the spinor vector of σ̂ � (σ3, σ1, σ2) in HV bases is given by
Pauli matrices
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σ1 � 0 1
1 0

( ), σ2 � 0 −i
i 0

( ), σ3 � 1 0
0 −1( ), (4)

forming the Lie algebra of su(2) [72, 74, 75, 81–86, 88]. Thus, the
spin expectation values are related to the vectorial components of
Stokes parameters as

S � ω〈Ŝ〉 � Zω〈σ̂〉 � ZωN
cos γ

sin γ cos δ
sin γ sin δ

⎛⎜⎝ ⎞⎟⎠, (5)

in the unit of mW. Alternatively, we can consider a normalisation
based on the power as

|P, γ, δ〉 � ��
P

√
eiΦ|γ, δ〉 (6)

� ��
P

√
eiΦ

cos α( )
eiδ sin α( )( ), (7)

which we will employ, henceforth.
The exponential map [83–88] from the Lie algebra of su(2) to

the Lie group of SU(2) is achieved by the unitary operator.

D̂ n̂, δϕ( ) � exp −iσ̂ · n̂ δϕ

2
( )( ) (8)

� 1 cos
δϕ

2
( ) − iσ̂ · n̂ sin δϕ

2
( ), (9)

where n̂ is the unit vector in the Stokes space and δϕ is the rotation
angle. The operation along the S3 axis with n̂3 � (0, 0, 1) is called a
rotator, and the operation along the S1 axis with n̂1 � (1, 0, 0) is
called a phase-shifter [60–62, 75, 80–82]. The rotation along n̂1 �
(1, 0, 0) corresponds to the propagation in media such as LiNbO3 or
quartz, which has eigenmodes with linear polarisation, and the
phase-shift is achieved by the difference of the effective refractive
indices for horizontal polarisation and vertical polarisation [68, 69].
The rotation along n̂3 � (0, 0, 1) corresponds to the propagation in
an optically active medium with circular polarisation, such as a
C-cut (or Z-cut) quartz or a liquid crystal, and the rotation is
achieved by the difference of the effective refractive indices for left
and right circular polarisation [68, 69]. By combining a rotator and a
phase-shifter, we could construct a Poincaré rotator, which allows an
arbitrary rotation on the Poincaré sphere [80–82].

Historically, it was theoretically proven that three waveplates are
enough to realise an arbitrary polarisation state [68–70], as
demonstrated by an SU(2) gadget [100, 101]. We have recently
demonstrated that four waveplates are easier to realise an arbitrary
phase-shift solely by rotating one of the waveplates [81].
This corresponds to realise an SU(2) rotation of the
wavefunction of |P, γ, δ〉 and the physical observable of 〈Ŝ〉
rotated in SO(3). The SU(2) is an appropriate Lie group [83–88]
for the polarisation [60–62, 75, 80–82], described by two complex
numbers (C) in a normalised wavefunction [56–82], ensured by the
determinant of unity, while SO(3) is appropriate to describe a
rotation of a vector, given by three real numbers (R) for spin
expectation values. The trajectories of the spin expectation values
upon rotations form a sphere as a set of states, controlled by unitary
operations [56–62, 81, 82]. The unitary operations mean that we
cannot change the energy of photons, such that the radius of the
sphere is fixed, ideally. In reality, for practical implementation, we
have finite insertion loss to control the polarisation states in the

Poincaré rotators or conventional optical components, such as half-/
quarter-wave plates and rotators, which reduces the intensities. Even
in these cases, as far as the loss is not significantly dependent on the
polarisation, the topology of polarisation states remained the same,
such that we can analyse the polarisation state on the Poincaré
sphere. We could also introduce the gain by the polarisation-
independent EDFA [82] to allow increasing the signal-to-noise
ratio for polarimetry, but the polarisation states out of the
devices are still accommodated on the sphere. In the case of the
SU(2) rotations on the sphere with or without polarisation-
independent loss or gain, the trajectories of the polarisation states
are always on the sphere, which is topologically trivial.

Here, we consider using another degree of freedom together with
SU(2) degrees of freedom, which is the U(1) phase of Φ = kz − ωt +
Φ0 for the orbital degree of freedom, where k = 2π/λ is the
wavenumber for the wavelength of λ, z is the direction of the
propagation along the SMF, and Φ0 is the initial phase. The U(1)
phase plays no role, if we take the quantum average of spin states, as
shown previously, since it merely changes the global phase of the
wavefunction. On the other hand, if we have another wave to
compare the relative phase, the U(1) phase could play a
significant role. For photons, this could be achieved simply by
splitting the wave into two (or more) waves and introducing the
relative phase change and recombining to allow the interferences.
The U(1) phase is related to the number of photons, such that the
interference induces changes in the number of photons, propagating
to the SMF after the interference. This process allows controlling P
(or equivalentlyN), which corresponds to change in the radius of the
Poincaré sphere. There are several schemes to introduce the phase
changes, and we consider one of the most simplest one, which just
introduces the SU(2) operation to one of the waves. The SU(2)
operation introduces the U(1) phase change, which is observable
upon interferences. For example, one rotation on the Poincaré
sphere of SO(3) induces the sign change of the SU(2)
wavefunction because we expect

D̂ n̂, 2π( ) � −1, (10)
which induces the destructive interference to the original input
wave. Mathematically, this results from the double covering of SU(2)
to SO(3), which is described as SU(2)/S0 � SO(3), where S0 �
{−1, 1} is the 0D sphere. We need to rotate the amount of 4π to
expect a complete rotation in SU(2) with the identity of the
operation, D̂(n̂, 4π) � 1. Upon the phase change towards the
interference, we can introduce both dynamic and adiabatic
phases through Hamiltonian (equivalently, rotators and phase-
shifters) and geometrical configurations (Pancharatnam–Berry
phase) [14, 38–44, 75, 81, 82]. In the following section, we will
explain our practical deployment for realising non-trivial
topological features as trajectories of polarisation states.

