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Lie algebra is a hidden mathematical structure behind various quantum systems
realised in nature. Here, we consider SU(2) wavefunctions for polarisation states of
coherent photons emitted from a laser source, and discuss the relationship to spin
expectation values with SO(3) symmetry based on isomorphism theorems. In
particular, we found rotated half-wave-plates correspond to mirror reflections in
the Poincaré sphere, which do not form a subgroup in the projected O(2) plane
due to anti-hermitian property. This could be overcome experimentally by
preparing another half-wave-plate to realise a pristine rotator in SU(2), which
allows arbitrary rotation angles determined by the physical rotation. By combining
another 2 quarter-wave-plates, we could also construct a genuine phase-shifter,
thus, realising passive control over the full Poincaré sphere.
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1 Introduction

Marius Sophus Lie introduced the concept of infinitesimal transformations as early as
1870s, which allowed classification and manipulation of complex matrices based on simple
sets of Lie brackets, known as commutation relationships by physicists [1–6]. Lie algebra is
especially powerful for applications in quantum mechanics, since the commutation
relationships are essential to understanding fundamental properties of elementary
particles [5–9]. One of the most simplest, but yet, non-trivial systems is a quantum 2-
level system, described by the special unitary group of 2 dimensions, known as SU(2) [5, 7, 9].

These days, SU(2) systems are especially important for applications in quantum
computing using qubits [10]. Various qubits are realised by charged-Cooper pairs in
superconducting Josephson junctions [11–14], ions in optical traps [15, 16], single
photons in silicon photonic circuits [17–20], and single electron spin in silicon
transistors [21, 22] for realising Noisy Intermediate-Scale Quantum (NISQ) computing
as a near term goal towards the fault-tolerant quantum computing in the long term [23].
These qubits are all based on elementary excitations with SU(2) symmetry, and thus, they are
fragile against dissipation to environments surrounding microscopic qubits [24].

On the other hand, polarisation [25–29] is macroscopic manifestation of an spin state of
photons with SU(2) symmetry [7–9, 30, 31]. The nature of polarisation was successfully
discussed by Stokes and Poincaré [32, 33], even before the discovery of quantum mechanics
[34–37]. Unlike early days of Stokes and Poincaré, today, modern quantum many-body
theories are well-established [8, 38–43] and coherent laser sources are ubiquitously available
in experiments [25–29, 44, 45]. Therefore, we have revisited to understand the nature of
polarisation in a coherent state, and found that Stokes parameters, S = (S1, S2, S3), are
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expectation values of spin operators, 〈Ŝ〉, and the coherent phases of
the SU(2) state were coming from the broken rotational symmetries
upon lasing in a vacuum or a waveguide [46–50]. It was also
important to recognise that macroscopic number of photons are
occupying the same state due to Bose-Einstein condensation, and
thus, a simple SU(2) wavefunction is enough to describe the spin
state of photons, such that the Poincaré sphere is essentially the same
as Bloch sphere, except for the fact that the overall factor to represent
the magnitude of the total spin is ZN, where Z is the plank constant
divided by 2π and N is the number of photons in the system [47].
Our results justify the use of SU(2) wavefunction as a macroscopic
wavefunction to describe polarisation, and the impacts of wave-
plates or rotators can be understood as quantum mechanical
operation to an SU(2) state [47].

Here, we consider our SU(2) theory with regard to the relationship
to Lie algebra especially for the relationship between the SU(2) state and
the observed 〈Ŝ〉 with the special orthogonal group of 3-dimensions,
SO(3) [7, 9, 25–29, 44, 45]. We discuss how the orbital degrees of
freedom are converted to the spin degrees of freedom based on
isomorphism theorems in Lie algebra, and confirm the validity of
the theory in experiments on polarisation [25–29].We also discuss why
rotatedHalf-Wave-Plates (HWPs) behave like pseudo-rotators [28, 29],
which significantly restrict the use of HWPs for changing the
polarisation states. Based on a simple consideration of Lie algebra,
we have solved this issue and confirmed a true rotator could be
constructed simply by employing another HWP. Together with
2 Quarter-Wave-Plates (QWPs), we could also control the amount
of the phase-shift simply by the rotation of a HWP. Consequently, we
could construct a passive Poincaré controller to realise arbitrary
rotations of spin states by mechanical rotations.

2 Theory

2.1 SU(2) wavefunction for coherent
photons

A microscopic consideration on spin states of coherent photons
was made previously [47]. Here, we will review the results [7, 9,
25–29, 44, 45] from the perspective of Lie algebra [1–6]. Our starting
point is to accept the principle that coherent photons from a laser are
described by a macroscopic wavefunction with 2 degrees of freedom
to represent the oscillating electro-magnetic fields perpendicular to
each other. Therefore, the wavefunction contains 2 components,
given by 2 complex number (C), which correspond to 2 orbitals for
the complex electric fields. We can choose the basis at our disposal,
e.g., by choosing horizontally (H) and vertically (V) linearly
polarised, left (L) and right (R) circularly-polarised, or diagonally
(D) and anti-diagonally (A) polarised bases [7, 9, 25–29, 44, 45].

The wavefunction must be normalised, such that we have
3 degrees of freedom, given by real number (R). Topologically,
the wavefunction correspond to a point on a surface of a unit sphere
in 4-dimensions, S3 � {x ∈ R4||x| � 1}, which is isomorphic to a
complex unit sphere in 2-dimension, S1C � {x ∈ C2||x| � 1} [2–4, 6].
In general, we consider a unit sphere in n-dimensions with R,
Sn−1 � {x ∈ Rn||x| � 1}, and a complex unit sphere in n-dimensions,
Sn−1C � {x ∈ Cn||x| � 1}, which is isomorphic to S2n−1. In other words,

a quantum mechanical wavefunction corresponds to a point on a
surface of a hyper-sphere, describing a state of coherent photons.

We consider a generic transformation of the wavefunction, while we
conceive the transformation corresponds to a quantum operation,
realised simply by propagation of the electro-magnetic wave into
HWPs, QWP, and so on. The transformation is given by a mapping
made by a unitary group of 2-dimension,
U(2) � {A ∈ M(2,C)|A†A � 1}, as U(2)S3 → S3, where M(n,C) is
a complex matrix group of n-dimensions, A† is an hermitian conjugate
(transpose and complex conjugate) of A, and 1 is a unit matrix.
Topologically, this means that a quantum mechanical operation
corresponds to a rotation of a state on a surface of a hyper-sphere.
The unitary transformation guarantees the conservation of the norm for
the wavefucntion, corresponding to the absence of the loss mechanism
during the operation. In practice, it could be included as an empirical
parameter [25, 27–29] for optics, but we will not consider in this work.
The unitary transformation is appropriate to describe systems with time-
reversal and space-inversion symmetries (Figure 1).

We consider an surjective mapping of determinant, det, from
U(2) to S1 � U(1) � {eiθ|θ ∈ R}. The sub-group of U(2) with the
determinant of unity is SU(2) = {A ∈ U(2)| det(A) = 1}, which is the
kernel of themapping of det. According to the isomorphism theorems
in Lie group [2–4, 6], the projection fromU (2) toU(2)/SU(2) induces
the isomorphic mapping U(2)/SU(2)�S1 (Figure 1A).

