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Spin angular momentum of a photon corresponds to a polarisation degree of
freedom of lights, and such that various polarisation properties are coming from
macroscopic manifestation of quantum-mechanical properties of lights. An
orbital degree of freedom of lights is also manipulated to form a vortex of
lights with orbital angular momentum, which is also quantised. However, it is
considered that spin and orbital angular momentum of a photon cannot be split
from the total orbital angularmomentum in a gauge-invariant way. Here, we revisit
this issue for a coherent monochromatic ray from a laser source, propagating in a
waveguide. We obtained the helical components of spin and orbital angular
momentum by the correspondence with the classical Ponyting vector. By
applying a standard quantum field theory using a coherent state, we obtained
the gauge-independent expressions of spin and orbital angular momentum
operators. During the derivations, it was essential to take a finite cross-
sectional area into account, which leads the finite longitudinal component
along the direction of the propagation, which allows the splitting. Therefore,
the finite mode profile was responsible to justify the splitting, which was not
possible as far as we were using plane-wave expansions in a standard theory of
quantum-electrodynamics (QED). Our results suggest spin and orbital angular
momentum are well-defined quantum-mechanical freedoms at least for
coherent photons propagating in a waveguide and in a vacuum with a finite
mode profile.
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1 Introduction

Newton recognised the polarisation degree of freedom in lights and called it as “sides”
[1], whose properties were successfully elucidated by Stokes [2] and Poincaré [3] within the
framework of classical mechanics [4–6]. Later, the discoveries of Plank and Einstein led to
the establishment of quantummechanics, and the wave-particle duality is unified in the form
of a light quanta, a photon [7–10]. From a quantum mechanical point of view, the
polarisation is understood as spin of a photon [8–10]. There are a lot of experimental
evidences to believe that spin of a photon is 1 in the unit of Dirac constant, Z, which is the
Plank constant, h, divided by 2π [7–10]. The most standard justification of spin 1 nature of a
photon is the selection rule of absorption and emission of a photon by electrons in an atom
[7–10]. Spin 1/2 nature of an electron and the integer quantisation of orbital angular
momentum of electrons in a spherical potential are well-established, and the absorption and
emission of a photon involves the change of Z in the orbital angular momentum of electronic

OPEN ACCESS

EDITED BY

Jifeng Liu,
Dartmouth College, United States

REVIEWED BY

Yijie Shen,
University of Southampton,
United Kingdom
Bernhard Johan Hoenders,
University of Groningen, Netherlands

*CORRESPONDENCE

Shinichi Saito,
shinichi.saito.qt@hitachi.com

RECEIVED 19 May 2023
ACCEPTED 26 June 2023
PUBLISHED 25 July 2023

CITATION

Saito S (2023), Spin and orbital angular
momentum of coherent photons in
a waveguide.
Front. Phys. 11:1225360.
doi: 10.3389/fphy.2023.1225360

COPYRIGHT

© 2023 Saito. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 25 July 2023
DOI 10.3389/fphy.2023.1225360

https://www.frontiersin.org/articles/10.3389/fphy.2023.1225360/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1225360/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1225360/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1225360&domain=pdf&date_stamp=2023-07-25
mailto:shinichi.saito.qt@hitachi.com
mailto:shinichi.saito.qt@hitachi.com
https://doi.org/10.3389/fphy.2023.1225360
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1225360


states [7–10]. Spin 1 of a photonic state implies that there are
potentially three orthogonal states, quantised along the direction of
the propagation. However, a photon is propagating at the speed of
light, c, in the vacuum, and it is described by a transverse wave.
Consequently, electromagnetic fields of photons are oscillating
perpendicular to the direction of the propagation, such that we
can observe only two orthogonal polarisation modes and the spin
0 component is not observed [10]. As a result, the polarisation state
of a photon [11–14] is described as a quantum-mechanical 2-level
system using the SU(2) Lie algebra [4–6, 6, 8, 9, 15–27]. Therefore, it
is natural to believe that a photon has inherent spin 1 as a quantum-
mechanical degree of freedom.