2.1 Polarisation interferometer

We explain the simple method to change the polarisation state
together with the intensity in the Stokes space. We assume specific
experimental parameters to make the argument easy to understand,
but it is straightforward to change parameters and to construct more
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generic theories. First, we prepare the input wave with the power of
Pin = 1.5 mW with the diagonally (D) polarised state, such that the
input state of |Input〉 is prepared as

Pin,
π

2
, 0

∣∣∣∣∣∣ 〉 �
���
Pin

2

√
1
1

( ). (11)

Then, we split the input wave into two waves by using a polarisation-
independent directional fibre-to-fibre coupler (FFC). We used the

FFC of the splitting ratio of 90:10, which means that 90% of the
signal is transmitted to the through port 3 and 10% is coupled to the
tap port 4, when we inserted from the input port 1, while the isolated
port 2 is not used. We define the coupling constant of α = 0.1 to
account for the FFC, and the splitting is simply defined by a matrix
operation,

|Port 3〉
|Port 4〉( ) �

�����
1 − α

√ − ��
α

√��
α

√ �����
1 − α

√( ) |Port 1〉
|Port 2〉( ), (12)

FIGURE 1
Calculated trajectories of polarisation states for the output from a polarisation interferometer. The input state is prepared to be a diagonally polarised
state at S2 = 1.0 on the normalised Poincaré sphere. (A) Stokes parameters, showing a polarisation circle (blue), which reduces its intensity upon the
rotation. (B) Stokes parameters against the phase-shift by an SU(2) phase-shifter. The 2π-rotationminimises the intensity in the diagonally polarised state,
and the 4π-rotation is required to come back to the original input state. (C) Schematic diagram of polarisation interferometer. The operation
principle is based o the interference between beams with and without the phase-shift during the propagation.
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where two components of polarisation states |Pin, π/2, 0〉 is used
for |Port 1〉, and |Port 2〉 is 0 = (0,0)t, where t stands for the
transpose of the vector. The output from the tap port 4 is used to
manipulate its polarisation state by a phase-shifter,

D̂ n̂1, δϕp( ) � 1 cos
δϕp

2
( ) − iσ̂3 sin

δϕp

2
( ), (13)

which is the rotation along S1 in the S2–S3 plane [81]. We defined the
rotation angle of δϕp since this corresponds to the rotation along the
poloidal direction, as we shall see as follows. We have previously
shown that we can construct a passive phase-shifter by a
combination of two quarter-wave plates (QWPs) and two half-
wave plates (HWPs) [81]. The amount of rotation in SO(3) is
determined by the physical angle of the rotation (δΨp) of one of
the HWPs as δϕp = 4δΨp [81]. Then, the output state of the tap port
4 becomes

|Port 4′〉 � D̂ n̂1, δϕp( )|Port 4〉, (14)
while the output from the through port 3 is preserved to keep its
polarisation state as |Port 3′〉 = |Port 3〉. Then, we recombine the
through port 3 and tap port 4 by the inverse arrangement,

|Port 1′〉
|Port 2′〉( ) �

�����
1 − α

√ ��
α

√
− ��

α
√ �����

1 − α
√( ) |Port 3′〉

|Port 4′〉( ), (15)

to expect that the port 1′ is the main output, while the port 2′ is not
used. Finally, the spin expectation values of |Port 1′〉 are calculated,
as shown in Figure 1.

We confirmed that the polarisation states are mostly located
near the diagonally polarised state, |D〉 since we assumed 90% of
the input for the through port 3 is preserved. Without the phase-
shift of the tap port 4, we confirmed that the polarisation state and
the intensity are not affected by the input state. On the other hand,
if we closely look at the circular trajectory, we confirm that the
trajectory is inside the original Poincaré sphere, which means that
the radius, corresponding to the intensity, is successfully
decreased. The reduction in energy is confirmed in S0
(Figure 1B), which becomes minimum at δϕp = 2π for the
rotation of the tap port 4, where the polarisation state is purely
diagonally polarised. This results from the double covering of
SU(2) to SO(3), discussed previously [75]. The circular rotation
means that the input state of |D〉 returns to the original state in the
SO(3) space; however, in the real physical space, it is enough for the
complex electric field for the linearly polarised diagonal state to
rotate only for the rotation angle of π to become the diagonal state
upon the rotation. This means that the electric field will be flipped
to change the sign, which is not visible on the original Poincaré
sphere. On the other hand, this sign change is observable by using
the portion of the original input wave, which is the role of the
transmitted wave through port 3. The destructive interference
becomes maximum at δϕp = 2π, yielding the minimum of S0.
The entire trajectory requires the 4π-rotation to close, as expected
for the SU(2) group, and it became a polarisation circle (S1), which
resides in the S2–S3 plane. The operation process corresponds to a
Mach–Zehnder interferometer with a polarisation control,
associated with a phase-shift, and we term it polarisation
interferometer (Figure 2). The poloidal polarisation circle is
realised after the second FFC as shown in Figure 2.

We acquire a scheme to control the radius of the polarisation
states, simply by mechanically rotating a HWP, which corresponds
to the change in the intensity. The total energy must be conserved
upon the linear operations, and the reduced intensity exits from the
isolated port 2′, which is terminated. Consequently, the output
intensity from the output port 1′ could be reduced upon addition
to our polarisation interferometer. Thus, if we focus on the output
waves, the system is not only based on unitary operations but also
allows a loss mechanism to reduce the radius, the direction of which
is perpendicular to the surface of the sphere along polar and
azimuthal directions, controlled by θ and ϕ for the polar
coordinate or by γ and δ in the HV bases. In this sense, our
system is non-Hermitian, and the original rotational symmetry of
the polarisation state is also broken to expect a loss in a particular
direction. In this way, we obtain a method to potentially scan an
entire Euclidean coordinate in the Stokes space inside the original
Poincaré sphere, spanned by the radius of the input wave. Due to the
3D nature of the Stokes space, we can consider various topologically
non-trivial structures, which we will explore as follows.

2.2 Polarisation torus design

As the first non-trivial topological structure of polarisation
states, we explain how to construct a polarisation torus as a set
of polarisation states in the Stokes space. In topology, a torus is made
of T2 � S1 × S1, which requires topological groups to describe two
circular rotations, orthogonal to each other. In the previous
subsection, we constructed rotators to describe the rotation along
the poloidal direction, and therefore, we just need to add rotators to
describe the rotations along the toroidal direction (Figure 3). This is
achieved simply by applying a conventional rotator along the S3 axis,

D̂ n̂3, δϕt( ) � 1 cos
δϕ

2
( ) − iσ̂2 sin

δϕt

2
( ), (16)

where δϕt is the amount of rotation along the toroidal direction to
the poloidal polarisation circle. We have previously shown that two
successive operations of HWPs are equivalent to a proper rotator
operation to form the SO(2) group [81] rather than a pseudo-rotator
realised by one rotated HWP [60–62], and we just need to
mechanically rotate one of the HWP to realise the target amount
of rotation along the S3 axis (the last part of rotating optical plates in
Figure 2). The output polarisation state after the operation becomes

|Output〉 � D̂ n̂3, δϕt( )|Port 1′〉, (17)
and we can finally calculate the Stokes parameters from this output
state (Figure 3).