From a quantum mechanical point of view, above pedagogical
mathematics simply means that the wavefunction to describe
coherent photons is given by a product of orbital and spin
wavefunctions, U(2)�U(1) × SU(2), as

〈z, t|θ, ϕ〉 � ei kz−ωt( )
e−i

ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where z is the direction of propagation, t is time, θ is the polar angle,
ϕ is the azimuthal angle on the Poincaré sphere [7, 9, 25–31, 44, 45,
47], and we have employed LR-bases [47].

In HV-bases, the wavefuntion is given by

〈z, t|γ, δ〉 � ei kz−ωt( )
e−i

δ
2 cos

γ

2
( )

ei
δ
2 sin

γ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

FIGURE 1
Isomorphic theorems for U (2), SU(2), and O(2). (A) Isomorphic
mapping of U(2)/SU(2)�S1 induced by a determinant. (B) Isomorphic
mapping of SU(2)/S0�SO(3) induced by an adjoint. (C) Isomorphic
mapping of O (2)/SO(2)�S0 induced by a determinant.
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where γ = 2α is the azimuthal angle measured from S1 in the
Poincaré sphere, α is the auxiliary angle, and δ is the relative phase of
the V-state against the H-state [47].

2.2 Lie group of SU(2) for quantum
operations

According to the Lie group theory for SU(2), the rotation
operator, D̂(n̂, δϕ), along the direction n̂ (|n̂| � 1) with the
amount of δϕ is given by an exponential mapping [2–9, 25–31,
47] from Lie algebra using 2 × 2 Pauli matrices, defined as

σ1 � 0 1
1 0

( ), σ2 � 0 −i
i 0

( ), σ3 � 1 0
0 −1( ). (3)

Pauli matrices, σi (i = 1, 2, 3), must satisfy the commutation
relationships of Lie algebra su(2), which is also known as Lie
brackets [2–4, 6] as

σ i, σj[ ] � 2iϵijkσk, (4)

where ϵijk is the Levi-Civita in 3-dimensions, describing a complete
anti-symmetric tensor. Pauli matrices also satisfy the anti-
commutation relationships [2–4, 6].

σ i, σj{ } � 2δij1. (5)

As is always true for all operators in quantum mechanics [5–9],
the rotation operator depends on the choice of bases. The rotation
operator in LR-bases [25–29, 47] becomes.

D̂LR
n̂, δϕ( ) � exp −iσLR · n̂ δϕ

2
( )( ) (6)

� 1 cos
δϕ

2
( ) − iσLR · n̂ sin δϕ

2
( ), (7)

where we have defined σLR = (σ1, σ2, σ3).
For the rotation of D̂LR(n̂, δϕ), we need 3 real parameters,

corresponding to n̂ and δϕ. In the original U(2), a general
transformation contains 4 real parameters, which includes a
phase-shift for the orbital wavefunction of U(1), in addition to
SU(2) (Figure 1A).

On the other hand, the rotation operator in HV-bases becomes
[25–29, 47].

D̂HV
n̂, δϕ( ) � exp −iσHV · n̂ δϕ

2
( )( ) (8)

� 1 cos
δϕ

2
( ) − iσHV · n̂ sin δϕ

2
( ), (9)

where we have defined σHV = (σ3, σ1, σ2). Therefore, the choice of the
bases will simply change the axis of rotation. For example, the rotation
along the S1 axis is performed by σ3 in HV-bases [25–29, 47].

2.3 Applications of SU(2) theory to optical
waveplates and rotators

An SU(2) theory is powerful to represent operations of optical
waveplates and rotators on polarisation states [7, 9, 25–31, 44, 45,

47]. For example, the impact of the HWP, whose fast-axis/slow-axis
(FA/SA) is aligned horizontally/vertically, is represented by setting
the π-rotation as δϕ = π and the rotation axis along n̂1 � (1, 0, 0).
Then, we obtain iD̂LR(n̂1, π) ≡ iD̂LR

1 (π) � σ1 in the LR-bases, or
equivalently, it is iD̂HV(n̂1, π) ≡ iD̂HV

1 (π) � σ3 in the HV-bases,
away from the U (1) phase to describe the overall phase-shift for the
propagation of the HWP [7, 9, 25–31, 44, 45, 47]. The 45°-rotated
HWP is also obtained by setting n̂2 � (0, 1, 0), as
iD̂LR(n̂2, π) ≡ iD̂LR

2 (π) � σ2 in the LR-bases and
iD̂HV(n̂2, π) ≡ iD̂HV

2 (π) � σ1 in the HV-bases [7, 9, 25–31, 44,
45, 47]. Similarly, for n̂3 � (0, 0, 1), we also obtain the operator
of the half-wavelength optical rotator as iD̂LR(n̂3, π) ≡ iD̂LR

3 (π) �
σ3 in the LR-bases and iD̂HV(n̂3, π) ≡ iD̂HV

3 (π) � σ2 in the HV-
bases [7, 9, 25–31, 44, 45, 47].

From mathematical point of view, the origin of the spin rotation
was coming from the difference of the phase-shifts inU(2) for orbital
components among orthogonal polarisations upon propagation. For
example, HWP gives different phase-shifts due to the difference of
the wavelengths along FA and SA, since the refractive indices
depend on the directions crystal orientations [7, 9, 25–31, 44, 45,
47]. In other words, the rotational symmetries are broken in optical
waveplates and rotators, and it is effectively equivalent to apply a
magnetic field to a magnet, which rotates a spin state. For a photon,
there is no magnetic moment due to the lack charge, but the phase-
shift can be precisely controlled by tuning the thickness of
waveplates to account for the difference of the rotation upon
propagation. In this sense, optical waveplates and rotators
effectively work as a converter to transfer orbital degrees of
freedom in U(2) to spin degrees of freedom in SU(2) (Figure 1A).

2.4 Mapping from SU(2) to SO(3)

It is well known that SU(2) is isomorphic to SO(3) in Lie group
[2–9, 25–31, 47], and we discuss its consequence for coherent
photons (Figure 1B). For simplicity, we consider LR-bases in this
subsection, but the discussion is valid in other bases, simply by
replacing axes. The structure constant of Lie algebra su(2) is given
by the commutation relationship of Eq. 6, and it is 2iϵijk [2–9]. We
consider a mapping function of adjoint (Ad) from su(2) to so(3),

Ad −iσ i( )[ ]jk � 2ϵijk, (10)

for components i, j, k = 1, 2, 3, respectively (Figure 1B), which
converts the bases from su(2) to so(3), given by structure constants
in su(2). We define the bases in so(3) as
[Ii]jk � [Ad(−iσ i)]jk/2 � ϵijk, and we obtain

I1 �
0 0 0
0 0 −1
0 1 0

⎛⎜⎝ ⎞⎟⎠, I2 �
0 0 1
0 0 0
−1 0 0

⎛⎜⎝ ⎞⎟⎠, I3 �
0 −1 0
1 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠, (11)

such that the traceless complex 2 × 2 matrices, σi, in su(2) are
replaced with the traceless real 3 × 3 matrices of Ii, in so(3), which
satisfy the commutation relationship

Ii, Ij[ ] � ϵijkIk, (12)

for I = (I1, I2, I3) is angular momentum to generate a rotation [7, 9].
The traceless nature of su(2) and so(3) guarantees the conservation
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of the norm, such that the number of photons is preserved upon
rotational operations to change polarisation states.