It was rather recently that orbital angular momentum [5, 6, 28–33]
of a light is considered in addition to spin. Allen and his co-workers
demonstrated that the orbital angular momentum of the Laguerre-
Gauss mode of a light is quantised in the unit of Z [28]. In their
derivation, the classical electromagnetic wave in the Laguerre-Gauss
mode under Lorentz gauge is used and the orbital angular momentum
was calculated by using the classical Poynting vector, and the
quantisation of electromagnetic fields as photons were taken into
account at the end of the calculation to estimate the orbital angular
momentum per photon [28]. In this pioneering work, they obtained
that the orbital angular momentum of a photon is quantised in the unit
of Z [28]. This suggests that the orbital angular momentum is also well-
defined quantum-mechanical degree of freedom in addition to spin.

However, this native expectation is subsequently denied, because
the gauge-independent expressions of spin and orbital angular

momentum for photons were not obtained [29–31, 34, 35]. It is now
generally believed that spin and orbital angular momentum of photons
are not separately well-defined in a proper unique gauge invariant way
[29–31, 34, 35]. More recently, it was successfully found that spin and
orbital angular momentum operators are well-defined to satisfy the
commutation relationship with the SO(3) symmetry in a gauge invariant
way [36]. These previous works of quantum-field theories were based on
plane wave expansions, which are suitable for most of many-body
systems with translational and rotational symmetries, including black
bodies, for which quantum mechanics was developed [7–10], and even
more exotic systems likeQuark-Gluon Plasma (QGP) [30]. Here, we will
revisit this grand challenge for amonochromatic coherent ray of photons
travelling in a waveguide, where rotational symmetry is spontaneously
broken upon lasing. We are considering application in laser optic
experiments [6], and therefore, we will work in a rest frame and we
have not used the covariant formulation for relativity, which is important
for high-energy physics such as Quantum Chromo-Dynamics (QCD)
[30]. Nevertheless, we have employed the field theory of Quantum-
Electro-Dynamics (QED), tailored to consider the Laguerre-Gaussmode
in a GRaded-INdex (GRIN) fibre [6, 37]. We show that it is essential to
consider the finite size of the mode profile to derive appropriate
expressions for spin and optical angular momentum operators.

Fundamental understanding on the nature of spin and orbital
angular momentum would be important for various applications of
structured lights [38–43]. For example, it was experimentally
demonstrated that an arbitrary spin state could be converted to
the properly designed superposition state of orbital angular
momentum [44], and this experiment suggests that the orbital
angular momentum state is well-defined with the polarisation
state, so that spin and orbital angular momentum must be equally
qualified observables. It is also interesting to consider the light-matter
interaction and the corresponding selection rule with the orbtial
angular momentum [41]. It was shown that the dipole selection
rule is not significantly affected by orbital angular momentum,
while orbital angular momentum of lights could be transferred to
the orbital of an excited electron in a quantum dot [41]. The
conservation law of total angular momentum is also important
in silicon photonic devices, and we have previously shown that the
quantum number of spin and orbital angular momentum emitted
from the micro-gear must be determined by the number of gears and
the number of nodes in the ring [45]. For high-speed fibre-optic
communication, orbital angular momentum will expand the
bandwidth significantly, and technologies for multiplexing and de-
multiplexing are important [40, 46]. Among many other applications,
we think it is exciting to explore macroscopic quantum coherency
among various superposition states with orthogonal spin and orbital
angular momentum states, known as classically entangled states
[38–43]. In order to explore the potential use of these states for
quantum computing and/or quantum simulation [47], we have
examined how spin and orbital angular momentum are
represented based on a quantum field theory.

2 Classical electro-magnetic waves
with optical angular momentum

Before showing our final results, we start from classical results
for electromagnetic waves and adding some complexities gradually

FIGURE 1
Topological charge by optical angular momentum. The contour
integral along the closed circle C in a cylindrical coordinate (r, ϕ, z) is
considered, which gives the winding number, called the topological
charge. Note that the existence of the node at the origin is
required to support the topological charge. We assume that the light is
propagating along z and the direction of rotation is defined to be
positive, if the rotation is anti-clock-wise seen from the top of the z-
axis in the detector side. In this definition, the left-circular vortexed
state, shown above, corresponds to the positive winding number,
corresponding to the quantised optical angular momentum pointing
towards the positive z direction.
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to address what was the potential issue [5, 6, 28–33]. First, we
confirm orbital angular momentum described by a Laguerre-Gauss
mode in a free space under the Lorentz gauge [28]. Then, we confirm
that the same result can be obtained by using the Coulomb gauge
and compare the difference of gauges. We also confirm the impacts
of polarisation on optical angular momentum by using a
horizontally polarised mode and a circularly polarised mode.
Finally, we extend the analysis for the GRIN waveguide for both
polarisations.