We confirmed that the calculated vectorial components of
Stokes parameters form a polarisation torus (Figures 4A–C), and
the intensities of the output satisfy S0 �

����������
S21 + S22 + S23

√
since we

consider a coherent state. As shown in the colour map of
Figure 4A, S0 depends on the location in the torus, and thus, we
could realise a non-trivial topological structure with g = 1. For the
definition of a torus, the states inside the torus are empty, as
observed in Figure 4C. It is also evident that the torus is compact
and so closed as a set, such that even if we extend the amount of
rotations for δϕp and δϕt beyond 4π and 2π, respectively, we cannot
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generate new polarisation states outside the torus. It is also evident
from the construction of the torus that D̂(n̂1, δϕp) and D̂(n̂3, δϕt)
from U(1) � S1 groups, such that the two successive operations
could be performed by one operation, and the inverse of a rotation
could be defined. This was also true for a spherically symmetric
Poincaré sphere, where the rotator and the phase-shifter are physical
realisations of Lie group operations of SU(2) [75, 81, 82]. In the
present case, the torus is realised upon the interference to reduce its
intensity, which is a non-reversal process, such that these rotational
operations must be completed before the interference occurred. As
far as rotations are made before the interference, we can consider
alternative operations. For example, we could first rotate the
polarisation state of the input along the S3 axis to control along
the toroidal direction, and then, we could split it into two waves to
allow the poloidal rotation.

We have also plotted the calculated Stokes parameters on the
Poincaré sphere after normalisation at each output state (the inset of
Figure 4A). In this case, we cannot discuss differences in relative
intensities, and the trajectories of the torus collapsed to form a belt
on the Poincaré sphere with no width. The mapping corresponds to
a projection from R3 to S2, and the information on the radius,
corresponding to N or P, will disappear. One can always consider
this mapping from a torus to a belt, but this ends up considering
non-trivial topological structures in R3. We will return to this point
when we discuss the Chern number [37], the Pancharatnam–Berry

phase [38, 39], and the Gauss–Bonnet theorem [44] towards the end
of this paper. Here, we emphasize the non-trivial topological feature
that appeared in the Stokes space, which uses R3 in SO(3) rather
than C2 for U(2) wavefunctions, and for bosons, it is meaningful to
consider the difference in N due to their Bose–Einstein statistics.

As shown in Figures 5A–F, we have also calculated the
polarisation torus by using the rotated QWP as the final rotation
in Figure 2 instead of the rotator. In this case, the trajectories by a
rotated QWP for the input of the D-state assume an “8”-like
structure with two holes [81], such that the rotation of the
polarisation circle of Figure 1A upon the rotated QWP forms
two toruses (Figure 5A). Unfortunately, this structure is not a
torus of g = 2, but it is simply two toruses of g = 1 overlapping
each other, since the simple moves of the circle intersect near the
D-state. As shown in Figure 5C, the trajectories have cross-sections,
such that the topological feature is closed. In order to claim that the
structure is a torus of g = 2, the inside of the structure must be a
complete hollow without intersections. By introducing an ellipticity
for the input polarisation state, we can introduce the asymmetry for
the “8”-like structure (Figure 5B) with a larger hole and a smaller
hole [70]. However, this asymmetry also has intersections to
separate the hollows. Nevertheless, closed links, made by
trajectories of polarisation states, are located on the surface of the
torus (g = 2) without intersections, as shown in Figures 5D, E.
Figure 5D was drawn for four values of the phase-shifters, while the

FIGURE 2
Polarisation interferometer to realise topologically non-trivial polarisation states in the Stokes space. Rotating optical plates were used to change the
spin states of SU(2) as well as the orbital U(1) phase for the bypassedwave. These phase changes are observed upon interferences with the preserved input
states, thus allowing changes in intensities for the output state. Abbreviations are as follows: LD, laser diode; SMF, single-mode fibre; PC, polarisation
controller; FFS, fibre-to-fibre splitter; PM, polarimeter.
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QWP was fully rotated for each link. In experiments, we have
confirmed the trajectories of Figure 5D for the input of the
diagonally polarised state. Figure 5E was obtained by gradual
rotations of QWP while phase-shifting at the interferometer. In
this example, 25 rotations were made by phase-shifters to rotate the
torus of g = 2, locally long the poloidal direction, while the entire link
is closed at the diagonally polarised state. Similarly, we can realise a
trefoil knot [55, 102, 103] by closing the link on the surface of the
torus (g = 1), while phase-shifting in the interferometer (Figure 5F).

3 Experimental results

Our experiments were conducted in a fibre-based system,
together with short-distance free space optics, as shown in
Figure 2. A frequency-locked distributed-feedback (DFB) laser
diode (LD) with a wavelength of 1533 nm was used and coupled
to a SMF. The polarisation of the input wave was adjusted to the
D-state by a birefringent polarisation controller (PC), and the input
power was 1.8 mW. Then, the input wave was inserted into the
polarisation interferometer, as explained previously, with 2 FFSs and
rotating optical plates, and the output from the interferometer was
further controlled by the next rotating optical plates. At each step,
the polarisation states of the fibre were adjusted by PCs, and the final
output wave was examined by a polarimeter to observe the Stokes
parameters [81].

3.1 Observation of polarisation torus

The experimental Stokes parameters are shown in Figure 6. We
have set δϕp at 0, π, 2π, and 3π, which corresponds to the rotation of
HWP δΨp at 0, π/4, π/2, and 3π/4, respectively. At each δϕp, we have
mechanically rotated the HWP of the rotator to change δϕt and
obtained the trajectories by recording the Stokes parameters using
PM, while rotating physically. As expected, from the proper rotator
operation of two successive operations of HWPs to form SO(2) [81],
each trajectory is a circle, located parallel to the S1–S2 plane
(Figure 6B). On the other hand, the change in δϕp corresponds
to the rotation along the poloidal direction, and the intensity has
been changed upon the interference, which is confirmed by the small
empty region in the cross-section of the torus (Figure 6C). The
maximum output power was 1.5 mW, such that the minimum
insertion loss was about 0.8 dB, and the overall feature of the
observed polarisation torus is in reasonable agreement with the
calculated results (Figure 3).

Now, we can provide more details on the realisation of the
polarisation torus based on the U(2) theory along with our
experimental preparations of HWPs and QWPs. We explain the
free space operations in the polarisation interferometer of Figure 2.
We specify the alignment of these waveplates by the angle of the fast
axis (FA), measured from the horizon seen from the detector side
(opposite to the LD source side) of the plates [75, 81]. In our
convention, we assume that the angle is 0, if the FA is aligned

FIGURE 3
Construction of the polarisation torus calculated in the Stokes space. The intensity of the input state in the diagonally polarised state with the power
of 1.5 mWwas interfered in the polarisation interferometer to form a small circle in the S2 − S3 plane along the poloidal direction. Then, a rotator was used
to rotate the circle in the S1 − S2 plane along the toroidal direction. The inset shows the same trajectories, shown on the Poincaré sphere.
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horizontally, and equivalently, the slow axis (SA) is aligned
vertically, and the direction of rotation is positive, if it is rotated
anti-clock-wise, as seen from the top of the detector side. The first
free space operations were conducted by a sequential application of
QWP (whose FA is aligned to −pi/4), HWP (aligned horizontally),
HWP (rotated δΨp), and finally QWP (whose FA is aligned to pi/4),
and these operations are given by

|Port 4′〉 � D̂ n̂2, π/2( )D̂ n̂3, 2δΨp( )D̂ n̂1, π( )D̂ n̂3,−2δΨp( )
D̂ n̂1, π( )D̂ n̂2,−π/2( )|Port 4〉,

(18)
whose operations are equivalent to D̂(n̂1, δϕp), and the physical

rotation of π for δΨp is enough to realise the equivalent rotation of
4π for δϕp along the poloidal direction.