The exponential map from Lie algebra so(3) to Lie group SO(3)
gives a Mueller matrix [28, 29].

M̂ n̂, δϕ( ) � exp I · n̂δϕ( ), (13)
for coherent photons. For example, the rotation along the S3 axis is
given by n̂3 � (0, 0, 1), and we obtain the Mueller matrix.

M̂3 δϕ( ) ≡ M̂ n̂3, δϕ( ) (14)

�
cos δϕ( ) −sin δϕ( ) 0
sin δϕ( ) cos δϕ( ) 0

0 0 1

⎛⎜⎝ ⎞⎟⎠. (15)

The commutation relationship of Eq. 6 in so(3) is essentially
the same as that of Eq. 12 in su(2). However, the mapping from
SU(2) to SO(3) is surjective onto-mapping, but it is not injective
(Figure 1B). This could be understood by considering δϕ = 2π-
rotation on the Poincaré sphere, which is always M̂(n̂, 2π) � 1,
irrespective to the choice of the rotation axis n̂, since a unit
rotation in a sphere, S2, cannot change the position of a point on
the sphere after the rotation. On the other hand, the
corresponding rotation in SU(2) changes the signs of
wavefunctions 〈z, t|θ, ϕ〉 of Eq. 1 or 〈z, t|γ, δ〉 of Eq. 2. We
must account for the factor of 2 difference in rotation angles
between SU(2) to SO(3).

This is apparent in the real space image of the wavefunction,
since the SU(2) wavefunction is actually describing a complex
electric field for orthogonal polarisation components in real
space [25–29, 47]. Therefore, the 2π-rotation on the Poincaré
sphere corresponds to the π-rotation in real space, which
changes the sign of the electric field, as seen from Eq. 2. For
example, suppose the original input beam is complete
horizontally linear polarised state, |H〉. The application of 2π-
rotation could be achieved by 2 successive operations by HWPs,
whose FAs are aligned to the same direction. This will change the
input of |H〉 to the output of −|H〉, which is also horizontally
polarised state, but has opposite in phase. Consequently, the
point in the Poincaré sphere would not be changed, while the
wavefunciton changes its sign. This change of the sign could be
observed by an interference to the original input beam, which is
bypassed from the original input. In fact, the phase-shift of π is
ubiquitously employed in a Mach-Zehnder interferometer for
high-speed optical switching [27]. In reality, of course, we must
also consider the U (1) phase-shift, coming form the propagation
in HWPs and the difference in optical path lengths, but it can be
adjusted.

Mathematically, this is explained by isomorphism theorems
(Figure 1B) [2–4, 6], since the kernel of the adjoint mapping from
SU(2) to SO(3) is {1, − 1}�S0 = {1, −1}. We confirmed this by
putting δϕ = 2π in Eq. 4, which gives the non-trivial change of the
sign by D̂LR(n̂, 2π) � −1 in SU(2), while we also have a trivial
kernel of D̂LR(n̂, 0) � 1. On the other hand, in SO(3), both
M̂(n̂, 0) and M̂(n̂, 2π) are equivalent to an identity operation,
given by a unit 3 × 3 matrix of 1, preserving the point on S2.
Therefore, the kernel of SU(2) in the adjoint mapping to SO(3) is
indeed S0. Following isomorphism theorems, we obtain SU(2)/
S0�SO(3).

2.5 Spin expectation values and Stokes
parameters on the Poincaré sphere

Now, we have prepared to discuss the application of an SU(2)
theory for photonics in more detail. For coherent photons, we can
define the spin operator in SU(2) as

Ŝ � ZNσ̂, (16)
and we use σ̂ → σLR � (σ1, σ2, σ3) for LR bases, and σ̂ → σHV �
(σ3, σ1, σ2) for HV bases [47]. By calculating the quantum-
mechanical average over SU(2) states, |θ, ϕ〉 of Eq. 1 or |γ, δ〉 of
Eq. 2, we obtain.

〈Ŝ〉 �
〈Ŝ1〉
〈Ŝ2〉
〈Ŝ3〉

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (17)

� ZN
sin θ cos ϕ
sin θ sin ϕ
cos θ

⎛⎜⎝ ⎞⎟⎠ (18)

� ZN
cos γ

sin γ cos δ
sin γ sin δ

⎛⎜⎝ ⎞⎟⎠, (19)

respectively, [47]. These average spin values are nothing but Stokes
parameters [47], such that we confirm S � 〈Ŝ〉. We have pointed out
that the prefactor of ZN is coming from the nature of Bose-Einstein
condensation for macroscopic number of photons to occupy the
same state with the lowest loss at the onset of lasing [47–50].

The expectation values of 〈Ŝ〉 should not depend on an arbitrary
choice of bases, such that we obtain the famous relationships [25–29,
47] for polarisation ellipse as

tan 2Ψ( ) � tan 2α( )cos δ
sin 2χ( ) � sin 2α( )sin δ, (20)

where the orientation angle is Ψ = ϕ/2, and the ellipticity angle is χ =
π/4 − θ/2. These are also obtained simply by geometrical
considerations of Stokes parameters on the Poincaré sphere
[25–29, 47].

In general, we can consider the rotation operator independent
on the representation [7, 9], which is given by.

D̂ n̂, δϕ( ) � exp −iσ̂ · n̂ δϕ

2
( )( ) (21)

� 1 cos
δϕ

2
( ) − iσ̂ · n̂ sin δϕ

2
( ), (22)

where σ̂ is the spin operator in SU(2). As discussed above, D̂(n̂, δϕ)
acts on the wavefunction in SU(2) to rotate the polarisation state,
while the corresponding expectation values become real numbers as
spin expectation values of S, represented on the Poincaré sphere,
which is rotated in SO(3) (Figure 1B). Both SU(2) and SO(3) form
Lie groups [2–9, 25–31, 47], such that rotational transformations are
continuously connected to an identity element of 1 and
determinants of group elements are always 1, ensuring the norm
conservation. The adjoint mapping from SU(2) (Eq. 21) to SO(3)
(Eq. 13) Lie groups is achieved by the corresponding mapping from
su(2) to so(3) Lie algebras as

Ad −iσ̂( ) � I, (23)
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independent on the choice of the bases.
We can check that a rotation of the polarisation state in SU(2) is

actually corresponding to the rotation of the expectation values of
spin in SO(3). Here, we briefly confirm this for optical rotators and
phase-shifters in preferred bases. The optical rotator in LR-bases is
given by the rotation along the S3 axis, which is given by