2.1 Lorentz gauge in homogeneous media

2.1.1 Lorentz gauge
Here, we consider a uniform transparent material with the

dielectric constant of ϵ and the permeability of μ0. The velocity
of the light in the material is given by v0 � 1/

���ϵμ0
√ � c/n0, where

n0 � ����
ϵ/ϵ0

√
is the refractive index of the material and c � 1/

����ϵ0μ0
√

is
the velocity of the light in a vacuumwith the dielectric constant of ϵ0.
The permeability of the material barely changes in a non-magnetic
material, and therefore, it covers most of transparent materials, even
if we set the permeability with that in the vacuum [6]. Our results
below would not be changed for transparent magnetic materials as
far as the permeability is spacially uniform [48]. However, if
materials are metallic, we must consider coupling between
plasmons, such that our results would not be applicable and
proper consideration on plasmonics [49, 50] and impacts of
meta-surface [51] are necessary. In the limit of ϵ → ϵ0 the
material is equivalent to the vacuum. The vector potential A and
the scalar potential Φ under Lorentz gauge satisfy the following
equations [5, 6]

∇2 − 1
v20
∂2t( )A � 0 (1)

∇2 − 1
v20
∂2t( )Φ � 0 (2)

∇ · A + 1
v20
∂tΦ � 0. (3)

The electric field, E, and magnetic induction, B, are obtained by

E � −∇Φ − ∂tA (4)
B � ∇ × A, (5)

respectively, which immediately gives the electric displacement field
D = ϵE and the magnetic field H = B/μ0. We can confirm that
Maxwell equations [5],

∇ · B � 0 (6)
∇ ·D � 0 (7)
∇ × E � − _B (8)
∇ × H � ∂D

∂t
, (9)

in the absence of the charge ρ = 0 and the current J = 0 are satisfied
under the Lorentz gauge by directly inserting Eqs 4, 5.

2.1.2 Paraxial approximation
We consider an electromagnetic wave in a Cartesian coordinate.

From Maxwell equations, we obtain the Helmholtz

∇2E � μ0ϵ
∂2

∂t2
E. (10)

A particular solution, polarised along the horizontal direction is

E r( ) � E r, z( ) (11)
� E0ψ r, ϕ, z( )ei kz−ωt( )x̂, (12)

where r = (x, y, z) is the Cartesian coordinate, z is the axis along the
direction of the propagation, k � kn0 is the wavenumber, ω is the
angular frequency, t is time, r � ������

x2 + y2
√

is the radius in the
cylindrical coordinate (r, ϕ, z), and x̂ is the unit vector along the
x-axis. ψ(r, ϕ, z) describes the mode profile of the field. If the ray is
predominantly propagating along z as an almost collimated beam,
we can use a paraxial approximation [6, 28]

∂2ψ

∂z2
≪ k

∂ψ

∂z
, k2ψ, (13)

and the Helmholtz equation becomes

i
∂

∂z
ψ � − 1

2k
∂2

∂x2
+ ∂2

∂y2
( )ψ, (14)

which is the same form with the non-relativistic Schödinger
equation [8, 9, 52–54]. A particular solution, which is separable
in a cylindrical coordinate [6, 28], is obtained as

ψ r, ϕ, z( ) � ����������
2
π

n!

n + |m|( )!

√
1
w

�
2

√
r

w
( )|m|

L|m|
n 2

r

w
( )2( )

e−
r2

w2 eik
r2
2R eimϕe−i 2n+|m|+1( )tan−1 z/z0( ),

(15)

where L|m|
n is the associate Laguerre function, n is the radial

number of nodes, m is the quantum number for orbital angular
momentum, ϕ is the angle in the cylindrical coordinate, the
dispersion is give by ω � v0k � v0kn0 � v0n0k0 � ck0 with the
wavenumber in the vacuum, k0 = 2π/λ for the wavelength of λ,
the beam waist is given by w � w(z) � w0

���������
1 + (z/z0)2

√
, where w0 is

the waist at the origin z = 0, the Rayleigh length (the confocal
parameter) is z0 � kn0w

2
0/2, and the radius of the spherical phase is

R(z) � z + z20/z.