Similarly, the second free space operation can be decomposed
into two sequential operations of the HWP (aligned horizontally)
and HWP (rotated δΨt),

|Output〉 � D̂ n̂3, 2δΨt( )D̂ n̂1, π( )D̂ n̂3,−2δΨt( )
D̂ n̂1, π( )|Port 1′〉, (19)

to realise the proper SO(2) rotation [81] by D̂(n̂3, δϕt), and the
physical rotation of π/2 for δΨt is enough to realise the equivalent
rotation of 2π for δϕt along the toroidal direction.

3.2 Rotated polarisation torus

A torus is obviously a topological structure, such that it is
expected that the topological structure is strong against
distortions. As the first step to confirm the topological
robustness, we have inserted the additional QWP with its FA
rotated π/4 towards the end of the device, such that the output
becomes

|Port 4′〉 � D̂ n̂2, π/2( )D̂ n̂1, δϕp( )|Port 4〉, (20)

which means that the polarisation states should be rotated along the
S2 axis with the amount of π/2, and consequently, the S1–S2 plane is
rotated to be the S2–S3 plane. The experimental results on the rotated
torus are shown in Figure 7. We confirmed that the structure of the
torus remained unchanged in the Stokes space upon the rotation,
while the toroidal direction is now located parallel to the S2–S3 plane.

FIGURE 4
Polarisation torus in the Stokes space. The input state to the polarisation interferometer is in the diagonally polarised state with a power of 1.5 mW.
The output power is controlled upon the interference, together with the polar angle and the phase, affected by rotating waveplates. The Stokes
parameters, (S0, S1, S2, S3), of output states were calculated by using a simple representation theory ofU(2) �U(1) × SU(2). (A) Stokes parameters are shown
for various poloidal and toroidal rotation angles. (B) Toroidal states, seen from the top of the S3 axis. (C) Poloidal states, as a cross-section of the
torus, perpendicular to the toroidal plane. The inset shows the polarisation torus collapsed on the Poincaré sphere. The calculated Stokes parameters for
the polarisation torus were mapped onto the Poincaré sphere after the normalisations at each point. The torus becomes a belt with no information of the
intensity on the Poincaré sphere.
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Similarly, we have also confirmed that the rotation along the S1
axis preserves the topological structure of the torus. This was realised
by adding the QWP with its FA aligned horizontally, and the
expected output state becomes

|Port 4′〉 � D̂ n̂1, π/2( )D̂ n̂1, δϕp( )|Port 4〉, (21)

and the experimental results are shown in Figure 8. In this case, the
principal axis of the toroidal rotation is along the S2 axis, which is

orthogonal to the axes of previous toruses (Figures 6, 7). Therefore,
the torus was not distorted upon the applications of rotated QWPs.

Theoretically, the phase-shifter and the rotator merely rotate
Stokes parameters upon the application of D̂(n̂, δϕ), such that it
results in rotations of the vectorial point (S1, S2, S3) along some
direction n̂ with the amount of δϕ. This linear and unitary operation
cannot change the topology of a set of points in the Stokes space,
such that a torus or a sphere would be transferred to the same
topological structure, respectively, without changing its genus.

FIGURE 5
Coupled polarisation torus. Stokes parameters were calculated, using a rotated quarter-wave plate, applied to a polarisation circle. Two holes are
visible, but the structure is based on two connected toruses with the genus of 1. Trajectories of polarisation states for the input of (A) diagonally linear
polarised states and (B) elliptically polarised state at α = π/4 and δ = π/8. Symmetric trajectories showing a character of 8 are shown in (A), while
asymmetric trajectories are shown in (B). (C) Approximately 80% of drawing for trajectories of (A) to show just before the intersections. Due to the
intersections, the topology of (A) cannot be a torus of g = 2. (D) Trajectories of (A) for fewer parameters at the interferometer. (E) Trajectories of
polarisation states by combining phase-shifts and rotations of quarter-wave plates at the same time to allow 25 rotations. The connected link covers the
torus of g = 2. (F) Trefoil knot by using a half-wave plate, instead of a quarter-wave plate. The trefoil knot covers the torus of g = 1. The insets show the
trajectories of polarisation states on the Poincaré sphere.

Frontiers in Physics frontiersin.org09

Saito 10.3389/fphy.2023.1225462

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1225462


3.3 Double-connected toruses

We have also tried to realise the double-connected toruses with
g = 1 by a rotated QWP. Here, we expect the output state of

|Output〉 � D̂ n̂3, 2δΨ t( )D̂(n̂1, π/2)D̂ n̂3,−2δΨ t( )|Port 1′〉, (22)
which makes two connected toruses. The corresponding
experimental results are shown in Figure 9. This corresponds to
the theoretical calculations of Figure 5D. As shown by the colour
difference of Figure 5D, the intensities of each trajectory are
different, meaning that the trajectories are not intersecting at the
D-state, and therefore, the trajectories are located on the surface of
the torus of g = 2. If we increase the number of steps for the poloidal
control apart from 4 (Figure 9), the trajectories will be eventually
filled, as we have discussed for Figures 5A–C. In order to overcome
the closure of the surface, the linked trajectory to cover the surface of
the torus of g = 2 (Figure 5E) is required. In our current experimental
setup, it was difficult to confirm the trajectory of Figure 5E since we
needed to manually rotate the waveplates physically, such that it was
tough to allow correlated simultaneous rotations for both poloidal
and toroidal directions. In order to allow these experiments, we need
dynamic control of polarisation states by optical modulators. We are
developing a dynamic polarisation controller by using an LiNbO3

optical modulator [82]. It will be possible in the future to allow the

complicated polarisation control by combining the proposed
polarisation interferometer together with the dynamic Poincaré
rotator.