RLR Δϕ( ) � e−i
Δϕ
2 0

0 e+i
Δϕ
2

⎛⎝ ⎞⎠, (24)

except for the U(1) phase factor (Figure 1A) for the orbital
component upon propagation of a quartz rotator or a liquid-
crystal rotator, for example, as a mean for the chiral rotation
[25–29, 47]. Then, we consider how the spin part of the
wavefunction, except for the orbital part, is changed upon the
polarisation rotation. For seeing the change, it is straightforward
to calculate the input state |input〉 in LR bases,

|input〉 �
e−i

ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (25)

is transferred to the output state, as

|output〉 � R̂LR Δϕ( )|input〉
� e−i

ϕ+Δϕ
2 cos θ/2( )

e+i
ϕ+Δϕ
2 sin θ/2( )⎛⎜⎜⎝ ⎞⎟⎟⎠,

(26)

which indeed corresponds to rotate the state, ϕ → ϕ + Δϕ, by a
rotator. In fact, by taking the quantum-mechanical expectation
values of the output state, we obtain

S′ ≡ 〈output|Ŝ|output〉 � ZN
sin θ cos ϕ + Δϕ( )
sin θ sin ϕ + Δϕ( )

cos θ

⎛⎜⎝ ⎞⎟⎠. (27)

The corresponding rotation in SO(3) can also be obtained by
Mueller matrix of the rotator for coherent photons [28], which is
actually M̂3(δϕ) of Eq. 15.We can immediately recognise that the spin
expectation values of Eq. 18 are properly rotated by Eq. 15 to confirm

S′ � M̂3 δϕ( )S. (28)
For the phase-shifter, on the other hand, it is easier to use HV-

bases, and we obtain the phase-shifter operator for an optical
waveplate, whose FA is aligned horizontally, as

ΔHV δsf( ) � e−i
δsf
2 0

0 e+i
δsf
2

⎛⎝ ⎞⎠, (29)

where δsf is the expected phase-shift, and we have neglected the
overall U(1) phase, as before. The operator, ΔHV(δsf), accounts for
the rotation along the S1 axis, as

|output〉 � Δ̂HV δsf( )|input〉
� e−i

δ+δsf
2 cos α

e+i
δ+δsf
2 sin α

⎛⎝ ⎞⎠,
(30)

which indeed corresponds to a rotation of δ→ δ + δsf. Consequently,
the spin expectation values become

S′ ≡ 〈output|Ŝ|output〉 � ZN
cos γ( )

sin γ( )cos δ + δsf( )
sin γ( )sin δ + δsf( )

⎛⎜⎜⎝ ⎞⎟⎟⎠, (31)

which can also be obtained by

S′ � M̂1 δsf( )S, (32)
where the corresponding Mueller matrix is.

M̂1 δsf( ) ≡ M̂ n̂1, δsf( ) (33)

�
1 0 0
0 cos δsf( ) −sin δsf( )
0 sin δsf( ) cos δsf( )

⎛⎜⎝ ⎞⎟⎠. (34)

2.6 Mirror reflection by rotated half-
wavelength phase-shifter

HWPs, QWPs, and quartz rotators are useful optical
components to control polarisation of photons [25–29], however,
the amounts of rotation are usually fixed, determined by thickness of
these plates. There are several ways to change the amount of
rotations [25–29]. For example, an active control can be made by
changing the electric field dynamically upon liquid crystal through
transparent electrodes, which is used for applications in a liquid
crystal display (LCD) [27–29, 44, 45]. Another method is to rotate a
HWP to change the orientation angle of the polarisation ellipse
[25–29, 44, 45]. Here, we will revisit the results for impacts on a
rotated-HWP and discuss the consequences within a framework of
Lie group.

We use LR bases to describe a rotated phase-shifter with the
physical rotation angle of ΔΨ, and we obtain the operator [25–29,
44, 45, 47].

ΔLR Δϕ, δsf( ) � RLR Δϕ( )ΔLR δsf( )RLR −Δϕ( )
�

cos
δsf
2

( ) −ie−iΔϕ sin δsf
2

( )
−ie+iΔϕ sin δsf

2
( ) cos

δsf
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
(35)

where the rotator along RLR(Δϕ) � D̂LR(n̂3,Δϕ) accounts for the
rotation of Δϕ = 2ΔΨ in the Poincaré sphere, and ΔLR(δsf ) �
D̂LR(n̂1, δsf ) accounts for the phase-shift of δsf.

The same result could be obtained by recognising the fact
that we need an SU(2) rotation of δsf along the tilted direction
of n = (cos (Δϕ), sin (Δϕ), 0) on the Poincaré sphere, and we
obtain

ΔLR Δϕ, δsf( ) � D̂LR
cos Δϕ( ), sin Δϕ( ), 0( ), δsf( )

� cos
δsf
2

( )1 − i sin
δsf
2

( ) 0 exp −iΔϕ( )
exp +iΔϕ( ) 0

( ),
(36)

For a HWP, we put δsf = π to obtain

ΔLR Δϕ, π( ) � −i 0 exp −iΔϕ( )
exp +iΔϕ( ) 0

( ), (37)

which leads the output state of
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|θ′, ϕ′〉 � ΔLR Δϕ, π( )|θ, ϕ〉
�

e−i
2Δϕ−ϕ

2 cos
π − θ

2
( )

e+i
2Δϕ−ϕ

2 sin
π − θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(38)

Therefore, the impact of a rotated HWP is to change the polar
angel, θ → θ′ = π − θ, and the azimuthal angle, ϕ → ϕ′ = 2Δϕ − ϕ.
This corresponds to the Mueller matrix of

M̂ cos Δϕ( ), sin Δϕ( ), 0( ), π( ) � cos 2Δϕ( ) sin 2Δϕ( ) 0
sin 2Δϕ( ) −cos 2Δϕ( ) 0

0 0 −1
⎛⎜⎝ ⎞⎟⎠,

(39)
which is called as a pseudo rotator [28, 29]. The pseudo rotator
works as a proper rotator for horizontally/vertically polarised state,
since the output polarisation becomes

S′ �
± cos 4ΔΨ( )
± sin 4ΔΨ( )

0

⎛⎜⎝ ⎞⎟⎠, (40)

respectively with the rotation angle of 4 times, compared with
the physical rotation angle. However, in general with the S3
component, the pseudo rotator does not represent a rotation at
all. It actually represents a mirror reflection, as we shall see
below.

For the S3 component, the pseudo rotation merely changes its
sign, such that the left circulation becomes the right circulation, and
vice versa. This could be understood from the last component
of −1 in the block-diagonalised form of
M̂((cos(Δϕ), sin(Δϕ), 0), π). The determinant of the overall
M̂((cos(Δϕ), sin(Δϕ), 0), π) is 1, while the determinant of the
block of the 2 × 2 matrix is −1. Here, this block of the 2 × 2
matrix represents a mirror reflection.

For the change of the orientation angle, also known as the
inclination angle to represent the direction of the primary axis of the
polarisation ellipse, we consider the projection of SO(3) to its
subgroup of O(2) in the S1 − S2 plane (Figure 2). Within this
plane, the pseudo rotation corresponds to the mirror reflection of
the original polarisation state (Figure 2A), which is a set of

O−(2) � {A ∈ M(2,R)|det(A) � −1}, given by a mirror matrix
[2–4, 6].