2.1.3 Topological charge
In the mode profile of ψ(r, z), the phase factor of eimϕ is very

important to describe the optical orbital angular momentum of Zm

TABLE 1 Summary of fields in different gauges. The horizontal polarisation is
assumed.

Lorentz gauge Coulomb gauge

Gauge ∇ · A + 1
v20
∂tϕ � 0 ∇ ·A = 0

Helmholtz eq. ∇2A � μ0ϵ ∂2

∂t2 A ∇2E � μ0ϵ ∂2

∂t2 E

Vector potential A = (A, 0, 0) A � (A, 0,−v0
iω∂xA)

Scalar potential Φ � v20
iω

∂A
∂x

Φ = 0

Electric field iω(A, 0, iv0ω ∂xA) iω(A, 0, iv0ω ∂xA)

Magnetic induction (0, ∂zA,−∂yA) (0, ∂zA,−∂yA)
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[28]. Another important feature of the Laguerre-Gauss mode is the
Gouy phase [28, 52, 55–59]

ϕG � 2n + |m| + 1( )tan−1 z/z0( ). (16)
The phase of the Laguerre-Gauss mode as a scalar field of ψ(r, z) is
given by

ϕLG r, ϕ, z( ) � kn0
r2

2R z( ) +mϕ − ϕG z( ). (17)

We consider the gradient of the phase in the cylindrical coordinate
(r, ϕ, z)

∇ϕLG � kn0r

R
,
m

r
,
∂ϕLG

∂z
( ), (18)

where the unit vectors along r and ϕ are obtained by a rotation of the
unit vectors in (x, y) coordinate (Figure 1) as

r̂
Φ̂

( ) � cos ϕ sin ϕ
−sinϕ cos ϕ

( ) x̂
ŷ

( ). (19)

In particular, it is important to be aware that the unit vectors r̂ �
r̂(ϕ) and Φ̂ � Φ̂(ϕ) depend on ϕ.

We consider the contour integral for the closed path C (Figure 1)
for the gradient of the phase as

I � 1
2π

∮
C
∇ϕLG · dr⊥ (20)

� 1
2π

∫2π

0

m

r
rdϕ (21)

� m, (22)
which is the winding number, called the topological charge. Please
note that I is the dimensionless number, such that it is confusing to
call it as charge. The winding number would be a more precise word,
instead. Nevertheless, the existence of the finite I is responsible for
twisting lights to form a vortex with optical angular momentum,
such that it works like a source of generating a vortex of the electric

field, similar to charge, which is the source of divergence of the
electric field. In order to sustain the vortex, it is essential to have a
node within the inside of the contour, C. Otherwise, the integration
of the gradient simply becomes zero as

1
2π

∫r1

r0

∇ϕLG · dr � 1
2π

ϕLG r1( ) − ϕLG r0( )( ) (23)
→ 0 (24)

in the limit of closed integration circle, r1 → r0. This means that
there is a node required at the centre of the beam in order to sustain
non-zero topological charge, which is guaranteed in the Laguerre-
Gauss mode with a power of r|m| form ≠ 0. Please also note that there
is no singularity in the electric field but there is a node (zero point). In
other words, the amplitude becomes zero, such that it is impossible
to define a phase at the node. Therefore, we can also claim that there
is a singularity in the phase, if we try to define the phase at the node.
This is consistent with the view that we should not expect
singularities in observables like electric and magnetic fields. The
topological charge simply corresponds to a node.