4 Discussions

We have shown polarisation torus is realised experimentally in
the Stokes space, where each point represents the spin expectation
value of photon coherent states. The observed polarisation states are
standard coherent states, but the entire trajectories, realised by the
polarisation interferometer, were topologically non-trivial,
characterised by g = 1, and the topological states are stationary
and stable over time. In our experimental setup, using waveplates, a
dynamic control is difficult to achieve, limited by the mechanical
rotations of waveplates. On the other hand, there are several exciting
achievements to realise topologically non-trivial pulses of lights [99,
104, 105]. The toroidal pulse shape observed by Zdagkas et al. was
realised by a tailored manipulation of the meta-surface [99]. Wang
et al. realised the micro-cavity in the shape of a Möbius strip to find
the notable impact of the Pancharatnam–Berry phase [104]. Li et al.
realised a Möbius fibre ring laser to find frequency shifts and
geometrical phases [105]. These developments are achieved by
considering the dynamical evolution of lights rather than
stationary polarisation states. Considering these developments, we

FIGURE 6
Polarisation torus in the Stokes space. Stokes parameters for coherent photons out of the polarisation interferometer were plotted. After setting the
poloidal rotation angle, four trajectories (red, magenta, blue, and cyan in colours) were obtained at each angle by mechanically rotating the half-wave
plate to change the toroidal angle. Stokes parameters are shown (A) in the 3D Stokes space, (B) from the top of the S3 axis, and (C) as a cross-section
perpendicular to the toroidal plane. The insets show the trajectories of polarisation states on the Poincaré sphere.
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also think dynamical evolutions are important to consider
topological polarisation states. At this moment, we are
developing polarisation modulators to manipulate polarisation
states, dynamically [82]. It is also important to see the dynamical
response of polarisation states because it is not easy to stabilise the
phases of polarisation states against local changes of the
environment such as ambient temperature and vibrations. Due to
these practical disturbances, our experimental realisations of
topological polarisation states are limited to toruses, as explained
previously. Nevertheless, we can realise other topological non-trivial
features as the polarisation states, as theoretically shown in the
following section.

4.1 Möbius strip

We consider how to realise a Möbius strip in the Stokes space. A
Möbius strip [41, 44, 48] is made of a strip with the one end, flipped
for connecting to the other end. We consider the same setup as that
shown in Figure 2, and we just need to change the optical
components in the free space regions. For a Möbius strip, we
need to prepare a line segment, rather than a circle (Figure 1),
prepared for the torus. Such a line segment can be made by the
simple phase-shift to the wave out of the tap port 4 by the phase-shift
of D̂(n̂2, δϕp) along the S2 axis. This operation will not change the
input polarisation state of the D-state, while the phase is shifted,

which changes the intensity of S0. The line segment should be
rotated for the toroidal direction along the S1 axis, such that the
operations become

|Port 4′〉 � D̂ n̂1, δϕt( )D̂ n̂2, δϕp( )|Port 4〉. (23)

After these operations, the bypassed wave should be recombined by
the subsequent FFC with the output from the through port 3. The
combined wave should be rotated by the final rotator with the
amount of δϕt, which is the same operation as that for the torus. The
Stokes parameters were calculated from these U(2) wavefunctions,
and the trajectories become the polarisation Möbius strip, as shown
in Figure 10A. We can recognise a standard feature of a Möbius
strip, designed in the Stokes space.

In our original consideration for the torus, we have controlled
δϕp from 0 to 4π, while δϕt was changed from 0 to 2π. These
parameters also work for the Möbius strip, and this will cover the
Möbius strip twice, due to the collapsing of the pore of the torus for
the strip. Consequently, the half-rotation for δϕp is enough to realise
the Möbius strip. It is even better to consider the quarter-rotation of
δϕp from 0 to π, and instead, the double rotation of δϕt from 0 to 4π
could be considered. In this case, it is easier to track the trajectory,
controlled by δϕt. For example, if we start from the point, realised by
δϕp = 0 and δϕt = 0, the original input state is recovered, which is
located at the edge of the Möbius strip, and the intensity is
maximised. Then, it is easy to see the trajectory (Figure 10B) of

FIGURE 7
Rotated polarisation torus. The quarter-wave plate, whose fast axis was aligned to the diagonal direction, was inserted. Stokes parameters are shown
(A) in the 3D Stokes space, (B) from the top of the S3 axis, and (C) as a cross-section, perpendicular to the toroidal plane. We confirmed that the torus was
rotated π/2, such that the toroidal direction is parallel to the S2–S3 plane. The inset shows the trajectories of polarisation states on the Poincaré sphere.
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showing how δϕt changes the point, moving from the outer edge to
the inner edge, and coming back to the original point upon the
application of the 4π-rotation. On the other hand, if we start from
δϕp = π and δϕt = 0, it is located at the centre of theMöbius strip, and
the trajectory becomes the circle upon the change of δϕt from 0 to
2π, and it rotates twice upon the 4π-rotation (Figure 10C).

It is well-known that a Möbius strip cannot be assigned its
orientation, which is evident from the fact that we cannot
distinguish the front surface from the back surface. On the other
hand, we can define its chirality, which depends on how the line
segment could be connected upon rotations in our case. The Möbius
strip, as shown in Figure 10, is defined to be right-handed because
the line segment was rotated to the right side, seen from the
direction, opposite to the toroidal rotation. Correspondingly, the
left-handed Möbius strip could be considered, simply by the
opposite rotation to yield

|Port 4′〉 � D̂ n̂1, δϕt( )D̂ n̂2,−δϕp( )|Port 4〉, (24)

which was used to calculate its Stokes parameters, as shown in
Figure 11. If we focus on the trajectory of the edge, starting from the
outer edge at δϕp = 0 and δϕt = 0, polarisation states rotate along the
bottom (negative S3), upon the toroidal direction, to arrive at the
inner edge, and continue to go up to the top (positive S3), towards

going back to the original point. This is the opposite chirality to that
of the right-handedMöbius strip, shown in Figure 10. Therefore, the
chirality could be controlled, when we realise the Möbius strip by
defining the sign of rotation to flip the line segment.

4.2 Hopf links and other topological
structures

Next, we consider realising a Hopf link using polarisation states.
A Hopf link is made of two rings, which are completely
disconnected, while one ring intersects with the other
(Figure 12). We think it is impossible to realise it solely from
1 wavelength since we cannot allow two different points with
different N (or equivalently, P), while keeping the same angles
for γ and δ. Therefore, trajectories, controlled by the polarisation
states, would be continuous in the Stokes space for 1 wavelength.
However, if we allow wavelength-division multiplexing (WDM) in
the SMF, we can separately manipulate polarisation states for
multiple wavelengths, leading the way to realise optical Hopf
links. We just need to adjust relative powers and polarisation
states for both wavelengths by considering to establish the
topology between two waves.