M̂O2 2Δϕ( ) � cos 2Δϕ( ) sin 2Δϕ( )
sin 2Δϕ( ) −cos 2Δϕ( )( ) (41)

in 2-dimensions. Interestingly, O−(2) does not form a proper sub-
group within O(2), since it does not have an identity operator of 1.
This means that a simple product law as a group like a · b = c for
group elements, a, b, and c, do not necessarily hold. In particular, we
see M̂O2(2Δϕ)M̂O2(2Δϕ) � 1, which means the reflection of the
reflection brings back to the original state, while the identity is not
included in O−(2), 1∉O−(2), such that the mirror reflections are not
closed within the set to define the product.

On the other hand, the kernel of O(2) does form a sub-group of
SO(2) � O+(2) � {A ∈ M(2,R)|det(A) � 1} [2–4, 6], given by a
rotational matrix

R̂O2 2Δϕ( ) � cos 2Δϕ( ) −sin 2Δϕ( )
sin 2Δϕ( ) cos 2Δϕ( )( ) (42)

in 2-dimensions, which is continuously connected to the identity,
R̂O2(0) � 1 at Δϕ = 0. The rotation operators form a group, which is
evident from the product of
R̂O2(2Δϕ1)R̂O2(2Δϕ2) � R̂O2(2(Δϕ1 + Δϕ2)). According to
isomorphism theorems [2–4, 6], this corresponds to O(2)/SO(2)�
S0 (Figure 1C).

We understand the pseudo rotator actually works as a mirror
reflection within the S1 − S2 plane. On the other hand, the pseudo
rotator is not a complete mirror reflection within the entire Poincaré
sphere across themirror plane, defined by a normal vector of (sin (Δϕ),−
cos (Δϕ), 0), which should keep S3 constant. The pseudo rotator changes
the sign of S3, such that the mirror plane for S3 is actually the S1 − S2
plane, whose normal vector is (0,0,1). As a result, the pseudo rotator
could be decomposed of the mirror reflection in the S1 − S2 plane along
the direction of (cos (Δϕ), sin (Δϕ), 0) for S1 and S2 components and
another mirror reflection across the S1 − S2 plane for S3.

In order to use the pseudo rotator for realising desired
polarisation states, we need to know the input polarisation state
a priori before the application to the rotated-HWP, which limits the
application, significantly. Similar to all other quantum systems, once
measurements are taken place, the wavefunction collapses and we
cannot recover the original wavefunction completely [7, 9]. It is ideal
to construct a genuine rotator, which can rotate an expected amount,
even without observing the input state.

2.7 Genuine rotator by two half-wave-plates

We can construct a genuine rotator, simply by introducing
another HWP, whose FA is aligned horizontally, prior to the
application of the pseudo rotator. In fact, the impact of
successive operations of HWPs are calculated as.

ΔLR Δϕ, π( )ΔLR 0, π( ) � − 0 exp −iΔϕ( )
exp +iΔϕ( ) 0

( ) 0 1
1 0

( ),
� − exp −iΔϕ( ) 0

0 exp +iΔϕ( )( )
(43)

FIGURE 2
Impacts of O(2) = O−(2) ∪ O+(2) operations on polarisation states
within the S1 − S2 plane. The red and blue arrows indicate input and
output states, respectively. (A)Mirror reflection by a pseudo rotator in
a set ofO−(2). (B)Genuine rotation in a Lie group ofO+(2) = SO(2).
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� RLR 2Δϕ( ) � RLR 4ΔΨ( ), (44)
which is indeed a genuine rotator of the angle of 4ΔΨ.

The same result can be confirmed in HV-bases as well. The
rotated HWP operator in HV-bases becomes

ΔHV Δϕ, π( ) � −i cos Δϕ( ) sin Δϕ( )
sin Δϕ( ) −cos Δϕ( )( ), (45)

such that we obtain

ΔHV Δϕ, π( )ΔHV 0, π( ) � − cos Δϕ( ) −sin Δϕ( )
sin Δϕ( ) cos Δϕ( )( ),

� RHV 2Δϕ( ) � RHV 4ΔΨ( ),
(46)

and therefore, we could construct a genuine rotation simply by
2 HWPs, while wemust be careful for the amount of rotation of 4ΔΨ
(Figure 2B). This simply means that the application of another
HWP, D̂HV

1 (π) � −iσ3, converts the pseudo rotator to the genuine
rotator in SU(2). Mathematically, this corresponds to
O+(2)�σ3O−(2) within projected O(2). Consequently, we can
control the amount of rotation on the Poincaré sphere simply by
changing the amount of the physical rotation of a HWP in the
laboratory. Having established a proper rotation, it is also
straightforward to realise a genuine phase-shifter by inserting
2 QWPs just before and after the genuine rotator, realised by
2 HWPs, since the application of a QWP corresponds to the π/2-
rotation on the Poincaré sphere [47].

3 Experiments

3.1 Experimental set-up

The experimental set-up is shown in Figure 3. We used a
frequency-locked distributed-feedback (DFB) laser diode at the
wavelength of 1533 nm. The output power was 1.8 mW. The
laser is coupled to a single mode fibre (SMF), and the beam is
collimated to propagate in a free space, where rotating optical plates

are located. The output beam is collected through a collimator to
couple to a SMF. The polarisation states in SMFs were controlled by
polarisation controllers, which apply stress to induce birefringence
in SMFs. The stress was adjusted prior to experiments to examine

FIGURE 3
Experimental set-up. The frequency locked DFB laser diode at the wavelength (λ) of 1,533 nm was coupled to a single mode optical fibre.
Polarisation controllers were used to adjust the polarisation state within the fibres. The rotating optical plates were inserted in a free space between
collimator lenses. The output beam was characterised by a polarimeter.

FIGURE 4
Polarisation states rotated in the Poincaré sphere by rotated
quarter-wave-plates for inputs of (A) horizontally (blue), (B) diagonally
(green), (C) vertically (red), and (D) anti-diagonally (magenta) polarised
states. The lines are calculated results and dots are experimental
results. Circles of latitude (parallels) and circles of longitude
(meridians) are shown in every 10°.
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the impact of rotating optical plates, inserted within the free space
region of the set-up (Figure 3). The amount of rotation was
physically adjusted by hand with a standard optical rotating
element to accommodate wave-plates. A polarimeter was used to
measure the polarisation state.

3.2 Rotated quarter-wave-plates

First, we have examined the impacts of rotated QWPs [25–29,
44, 45, 47] on polarisation states (Figure 4). A QWP, whose FA is
aligned horizontally, rotates the diagonally polarised state |D〉 to the
left circularly polarised state |L〉 [25–29, 44, 45, 47], while it
preserves the horizontally polarised state, |H〉, and vertically
polarised state, |V〉, since it corresponds to rotate the state for
90° along the S1 axis. For the definition on the rotation, we followed
the notation of [26, 47] to see the locus of the electric field, seen from
a detector side in the right-handed coordinate. By changing the
physical rotation angle, ΔΨ, of the QWP, the polarisation state
would be continuously rotated with the maximum change of ±90°.
Theoretical expectation values could be calculated by the SU(2)
theory [25–29, 44, 45, 47]. For example, if the input is the
horizontally polarised state, the spin expectation value S′ of the
output state becomes

S′ � ZN
cos2 Δϕ( )

sin Δϕ( )cos Δϕ( )
−sin Δϕ( )

⎛⎜⎜⎝ ⎞⎟⎟⎠, (47)

where the amount of rotation angle in the Poincaré sphere is defined
to be Δϕ = 2ΔΨ, as before.