Another important source of an unnecessary confusion is the
definition of the direction of the rotation of the vortex. Depending
on whether we are observing the vortex from the detector side or
from the source side, the rotation will become opposite. In our
paper, we define the positive rotation for the left-circular vortex,
seen from the detector side, which corresponds to the positive
topological charge, m > 0 (Figure 1). We usually use the right-
handed coordinate for Cartesian coordinate of (x, y, z), and we are
assuming that the light is propagating towards the positive z
direction. In the descriptions of the rotation of the vortex and
the polarisation ellipse, we think it is natural to describe in the (x, y)
plane, seen from the top of the z-axis, corresponding to seeing from
the detector side for a ray pointing towards z (Figure 1). In the
cylindrical coordinate, a standard definition of the angle ϕ is
measured from the x-axis in the anti-clock-wise direction, such
that x = cos ϕ and y = sin ϕ. In this coordinate, the left-circulation
(anti-clock-wise) of the contour corresponds to the positive

FIGURE 2
Orthogonality between electric and magnetic fields. The vectorial direction of B is obtained by rotating E with the amount of 90° along z.
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topological charge, and we will confirm that this corresponds to the
quantised orbital angular momentum of ZmN , pointing towards the
direction of the propagation z > 0, where N is the number of
photons in the ray. Consequently, if the rotation of the vortex rotates
in the opposite direction, which is the right-circular (clock-wise)
rotation, seen from the detector side, the orbital angular momentum
of the vortex becomes negative, as ZmN < 0.

Similar to the polarised lights, we would like to propose to call as
vortexed lights for the ray with a vortex of non-zero topological
charge.

2.1.4 Convention of the time average
The time dependence of the ray, we are considering in this paper,

is simply described by e−iωt. Strictly, both E and Bmust be real, since
these are observables but it is easier to use complex valuables,
instead, and to make a convention to take the real part at the
end of the calculations [6]. In this convention, it is important to take
a factor of 2 for the products, because the time average of cos2(ωt) or
sin2(ωt) must be 1/2. This is important when we consider the
momentum of the electromagnetic wave

PField � ϵ E × B( ) (25)
� 1
v20
SPoynting (26)

and the Poynting vector

SPoynting � E × H, (27)
whose time averages are obtained as

�PField ≡ 〈PField〉t (28)
� 1
v20

1
2
R E* × H[ ] (29)

� 1
v20
�SPoynting, (30)

and

�SPoynting ≡ 〈SPoynting〉t (31)

� 1
2
R E × H*[ ] (32)

� 1
2
R E* × H[ ], (33)

respectively. The Poynting vector describes the flux flow of the
energy by photons, such that

�SPoynting � v0 �Uẑ, (34)
where �UField � ZωN /V is the energy density of photons, where V is
the volume of the system.

2.2 Horizontally polarised Laguerre-Gauss
mode in Lorentz gauge

Next, we consider the horizontally polarised Laguerre-Gauss
mode in Lorentz gauge [28] using the vector potential,

A r, ϕ, z( ) � A r, ϕ, z( ), 0, 0( ) (35)
� A r, ϕ, z( )x̂ (36)
� A0ψ r, ϕ, z( )ei kz−ωt( )x̂ (37)
� A0u r, z( )eimϕei kz−ωt( )x̂ (38)
� A0Ψ r, ϕ, z( )x̂, (39)

where the total mode profile and the propagation is described by the
wavefunction

Ψ r, ϕ, z( ) � ψ r, ϕ, z( )ei kz−ωt( ) (40)
� u r, z( )eimϕei kz−ωt( ). (41)

In this case, we obtain B and E as a function of A = (A, 0, 0). It is
straightforward to obtain

B � 0, ∂zA,−∂yA( ), (42)

where we have abbreviated as ∂x = ∂/∂x, ∂y = ∂/∂y, ∂z = ∂/∂z, and ∂t =
∂/∂t. The Lorentz condition becomes

FIGURE 3
Examples of waveguides of (A) a rectangle shape and (B) a cylindrical shape. Themode profile is essential to confine lights inside waveguides, so that
a plane-wave cannot be a good approximate mode. The Gaussian profile is used to describe the Hermite-Gauss mode for the strip waveguide (A) and the
Laguerre-Gauss mode for (B) in a GRIN waveguide.
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∂xA + 1
v20
∂tϕ � ∂xA − iω

v20
ϕ (43)

� 0, (44)
from which we obtain

Φ � v20
iω

∂A

∂x
. (45)

Then, we obtain

E � iω
v20
ω2
∂2xA + A,

v20
ω2

∂x∂yA,
v20
ω2
∂x∂zA( ). (46)