FIGURE 8
Rotated polarisation torus. The quarter-wave plate, whose fast axis was aligned horizontally, was inserted. Stokes parameters are shown (A) in the 3D
Stokes space, (B) from the top of the S3 axis, and (C) as a cross-section, perpendicular to the toroidal plane. We confirmed that the topological structure of
the torus was not changed upon the rotation. The inset shows the trajectories of polarisation states on the Poincaré sphere.
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As an example, we consider a polarisation circle realised by the
polarisation interferometer, shown in Figure 2. Here, we assume
1 wavelength of approximately 1530 nm with the input power of
1.5 mW to be controlled by the polarisation interferometer. The
output of the tap port 4 is now controlled as

|Port 4′〉 � D̂ n̂3, δϕp( )|Port 4〉, (25)

while we do not need to rotate along the toroidal direction, such that we
do not insert any optical components in the second free space region.
This will create a polarisation circle in the S1–S2 plane, perpendicular to
the direction of S3 (the small circle of Figure 12A). The polarisation
circle in the Stokes space is a line segment in the normalised Poincaré
sphere (the blue line in the inset of Figure 12A). Next, we just need to
prepare another polarisation circle by using a different wavelength of
approximately 1550 nm at the power of 1.0 mW, which could be
controlled by proposed Poincaré rotators (phase-shifters to control δ)
[81, 82], separately, to allow circular changes of polarisation states,
located in the S2–S3 plane, perpendicular to the direction of S1 (a large
circle of Figure 12A). After constructing these waves in the SMFs, we
can combine these by a polarisation-dependent FFC, with an
appropriate power splitting ratio. These two polarisation circles do
not touch each other in Stokes space, forming a Hopf link (Figure 12).
On the other hand, if we plot these states by normalising Stokes

parameters to have a unit radius, these two circles are connected
(the inset of Figure 12). Therefore, it is important to distinguish the
power difference of these waves.

Similarly, we have also calculated a Hopf link by assuming the
different ratio of 50:50 (α = 0.5), as shown in Figure 12B, while the
other parameters were the same as those for Figure 12A. In this
case, the larger polarisation circle is realised upon the interference,
due to the larger power, propagating into the tap port 4. As a
consequence of the interference, the minimum output power could
be 0, which is why the heart-like dip is realised near the origin of
the Stokes space.

This heart shape affects the torus structure if the polarisation
states are further controlled upon the toroidal rotation, as shown in
Figure 13. Here, we have assumed the splitting of 50:50 (α = 0.5) for
an input of the single wavelength at 1530 nm with the power of
1.5 mW. We expect that the heart-shaped polarisation circles are
making trajectories upon rotations to the toroidal direction, with the
amount of δϕt changed from 0 to 3π/2. Due to its feature, we call it a
polarisation apple to have seed-like regions due to the heart-shaped
dip near the origin. This is a remarkable difference between the
mathematical overlapping of two circles upon rotations. In our case,
we realise the circular heart-shaped circles upon the interference,
such that the intensity near the origin becomes 0 due to the complete

FIGURE 9
Double-connected toruses. The polarisation states were made by operating the states by using a rotated quarter-wave plate at the end of the
polarisation interferometer. The sets aremade of two connected toruses with the genus of 1. The inset shows the trajectories of polarisation states on the
Poincaré sphere.
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destructive interference between two separated waves with the sign
change upon the SU(2) rotation.

4.3 Bulk-edge correspondence and
massless Dirac bosons

We have several topologically non-trivial structures as
polarisation states in the Stokes space, compared with the

Poincaré sphere. Polarisation results from spin expectation values
[56–75, 77, 81, 82], such that the non-trivial polarisation states are
determined by the broken rotational symmetry for the polarisation
states. These topologically non-trivial features are robust against the
rotationally symmetric disturbances. For example, the polarisation-
independent loss in the SMF cannot change the topology of the
polarisation states. Moreover, spherically symmetric operations of
phase-shifters and rotators can rotate the topological structures such
as toruses (Figures 6–8), Möbius strip (Figures 10, 11), and Hopf

FIGURE 10
Polarisation Möbius strip. Stokes parameters were calculated, assuming the input of 1.5 mW to a polarisation interferometer. A line segment is made
of the interference between the bypassed wave with the phase-shift and the original polarisation state at the through port. The segment was rotated by a
rotator for the same amount of rotation with the angle for the toroidal rotation. This Möbius strip is right-handed, in the sense that it is made of the line
segment, which rotates to the right, seen from the direction opposite to the toroidal rotation. (A) Set of polarisation states in the Stokes space,
realised by the polarisation interferometer and rotators. The inset shows the trajectories of polarisation states on the Poincaré sphere. (B) Swapping of the
edges of the Möbius strip. A trajectory of polarisation states at the poloidal angle of δϕp = 0 is shown, while the toroidal angle of δϕt was changed from 0 to
4π. The outer edge state becomes the inner edge state, after one rotation, and vice versa, after another subsequent rotation. (C) The centre line of the
Möbius strip. A trajectory of polarisation states at the poloidal angle of δϕp = π becomes a polarisation circle, to keep the centre of the Möbius strip, while
rotating.
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links (Figure 12), but still, the relative topology within these
structures will be kept upon rotations. It is a polarisation-
dependent loss to cut these topological features. Nevertheless, it
is not so easy to change the topology since a simple insertion of a
polariser, for example, will completely destroy the polarisation
structure, ending up to be one point in the Stokes space. We
need to make an optical scissor to allow an arbitral cutting of
topological polarisation states. In order to reduce the intensity of
the targeted polarisation states, we need to observe the polarisation
states by using a polarimeter, which corresponds to observing the
wavefunctions to expect the collapse of the wavefunction. For
coherent photons, we can observe a bypassed contribution via a
tap port, while keeping the contribution in the through port [82], but
still we need to prepare a complicated photonic circuit to allow the
splitting, delay, and manipulation of the loss. These difficulties result
from robust correlations among the bits in the pulse stream to form
non-trivial topological polarisation states. Here, we discuss how the
broken symmetry in the bulk is corresponding to the edge state [4–6,
14, 22, 41–44]. More specifically, we return to the case of the

polarisation torus and consider how the polarisation states could
be connected to the original Poincaré sphere.

The torus is obviously distinct from the sphere because of the non-
zero genus. For the pulse streams of light, coming out of the proposed
device, which is the polarisation interferometer with the polarisation
rotator (Figure 2), the Stokes parameters of the pulse represent one of
the points on the polarisation torus, such that the pulse streams are
considered to form the bulk state of the polarisation torus, characterised
by g = 1. On the other hand, in the standard SMF with the rotational
symmetry, the polarisation states are well-known to be characterised by
the Poincaré sphere with g = 0 as a different bulk state. If we would like
to connect the torus to the Poincaré sphere, we need to prepare the edge
state, where the pore of the torus is closed, such that the polarisation
circle (Figure 1A) is closed to be 1 point, which must be robust against
disturbances to rotate the polarisation state.