The comparison between experiments and theoretical
calculations are shown in Figure 4. We expected the deviation of
the retardance from λ/4 with the amount of 0.006λ, which
corresponds to the uncertainty of ±2.2°. Moreover, the amount of
the rotation in the Poincaré sphere could be twice of that in the real
space, as seen from Eq. 46. In fact, the maximum deviations of the
order of ±10° were found. Nevertheless, the overall trends of
experimental data are consistent with the theoretical expectations.
The reason of this large deviation was coming from our choice of
achromatic waveplates. For real applications, we should chose true
zero-order waveplates, which must be designed to the wavelength of
the laser. It is also encouraged to monitor actual variations of
waveplates, since the retardance is sensitive to the thickness of a
waveplate, which could vary within the manufacturing tolerance.
For an application to require a high precision control of the
polarisation state, additional waveplates might be required in
order to compensate the deviation, which will add another design
complexity.

We have also examined the impacts of rotated HWPs, and
confirmed expected behaviours on the changes of the polarisation
states as a pseudo rotator. In particular, it did not change the
polarisation states for the inputs of |H〉 and |V〉, if we set the FA
of the HWP to the horizontal direction, while the inputs of the
diagonally polarised state |D〉 � (|H〉 + |V〉)/ �

2
√

and the anti-
diagonally polarised state |A〉 � (|H〉 − |V〉)/ �

2
√

are converted to
|A〉 and |D〉, respectively, for the same set-up. The changes of
polarisation states upon the rotations of HWPs are consistent with
theoretical expectations as pseudo rotators.

3.3 Genuine rotator by 2 half-wave-plates

Next, we have set 2 half-wave-plates, one fixed to align the FA
horizontally and the other one to allow rotations, as discussed above
to realise a genuine rotator. The experimental results and theoretical
comparisons are shown in Figures 5, 6. We see that the polarisation
states are rotating 4 times upon the physical 1 rotation of the HWP,
as discussed theoretically. The important evidence as a genuine
rotator was confirmed at ΔΨ = 0, which conserved the polarisation
states, such that the input polarisations were preserved, regardless of
the inputs. For Figure 5, we used |H〉 and |V〉 as inputs, and we
observed essentially the same results with those of a pseudo rotator,
since the π-rotation along S1 did not affect |H〉 and |V〉. On the
other hand, |D〉 and |A〉 were reversed by a pseudo rotator (not
shown) at ΔΨ = 0. As shown in Figure 6, we confirmed that a
genuine rotator did not affect the inputs of |D〉 and |A〉 at ΔΨ = 0.
This is essentially coming from (−iσ3)2 � −1 in HV-bases, whose
sign does not affect S in SO(3). Therefore, the behaviours of Figure 6
by a genuine rotator for |D〉 and |A〉 were different in a pseudo
rotator.

In the genuine rotator, we can control the amount of
rotation in the Poincaré sphere solely by controlling the
physical amount of rotation irrespective of the input state,
which was remarkably different from the behaviour of a
pseudo rotator. Both genuine and pseudo rotators did not
affect the S3 component such that the inputs of linearly
polarised state were still linearly polarised states upon the
propagation of these rotators.

3.4 Comparison between genuine and
pseudo rotators

On the other hand, if the inputs contain the S3 component, the
difference of the impacts between genuine and pseudo rotators was
outstanding. In Figure 7, we show the comparison of output states
controlled by these rotators for the same input of the polarisation
state at (S1, S2, S3) = (0.71, 0, 0.71). As expected for a pseudo rotator,
we confirmed the sign of the S3 component was changed [28, 29, 47],
which means the direction of oscillation in the polarisation ellipse
was reversed to be the clockwise rotation from the anti-clockwise
rotation. This is inevitable, since the pseudo rotation is coming from
a π-rotation along some rotation axis in the S1 − S2 plane. Therefore,
S3 must change its sign upon the rotation. As a result, the pseudo
rotator cannot recover the original input state, no matter how much
we rotate the HWP. Mathematically, this was from the fact that
pseudo rotators do not form a group, and O−(2) does not include the
identity operation.

On the other hand, a genuine rotator is composed of 2 rotations,
one is a π-rotation along the S1 axis and the other is a successive π-
rotation along some rotation axis in the S1 − S2 plane. Therefore, S3 is
kept constant upon the total 2π-rotation, while S1 and S2
components are rotated along the S3 axis. Consequently, the
genuine rotator change the polarisation state within the plane,
which includes the original point for the input polarisation state.
Ultimately, this is the evidence that the genuine rotators indeed form
a subgroup of SO(2), whichmust include the identity operator of 1 to
maintain the original state.
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In order to confirm the further evidence that a genuine rotator is
different from a pseudo rotator, we consider 2 successive operations
of these rotators. We prepared 2 rotators and the input beam was
successively passing through these operators, and we observed the
output polarisation state.

For genuine rotators, we expect

R 4ΔΨ( )R 4ΔΨ( ) � R 8ΔΨ( ), (48)
which means that genuine rotation form a group, such that
2 successive operations could be considered to be equivalent to

1 operation of the added rotation angle. In order to confirm this, we
needed to prepare 4 HWPs. FA of the first one was aligned
horizontally, the second one was rotated for ΔΨ, and FA of the
third one was aligned horizontally, and the forth one was rotated for
ΔΨ. The experimental results are shown in Figure 8. We confirmed
8 rotations of the polarisation states in the Poincaré sphere. We
admit the noticeable fluctuations of experimental data due to
physical rotations of 2 HWPs, but they were well below the
potential maximum deviations of ~±44° due to 8 times rotations,
compared with the physical rotation.

FIGURE 5
Rotator operation by rotated half-wave-plates for inputs of horizontally (blue) and vertically (red) polarised states. One plate was rotated, while
another onewas fixed. (A) Trajectories of polarisation states in the Poincaré sphere. (B) S1, (C) S2, and (D) S3 changed upon the physical rotation (ΔΨ) of the
half-wave-plate.

FIGURE 6
Rotator operation by rotated half-wave-plates for inputs of diagonally (green) and anti-diagonally (magenta) polarised states. One plate was rotated,
while another one was fixed. (A) Trajectories of polarisation states in the Poincaré sphere. (B) S1, (C) S2, and (D) S3 changed upon the physical rotation (ΔΨ)
of the half-wave-plate.
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On the other hand, 2 successive operations of pseudo rotators
should bring the input state back, because a mirror reflection works
as an inverse of itself, as

M 4ΔΨ( )M 4ΔΨ( ) � 1, (49)
which immediately leads

M−1 4ΔΨ( ) � M 4ΔΨ( ). (50)
Therefore, 2 rotators of the same rotation angle cannot change

the polarisation state. In order to confirm this, we needed 2 HWPs,
which were rotated at the same angle. As shown in Figure 9, we
confirmed the polarisation states of output beams were not
significantly affected. Therefore, pseudo rotators are essentially
made of mirror reflections, such that 2 successive operations
cannot change the input state.