In the paraxial approximation, we can neglect as

∂2xA
∣∣∣∣ ∣∣∣∣, ∂2yA

∣∣∣∣∣ ∣∣∣∣∣≪ ∂x∂zA| |, (47)

and we use ∂z → ikn0 and ω � v0kn0. Then, we obtain

E ≈ iω A, 0,
v20ikn0
ω2

∂xA( ) (48)

≈ iω A, 0,
iv0
ω
∂xA( ). (49)

For the calculations of Poynting vector and the momentum, we
calculate

E* × B ≈ iω A∂xA*,−A*∂yA,−A*∂zA( ), (50)
which yields

R E* × B[ ] � 1
2

E × B* + E* × B( ) (51)

� ω

2i
A*∂xA−A∂xA*,A*∂yA−A∂yA*,A*∂zA−A∂zA*( )

� ω

2i
A* �∇A−A �∇A*( ), (52)

where �∇ � (∂x, ∂y, ∂z). This is very similar to the expression of
the quantum mechanical expectation value [28]. By defining a
standard quantum-mechanical momentum operator

p̂ � Z

i
�∇ (53)

� Z

i
∂x, ∂y, ∂z( ) (54)

The naive expectation value of the momentum would be A*p̂A.
However, this becomes a complex value. As we have calculated
above, the major contribution to the momentum becomes

Z

2i
A* �∇A − A �∇A*( ) � 1

2
A*p̂A − Ap̂A*( ) (55)

� 1
2

A*p̂A − A
Z

i
�∇( )A*( ) (56)

� 1
2

A*p̂A − A*
Z

i
∇
←( )A( ) (57)

� 1
2

A*p̂A + A* p̂( )† A( ) (58)

� 1
2
A* p̂ + p̂†( )A (59)

Thus, we obtain

R E* × B[ ] � ω

2Z
A* p̂ + p̂†( )A. (60)

Therefore, we realise that the vector potential is essentially an
wavefunction. In fact, it can also be re-written as

R E* × B[ ] � ω

2i
|A0|2 Ψ* �∇Ψ − Ψ �∇Ψ*( ). (61)

This expression is very similar to a probability flux for a
wavefunction [7–10, 28]. For taking the time average, it becomes

�PField � ϵ
2
〈R E × B*[ ]〉t (62)

� ϵω
2
|A0|2〈1

2i
Ψ* �∇Ψ − Ψ �∇Ψ*( )〉t, (63)

for which we expect the relationships, |E0| ≈ ω|A0| and
�UField � ϵ|E0|2/2 � ϵω2|A0|2/2, and we obtain

�PField �
�UField

ω
〈1
2i

Ψ* �∇Ψ − Ψ �∇Ψ*( )〉t. (64)
The dominant contribution of this value becomes

�PField →
�UField

ω
kẑ. (65)

If we accept the coherent monochromatic light is quantised as
photons, the average energy density simply becomes the ratio
between the number of photons (N ) and the volume (V),

�UField � Zω
N
V
, (66)

which immediately yields

�PField → Zk
N
V

ẑ. (67)

This means that the total momentum density of the electromagnetic
wave is the sum of the contributions from photons per unit volume,
and each photon has the momentum of p = Zk. This is also
consistent with the Bose-Einstein condensation nature of the
coherent ray of photons from a laser source, because the
coherent photons occupy the same energy and momentum state.

In the above estimation, we have not considered the mode profile,
coming from the Laguerre-Gauss mode, such that we calculate

〈R E* × B[ ]〉t � |A0|2〈R iω Ψ∂xΨ*,−Ψ*∂yΨ,−Ψ*∂zΨ( )[ ]〉t

(68)
in more detail. To do so, it is better to move to use the cylindrical
coordinate. The derivatives are converted to be

∂x � cos ϕ∂r − 1
r
sin ϕ∂ϕ (69)

∂y � sin ϕ∂r + 1
r
cos ϕ∂ϕ, (70)

for which we use

∂re
ikn0

r2
2R � ikn0

r

R
eikn0

r2
2R (71)

and

∂ϕe
imϕ � ileimϕ. (72)