We can generate such an edge state, simply by changing the
rotations in the Stokes space. One practical implementation is to use
the same setup of Figure 2, while we introduce the amplitude
controller,

FIGURE 11
Left Möbius strip as polarisation states. Stokes parameters were calculated by considering the rotating segment to the left-handed direction, seen
from the direction opposite to the toroidal rotation. The inset shows the trajectories of polarisation states on the Poincaré sphere.
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Â δϕp( ) � 1 cos
δϕp

2
( ), (26)

in the first free space region. The amplitude controller is not a unitary
operator, such that this operator does not belong to a family of SU(2). It
is an operator of U(2), except for the parameters, δϕp = π, 3π,/, where
the operator becomes 0, such that the norm is controlled upon the
operation. The amplitude controller is made of polarisation splitters to
change the amplitude of each polarisation state, independently, while
each polarisation state would be inserted into a polarisation rotator [75,
81, 82] to change its polarisation in the S1-S2 plane, independently,
picking up only the original polarisation state after the rotation, and
finally recombining orthogonal polarisation states in a combiner.
Alternatively, the amplitude controller is simply made of a
polarisation-independent Mach–Zehnder interferometer to control
the amplitudes for both polarisation components, simultaneously,
while keeping the polarisation. The amplitude controller could also
be defined as

B̂ δϕp( ) � σ̂1 sin
δϕp

2
( ), (27)

which accompanies a swapping of the polarisation states in addition
to the polarisation rotation.

After the amplitude control of the contribution in the tap port 4,
the output polarisation state is further controlled by a QWP, yielding

|Port 4′〉 � D̂(n̂1, π/2)Â δϕt( )|Port 4〉, (28)
which is combined with the contribution with the through port 3.
Finally, the recombined state is rotated along the S2 axis instead of
the S3 axis by the polarisation rotator

|Output〉 � D̂ n̂2, δϕt( )|Port 1′〉. (29)

These operations will create a topological Dirac cone near the
D-state. However, it is intriguing to illustrate it near the north
pole (in our convention, the left circularly polarised state [75]),
which could be achieved simply by a π/2-rotation along S1.
Alternatively, we can apply

|Port 4′〉 � Â δϕt( )|Port 4〉, (30)
to the tap port 4 without a QWP, while the through port 3 is phase-
shifted by a QWP to be

|Port 3′〉 � D̂(n̂1, π/2)|Port 3〉, (31)
and then, the recombined states should be rotated along the S3 axis,
just like creating a torus before.

The calculated Stokes parameters in this way are shown in
Figure 14, where a topological Dirac cone is recognised in the Stokes
space. Bosonic Dirac bosons were previously discussed [106, 107] in
realising a single-particle spectrum of a boson. Here, we are not
discussing a single-particle energy spectrum in the momentum
space. Instead, we are considering the many-body energy (S0) of
a bit in a pulse stream, generated from a device, and the change in
energy is described against the spin expectation values rather than
momentum for an energy band. Due to the coherent nature of
bosons with no charge, photons in the same bit do not interact with
each other, but the energy difference in S0 could be considered the
difference in number of photons in each bit. As shown in
Figure 14A, the polarisation circle, generated by a rotator, is
closed at the Dirac point, where the light cone is closed. At the
Dirac point, the polarisation state is not changed upon rotations
along the S3 axis, such that this edge state to close the circle is
topologically robust against rotations in the S1–S2 plane. We have
also plotted the Dirac cone in the space for (S0, S1, S2), as shown in
Figure 14B. We confirmed the linear energy change, seen from S0,

FIGURE 12
Polarisation Hopf links in the Stokes space. (A) The small circle is calculated for the wavelength of 1530 nm, realised by the polarisation
interferometer. The large circle is realised by a phase-shifter for the wavelength of 1550 nm, and these two waves would be combined by a coupler. The
inset shows the normalised polarisation states, shown on the Poincaré sphere. The blue (red) circles are for small (large) polarisation circles. (B) Heart-
shaped polarisation circle with a Hopf link in the Stokes space. We assumed a 50:50 splitting of the input wave into the polarisation interferometer to
realise the heart-like dip near the origin. The inset shows the normalised polarisation states, shown on the Poincaré sphere. The normalised polarisation
circle (the blue line in the inset) covers the whole angle in the S1–S2 plane, while the intensity is modulated upon rotations.
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against the radius of the polarisation circle in the plane, parallel to
the S1-S2 plane. For the constant energy in S0, or equivalently, for the
same number of photons in a bit, the bit is characterised in the
polarisation circle of the Dirac cone, which changes the helical spin
expectation values (S1, S2) upon rotations by a rotator along the
S3 axis.

If we would like to change g = 1 of a torus to g = 0 of a sphere, it is
inevitable to make such a Dirac point, where the polarisation state is
robust against the rotations. We think the Dirac point corresponds
to the edge state, while the polarisation torus and Poincaré sphere
are bulk states. This is the bulk-edge correspondence [4–6, 14, 22,
41–44] for our topological polarisation states.

As an example, we have connected a polarisation torus to a
Poincaré sphere via topological Dirac cones, as shown in Figure 15.
Here, we have assumed the maximum power of 1.5, 1.05, and
0.75 mW for the polarisation torus, Dirac bosons, and the inner

Poincaré sphere, respectively. The number of connected Dirac cones
was 4 in this example, but it is not limited to this particular number.
The number of edge states simply depended on our experimental
setup and feasibility on how to close the pore generated in the torus.
In the example of Figure 15A, the torus is continuously connected to
four Dirac cones, with four Dirac points to close the pore, and the
inner light cone is continuously connected to a Poincaré sphere with
a smaller radius (S0). The torus (g = 1) and the sphere (g = 0) describe
different bulk states, respectively, while the Dirac points are edge
states. Even if we rotate the whole structure in the 3D (S1, S2, S3)
space, the topology of these states will not be changed at all, and the
polarisation-independent loss merely changes the scale (radius by
S0), such that the topology will not be changed, either. Consequently,
these topological features in the Stokes space will be robust during
the propagation in the SMF, regardless of the polarisation rotations
and the loss.

FIGURE 13
Polarisation apple in the Stokes space. The Stokes parameters were calculated for assuming 50:50 splitting at fibre couplers. The toroidal rotations
from 0 to 3π/2 (rather than 2π) were assumed to have the seed-like dips near the origin, realised by the interferences. The inset shows the trajectories of
polarisation states on the Poincaré sphere.
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Another method to close the torus is to introduce a phase-shift.
For example, we can introduce a phase change upon the toroidal
rotation as

|Port 4′〉 � D̂ n̂2, δϕt( )D̂ n̂1, δϕp( )|Port 4〉, (32)

which induces the destructive rotation upon the toroidal rotation,
leading to a generation of a Dirac point at the diagonally polarised
state (Figure 15B). The structure of Figure 15B is not a torus
anymore since the pore is closed, but we can introduce the
toroidal phase change upon the dynamic operation [82]. Then,

FIGURE 14
Topological Dirac bosons. Stokes parameters (S0, S1, S2, S3) were calculated for the output from the amplitude-controlled polarisation
interferometer. (A)Dirac bosons in the vectorial space (S1, S2, S3). The Dirac point at the centre of the light cone is robust against the rotation in the S1–S2
plane, such that a rotator along the S3 axis cannot change the polarisation state at this point. (B) Dirac bosons in the vectorial space (S0, S1, S2). The
intensity of the light (S0) is linearly controlled upon the S3 direction, as a result of the interference, while S0 is not affected upon the rotation in the
S1–S2 plane, which induces a helical change of the polarisation state. (C) The trajectories of polarisation states are shown on the Poincaré sphere.