Here, we have proved that our genuine rotator could rotate the
polarisation state without observing the polarisation state, while the
pseudo rotator could not form a group, as it works as a mirror
reflection. One of the most important potential application of our
genuine rotator will be polarisation controls for photonic quantum
computing based on polarisation qubits [10]. For applications to
qubits, measurement process significantly affects the quantum states
of qubits due to the collapse of wavefunction [7, 9, 10]. If the genuine
rotator is applied to polarisation qubits, single qubit operations will
be achieved without observing the polarisation state.

3.5 Genuine phase-shifter realised by half-
wave and quarter-wave plates

Now, we could establish how to make a genuine rotator solely by
2 HWPs. Next, we will show how to construct a genuine phase-
shifter, whose phase-shift angle is determined by a physical rotation
of the HWP. The phase-shifter corresponds to the rotation, in the
plane which include the S3 axis, which can be achieved by inserting
2 QWP before and after the genuine rotation in the S1 − S2 plane. In
order to rotate in the S1 − S3 plane, we need to apply the QWP,
whose FA is aligned vertically. This will bring the S3 axis to the S2

FIGURE 7
Comparison of genuine (red) and pseudo (blue) rotators on
polarisation states in the Poincaré sphere. The polarisation state of the
input was located at (S1, S2, S3) = (0.71, 0, 0.71). The pseudo rotator
changed the sign of S3, such that the chirality is reversed. The
genuine rotator preserved the value of S3, such that the rotation plane
includes the original point.

FIGURE 8
Successive operations of genuine rotators in the Poincaré sphere. The input state was diagonally polarised. 2 rotators rotated twice of the rotation
for 1 rotator. 8 rotations are realised by physical 1 rotation for each rotator. (A) Trajectories of polarisation states in the Poincaré sphere. (B) S1, (C) S2, and
(D) S3 changed upon the physical rotation (ΔΨ) of the half-wave-plate.
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axis by the 90° clock-wise rotation along the S1 axis. Then, we can
apply the genuine rotator to rotate within the S1 − S2 plane by using
2 HWPs. Finally, we use another QWP, whose FA is aligned
horizontally, to bring the rotated axis back to the original one by
the 90° anti-clock-wise rotation along the S1 axis. The amount of the
rotation is determined by the rotated HWP, which is the third plate
among 4 plates, such that the amount of the phase-shift angle is
expected to be 4 times that of the physical rotation angle, as for a
genuine rotator.

Experimental results on the inputs of |H〉 and |V〉 are shown in
Figure 10. We confirm that the phase-shift vanishes without the
rotation (ΔΨ = 0), such that the genuine phase-shifter is
continuously connected to the identity operator of 1. This is
consistent with the fact that the phase-shifter forms a sub-group
in SU(2). As we rotate the HWP, the polarisation states rotated
4 times along the meridian across the Poincaré sphere upon the
physical rotation of 1 time.

In order to rotate in the S2 − S3 plane, which is more standard for
a phase-shift, we need to apply the QWP, whose FA is rotated 45° for
the clock-wise direction. This will bring the S3 axis to the S1 axis by
the 90° clock-wise rotation along the S2 axis. Then, we can apply the
genuine rotator to rotate within the S1 − S2 plane by using 2 HWPs,
as before. Finally, we use another QWP, whose FA is rotated 45° for
the anti-clock-wise direction to bring the rotated axis back. This can
be confirmed by calculating.

ΔHV π/2, π/2( )ΔHV Δϕ, π( )ΔHV 0, π( )ΔHV −π/2, π/2( )
� −1

2

1 −i
−i 1

( ) cos Δϕ( ) −sin Δϕ( )
sin Δϕ( ) cos Δϕ( )( ) 1 i

i 1
( ),

� − exp −iΔϕ( ) 0

0 exp +iΔϕ( )( )
(51)

� −ΔHV 2Δϕ( ), (52)

which means that we can realise the proper phase-shifter, ΔHV(δ) �
D̂HV(n̂1, δ) with the phase-shift of δ = 2Δϕ = 4ΔΨ, determined by
physical rotation angle.

As shown in Figure 11, we confirm the expected phase-shift
for the inputs of |D〉 and |A〉. Again, we confirmed that the
phase-shift vanished without the rotation (ΔΨ = 0). The
rotation in the S2 − S3 plane is quite useful especially for
considering HV-bases. By utilising this technique, one can
easily realise arbitrary phase-shift in a laboratory solely by
physical rotation of the wave-plates using widely available
HWPs and QWPs.

The proposed genuine phase-shifter requires 4 waveplates,
which is actually redundant, compared with 3 waveplates of the
SU(2) gadget [51, 52], which is widely used for controlling
polarisation states. In fact, it was established that 2 QWPs,
followed by 1 HWP, are minimum number of waveplates to
realise arbitrary SU(2) rotations [51, 52]. However, in order to
realise a target rotation by the SU(2) gadget, it is required to
calculate 3 angles of the waveplates for physical rotations, from
3 Euler angles [51, 52]. Instead, we do not need to calculate the
rotation angle for our proposed genuine phase-shifter, since the
phase-shift is directly determined by the physical rotation angle
of the second HWP. This corresponds to realise an arbitrary
phase-shift, instead of just π and π/2 for HWP and QWP,
respectively, while keeping the rotation axis along S1, S2, or
any other preferred directions, determined by the fixed QWPs,
which is too complicated to realise by the SU(2) gadget. Usually,
arbitrary phase-shifts are realised by active optical devices, such
as liquid crystal or Lithium Niobate (LN) Electro-Optic (EO)
modulators [28, 29, 44, 45]. The proposed phase-shifter
corresponds to a simple alternative solution as a passive
optical component, using 1 extra plate, compared with the
SU(2) gadget [51, 52].

FIGURE 9
Successive operations of pseudo rotators in the Poincaré sphere. The input state was diagonally polarised. This corresponds to 2 mirror reflections,
which cannot change the polarisation state. (A) Trajectories of polarisation states in the Poincaré sphere. (B) S1, (C) S2, and (D) S3 changed upon the
physical rotation (ΔΨ) of the half-wave-plate.
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4 Discussions and conclusion

We discuss mathematical and physical reasons why we could
construct a rotator and a phase-shifter, simply from combinations of
HWPs and QWPs for the perspective of Lie group. As we have
shown, the crucial point was to construct a subgroup SO(2) in SO(3)
for spin expectation values of S, represented by R̂O2(2Δϕ) in Eq. 41.

This rotation keeps the S3 component, such that the rotation
plane is perpendicular to the S3 axis. In LR bases, this corresponds to
maintain θ, while changing ϕ to rotate along the parallel in the
Poincaré sphere. In the original SU(2) operator for the
wavefunction, this was achieved by RLR(2Δϕ) of Eq. 42.
R̂O2(2Δϕ) and RLR(2Δϕ) are indeed equivalent due to the
mapping of exp (i2Δϕ) = cos (2Δϕ) + i sin (2Δϕ).