Then, finally we obtain

�PField �
�UField

v0

r

R
cos ϕ − m

kr
sin ϕ,

r

R
sin ϕ + m

kr
cos ϕ, 1( ), (73)
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where we can also use the Plank’s law for the quantisation of
photons, �UfieldV � ZωN � Zv0kN , and thus
�UField/v0 � Zω/v0 � ZkN /V. In the cylindrical coordinate, the
momentum density becomes [28]

�PField � Zk
N
V

r

R
r̂ + m

kr
Φ̂ + ẑ( ). (74)

After obtaining the momentum density, we can proceed to
estimate orbital angular momentum, which is naturally expected
as [28]

�MField r, ϕ, z( ) � r × �PField (75)

� �UField

v0
r sin ϕ − r

R
z sin ϕ − m

kr
z cos ϕ,(

−r cos ϕ + r

R
z cos ϕ − m

kr
z sin ϕ,

m

kr
) (76)

� �UField

v0
−m
kr

zr̂ − r
z20

z2 + z20
Φ̂ + m

k
ẑ( ) (77)

� �UField

ω
m −z

r
r̂ − kr

m

z20
z2 + z20

Φ̂ + ẑ( ), (78)

for which we can also use the quantisation condition to obtain

�MField r, ϕ, z( ) � Zm
N
V

−z
r
r̂ − kr

m
1 − z

R
( )Φ̂ + ẑ( ). (79)

This means that the major component of the optical orbital angular
momentum is along z direction, which is given by ZmN . This
suggests that a photon with topological charge of m carries the
orbital angular momentum of Zm along the direction of the
propagation.

We can also calculate the magnitude of the optical orbital
angular momentum density as [28]

| �MField| � Zm
N
V

���������������������������
1 + z

r
( )2

+ kr

m
( )2

1

1 + z/z0( )2( )2

√√
. (80)

2.3 Horizontally polarised Laguerre-Gauss
mode in Coulomb gauge

In the previous subsection, we have confirmed the original
approach using the Lorentz gauge [28] for the preparations. The
results should not be dependent on the arbitrary choice of the gauge.
Here, we use the Coulomb gauge to confirm it.

In the Coulomb gauge [5], the vector potential satisfies the
transversality condition

∇ · A � 0, (81)
which yields

B � ∇ × A (82)
E � −∂tA. (83)

One might naively think that the horizontally polarised
Laguerre-Gauss mode is described by

E � E0u r, z( )eimϕei kz−ωt( )x̂ (84)
� Exx̂, (85)

however, this is wrong because this does not satisfy the transversality
condition due to the r and ϕ dependences of the vortexed mode
(∂xA ≠ 0 and ∂yA ≠ 0).

The correct form for the Coulomb gauge would be

E ≈ iω A, 0,
iv0
ω
∂xA( ), (86)

which is the same form for that in the Lorentz gauge. Therefore, the
small finite longitudinal component is responsible for guaranteeing
the gauge-invariant solution. Consequently, the vector potential in
the Coulomb gauge is described as

A � 1
iω

E (87)

� A, 0,−v0
iω
∂xA( ), (88)

which is obviously different from that in the Lorentz gauge due to
the existence of the longitudinal component of Az. We can double
check that this satisfy the transversality condition, directly by
calculating

∇ · A � ∂xA − v0
iω
∂z∂xA (89)

� 1 − v0k

ω
( )∂xA (90)

� 0. (91)
By using the vector potential and vanishing scalar potential in

the Coulomb gauge, we obtain the same formulas for E and B,
compared with those obtained in the Lorentz gauge. Therefore, A
and Φ could depend on the choice of the gauges, while the
observables such as E and B cannot be dependent [5]. The
differences of the gauges are summarised in Table 1. In
particular, the inclusions of the small longitudinal fields are
indispensable for the considerations of the orbital angular
momentum due to the spatial dependence of the mode profile.
This is a remarkable difference compared with the simple plane-
wave expansion without considering the mode profile in the most of
the theory of QED [7, 10, 29–31, 34–36]. This is one of the key
considerations to enable the splitting of spin and orbital angular
momentum, as we shall see in due course.