FIGURE 15
Bulk-edge correspondence for topological polarisation states. (A) Stokes parameters were calculated for the torus, Dirac cones, and the Poincaré
sphere. The polarisation torus was connected by Dirac cones to the Poincaré sphere. It is inevitable to have a node of the polarisation circle at the Dirac
point to change the genus from 1 to 0. (B) Closed polarisation torus. The phase-shift is introduced upon the toroidal rotation, which induces the
destructive interference, leading to the Dirac point at the anti-diagonally polarised state. The insets show the trajectories of polarisation states on the
Poincaré sphere.
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the polarisation torus can be dynamically switched to the
conventional Poincaré sphere, continuously, along with the time
evolution. By considering time as another coordinate, inspired by
the time crystal [34, 35], we can dynamically switch polarisation
structures with different genera. It is important to recognise that the
edge must exist between different topological structures, and in
order to close the torus continuously for the sphere, we need at least
one Dirac point.

4.4 Chern number and Gauss–Bonnet
theorems

We consider the topological invariance discussed in this paper.
In the physics of topological materials, the Chern number [37] is the
topological invariance to characterise the non-trivial quantum
states. The Chern theorem [37] was established through a
generalisation to C numbers for wavefunctions [1, 2, 4–6, 8, 11,
12, 14, 15, 36, 38–44], while the classical Gauss–Bonnet theorem is
valid in R numbers. We focus on the polarisation torus to identify
the topological invariance.

First, we evaluated the Chern number for the polarisation torus.
To calculate the Chern number, we need to integrate the
Pancharatnam–Berry phase of γ along a closed loop. We
consider the poloidal rotation, as shown in Figure 2A, whose
output state after the polarisation interferometer is given by

|ϕp〉 � |Port 1′〉, (33)

for the total rotation of ϕp, and we consider the small deviation of
δϕp from ϕp, and the Berry connection [4–6, 38–41, 44] is defined by

dA � 〈ϕp|ϕp + δϕp〉 − 〈ϕp|ϕp〉
〈ϕp|ϕp〉

≡ 〈 δ

δϕp

〉 · δϕp, (34)

which yields the Pancharatnam–Berry phase as

iγ � ∮ dA (35)
to give the Chern number

C � γ

2π
� ∮ dA

2πi
, (36)

which is the winding number for the wavefunction along the closed
trajectory in the Hilbert space. We confirmed that the Chern
number for the topological torus is 0 upon numerical
calculations. This is confirmed on the normalised Poincaré
sphere of Figure 4 (and the blue line in the inset of Figure 12A)
because the circular rotation in the Stokes space along the radial
direction (Figure 2A) simply corresponds to the line integration in
the normalised Poincaré sphere, whose solid angle vanishes. Due to
the uncertainty of 4π in solid angle and the nature of the 2-level
systems, the Chern number of polarisation torus is given by integers
(Z); thus, we obtain C ∈ Z. The line integration over the poloidal
direction can be converted into the surface integration over the
torus, such that the integer Chern number characterises the nature
of the polarisation torus. This is exactly the same as that for the
rotationally symmetric Poincaré sphere, such that we have no
difference in the wavefunction, which is not surprising in the
definition of the Berry connection, which is defined as the

overlap of the normalised wavefunctions upon a trajectory over
the phase space. If we take the integration contour over the toroidal
direction, rather than the poloidal direction, the
Pancharatnam–Berry phase becomes finite in agreement with the
solid angle, defined by the toroidal trajectory. However, in this case,
the toroidal loop cannot cover the whole surface of the torus, such
that we cannot apply the Stokes theorem to characterise the topology
of the torus. Consequently, it is reasonable to use the contour over
the poloidal direction, and the Chern number of the torus is the
same as that of the full sphere of the Poincaré sphere. Therefore, the
normalised SU(2) wavefunction is not useful to characterise the
polarisation torus, since the non-trivial nature of the polarisation
torus in topology could be considered only when we take the variable
radius of the U(2) wavefunction into account for the coherent many-
body states with Bose–Einstein statistics.

In fact, the topological nature of the polarisation torus is
appeared in the Stokes space, where the spin expectation values
could take potentially any values in R3. For characterising the
topology in the real space, we can use the Gauss–Bonnet
theorem to obtain the Euler number,

χ � 2 1 − g( ) � ∫ dS

2π
K, (37)

where K is the product of the minimum and maximum curvatures
on the surface and dS is the infinitesimal surface area. For the torus,
the curvatures upon the toroidal direction change their sign, such
that the integration becomes 0, yielding χ = 0 and g = 1. The values
are completely different for a sphere to have χ = 2 and g = 0. Thus,
the Euler number and the genus should be appropriate as topological
invariants in the polarisation torus. Other topological features are
also considered in R3, such that these numbers will be useful to
consider polarisation states in the Stokes space.

5 Conclusion

We have shown that photons in the coherent states are described
by the U(2) wavefunctions, and the spin expectation values,
calculated in the wavefunction, span the three-dimensional
Euclidean space, named the Stokes space, allowing to realise
various non-trivial topological structures rather than the simple
Poincaré sphere. We have proposed the polarisation interferometer
to realise the polarisation torus and experimentally demonstrated
the structure through the polarimetry. We have also shown that
other topologically non-trivial structures, such as Möbius strip,
Hopf links, and topological Dirac bosons. These topological
structures in the Stokes space are characterised by the Euler
number and genus rather than the Chern number since the spin
expectation values are observable and the proposed topological
structures are realised in real values rather than complex values
of wavefunctions. We found that a bulk-edge correspondence is
applicable to these topological features, and the torus and the sphere
must be continuously connected, only when the Dirac point is
realised at the edge to connect these structures in the Stokes
space. Topological polarisation states are robust against rotations,
phase-shifts, and polarisation-independent losses during the
propagation in the single-mode fibre, such that these features can
be transmitted without breaking topological correlations. The
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proposed topological structures are supported by the bosonic nature
of photons, allowing many photons to occupy the same state, which
has a remarkable difference in the fermionic Bloch state. The energy
spectrum of proposed Dirac bosons is characterised by these
coherent bosons, rather than the single-particle spectrum, and
the linear dispersion of the energy in the bit will be observed
against the helical polarisation. We think these topological
polarisation states are generic features for coherent photons
emitted from ubiquitous laser sources, such that we can consider
various applications such as robust optical communications and
fibre sensors against signal disturbances in harsh environments or
future topological quantum computing using photons.
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