FIGURE 10
Phase-shifter operation by rotating a half-wave-plate for inputs of horizontally (blue) and vertically (red) polarised states. 2 quarter-wave-plates
were inserted before and after the rotator operation. (A) Trajectories of polarisation states in the Poincaré sphere. (B) S1, (C) S2, and (D) S3 changed upon
the physical rotation (ΔΨ) of the half-wave-plate.

FIGURE 11
Phase-shifter operation by rotating a half-wave-plate for inputs of diagonally (green) and anti-diagonally (magenta) polarised states. 2 quarter-
wave-plates were inserted before and after the rotator operation. (A) Trajectories of polarisation states in the Poincaré sphere. (B) S1, (C) S2, and (D) S3
changed upon the physical rotation (ΔΨ) of the half-wave-plate.
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Therefore, the 2-dimensional rotator is equivalent to
SO(2) � U(1) � {exp(iϕ)|ϕ ∈ R}, which forms a 1-parameter
group [2–4, 6]. To describe the rotation along the S3 axis, we do
not need to use a 2 × 2 matrix, and 1 complex number of exp (i2Δϕ)
is sufficient. For fixed θ (S3), the corresponding wavefunction for U
(1) is simply given by

|ϕ〉 � eiϕ, (53)
which works as a continuous basis [53], and the application of the
U(1) rotation is given by

RU1 2Δϕ( ) � exp i2Δϕ( ), (54)
where the subscript of 3 stands for the rotation along the S3 axis,
such that we obtain

RU1 2Δϕ( )|ϕ〉 � |ϕ + 2Δϕ〉. (55)
Consequently, we confirm that the rotator merely corresponds

to the mapping of ϕ→ ϕ + 2Δϕ by the U(1) subgroup embedded in
SU(2), and the rotation along S3 was achieved without affecting θ.
The U(1) wavefunction could be embedded to the original SU(2)
wavefunction in LR-bases as

|ϕ〉→ e−i
ϕ
2 cos θ/2( )|L〉 + e+i

ϕ
2 sin θ/2( )|R〉, (56)

but we must be careful for using the U(1) representation ofRU1 for |
ϕ〉 (the left-hand side of Eq. 55), while the SU(2) representation of
RLR(2Δϕ) must be used for |θ, ϕ〉 (the right-hand side of Eq. 55).
Mathematically, SU(2) containsU(1), such thatU(1) ⊂ SU(2) and we
confirmed O−(2) · σ3�SO(2)�U(1) to convert from the pseudo
rotator to the genuine rotator.

Practically, the rotation angle in the Poincaré sphere is
determined by the physical rotation angle, such that we can
continuously change the 1-parameter in U(1) by hands.
Therefore, our rotator is physical realisation of U(1) for
polarisation states.

Having constructed a rotator, it was straightforward to construct
a phase-shifter, since we just needed to change the rotation axis by a
QWP before the rotation, and bring back to the original coordinate
by a 90°-rotated QWP from the first one after the rotation. This
corresponds to realise an SU(2) rotation

R̂i δϕ( ) ≡ D̂ n̂i, δϕ( ) � exp −iσ̂ · n̂i
δϕ

2
( )( ), (57)

for i = 1, 2, 3, and R̂1(δϕ) is usually called as a phase-shifter and
R̂3(δϕ) is called as a rotator. Combining both a rotator and a phase-
shifter, we can realise an arbitral rotation of the polarisation state in
the Poincaré sphere, such that we call as a Poincaré rotator. For
example, we can easily construct

|θ, ϕ〉 � R̂3 ϕ( )R̂2 θ( )|L〉, (58)
which is suitable for LR bases. We must be careful on the amount of
expected rotation in the Poincaré sphere is 4 times of that of the
physical rotation of HWPs. We can also construct.

|γ, δ〉 � R̂1 δ( )R̂3 γ( )|H〉, (59)
which is suitable for HV-bases.

We can also realise an Euler rotation [9].

R̂ α, β, γ( ) � R̂3 α( )R̂2 β( )R̂3 γ( ) (60)
for an arbitrary rotation in the 3-dimensional Poincaré sphere.

An advantage to use our Poincaré rotator is the ability that we can
perform expected amount of rotation along the preferred axis without
knowing the polarisation state in the input. As we have shown
theoretically and confirmed experimentally, the Poincaré rotator
works as a subgroup of U(1) upon the physical rotation, which
means that the polarisation state can be controlled continuously
changed from the input state. To guarantee this, it was very
important to make sure that the operation contains the identity
operation of 1 to make sure that the operation is realised by a
continuous change of the operation from 1. This is crucial
requirement for a Lie group [1–6], since Lie group and Lie algebra
were constructed from group theoretical considerations near the
operation around identities. Consequently, by using Poincaré rotator,
we can apply the same amount of rotation, regardless of the polarisation
states of the input beam, which was not possible in a pseudo rotator
configuration. This characteristic would be useful for some applications
to require a certain rotation without measuring the input state.

A Poincaré rotator is also useful to control the orbital angular
momentum of photons [54]. The left and right vortexed states are
orthogonal each other, such that they form SU(2) states [54–63]. A
superposition states with these vortices can be controlled by a
Poincaré rotator by adjusting the phase and amplitudes [54].

For the measurements of polarisation states, we have used the
standard polarimetry, using HWP and QWP [25–29, 32, 33, 44, 45].
Upon successful demonstrations of the proposed Poincaré rotator,
there is a potential that we can replace a standard polarimetry set-up
with the Poincaré rotator together with a detector and a polariser. In
this case, we can reduce the number of detectors from 4 to 1, since we
can use the Poincaré rotator to allow arbitrary rotations in SU(2).
However, we need 6 waveplates for our Poincaré rotator, instead of
2 waveplates in the standard polarimetry, such that the set-up is
obviously redundant.

So far, all theoretical considerations and experimental results are
consistent with the assessment that coherent photons have an SU(2)
symmetry and we can apply a standard quantum mechanical
prescription for an SU(2) state to understand the polarisation
states [7, 9, 25–33, 44, 45, 47–50]. We think that the physical
origin of the macroscopic quantum coherence of polarisation is
coming from the broken symmetry upon lasing threshold [47–50],
such that we can treat coherent photons as a simple 2-level system to
account for their spin expectation values. The impacts of optical
wave-plates could be explained by corresponding rotations in the
Poincaré sphere [7, 9, 25–33, 44, 45, 47–50]. We have shown that the
underlying mathematical foundation for polarisation states is deeply
routed in Lie group and Lie algebra. By applying isomorphism
theorems [2–4, 6] for coherent photons, we confirmed the
relationship between SU(2) rotation for the wavefunction and the
resultant SO(3) rotation for spin expectation values. We also found
that a pseudo rotator made by a rotated half-wave-plate is describing
mirror reflections and we could convert it by introducing another
half-wave-plate to realise a genuine rotator by 2 plates. This
corresponds to converting O−(2) to O+(2)�SO(2) by σ3. By
changing the rotation axes by quarter-wave-plates, we could also
make a genuine phase-shifter, such that the arbitrary rotations can
be realised by a proposed passive Poincaré rotator. The implication
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of this work is a perspective that we can utilise the SU(2) degree of
freedom in coherent photons for potential quantum technologies.
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