2.4 Circularly polarised Laguerre-Gauss
mode in Lorentz gauge

Before we continue to consider the full quantum field theoretic
treatment, it is further worth for learning from the historical work
[28] for circularly polarised mode, because this shows how spin
could appear in optical angular momentum. Here, we will go back to
the Lorentz gauge [28], because now we understand that the choice
of the gauge should not affect the final result at all.

For circularly polarised Laguerre-Gauss mode, we assume

A � 1�
2

√ 1, iσ, 0( )A, (92)

where σ = σz corresponds to the quantum number for spin pointing
to the direction of the propagation (z). Usually, a circularly polarised
state is defined by a transverse electric field, and we will in fact
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confirm that the above postulate for a vector potential is consistent
with the calculated electric field as a circularly polarised state. In our
preferred notation, shown in Figure 1, the left-circularly polarised
state corresponds to the anti-clock-wise rotation of the polarization
circle, seen from the detector side, which corresponds to σ = +1 and
spin angular momentum along z for the photon is +Z. The right-
circulary polarised state rotates clock-wise, which corresponds to
σ = −1 and spin angular momentum per photon is −Z. A = A(r, ϕ,
z) = A0Ψ(r, ϕ, z) = A0u(r, z)e

imϕei(kz−ωt) is described by the Laguerre-
Gauss mode, such that we have spatial profile with the non-zero
derivatives.

It is straightforward to obtain the magnetic induction as

B � − iσ�
2

√ ∂zA,
1�
2

√ ∂zA,
iσ�
2

√ ∂xA − 1�
2

√ ∂yA( ). (93)

From the Lorentz condition, we obtain

∂xA + 1
v20
∂tΦ � ∂xA − iω

v20
Φ (94)

� 0, (95)
which gives

Φ � v20
iω

1�
2

√ ∂xA + iσ�
2

√ ∂yA( ). (96)

In the paraxial approximation, we calculate

∇Φ ≈ v0 0, 0,
1�
2

√ ∂xA + iσ�
2

√ ∂yA( ), (97)

and together with ∂tA = −iωA, we obtain

E ≈ iω
1�
2

√ A,−ω σ�
2

√ A,−v0 1�
2

√ ∂xA + iσ�
2

√ ∂yA( )( ). (98)

Here, we confirm that the transverse electric field of (Ex, Ey) is
consistent with the assumed circular polarisation as Ey/Ex = iσ. The
small longitudinal component of Ez plays an essential role for
splitting spin and orbital angular momentum, as we will see below.

Then, we can proceed for calculating the momentum and the
optical angular momentum. First, we calculate

E* × B( )x ≈
ω

2i
A*∂xA − A∂xA* + iσ A*∂yA + A∂yA*( )( )

E* × B( )y ≈
ω

2i
A*∂yA − A∂yA* − iσ(A*∂xA + A∂xA*)( )

E* × B( )z ≈ −iωA*∂zA,
(99)

where the spin independent term is coming from the orbital
component, which is the same as that in the horizontally
polarised mode and is proportional to I(Ψ* �∇Ψ), while the spin
dependent term is described by the components of R(Ψ* �∇Ψ). We
have already calculated orbital angular momentum, such that we will
focus on the contributions for spin angular momentum. The extra
factors for spin are

δ E* × B( )x ≈ ω

2
σ A*∂yA + A∂yA*( ) (100)

δ E* × B( )y ≈
ω

2
σ A*∂xA + A∂xA*( ). (101)

For them, we evaluate the derivatives,

∂ϕe
imϕ � imeimϕ (102)

∂ϕe
−imϕ � −ime−imϕ, (103)

which will cancel each other for R(Ψ* �∇Ψ) � (Ψ* �∇Ψ + Ψ �∇Ψ*)/2.
Therefore, we can drop ∂ϕ as

∂x � cos ϕ∂r − 1
r
sin ϕ∂ϕ (104)

→ cos ϕ∂r (105)
∂y � sin ϕ∂r + 1

r
cos ϕ∂ϕ (106)

→ sin ϕ∂r, (107)
and we also use the identity

1
2

u*∂ru + u∂ru*( ) � 1
2
∂r|u|2. (108)

Finally, we obtain

δ�PField � ϵ
2
δ〈R E* × B[ ]〉 (109)

� ϵω
2
|A0|2σ sin ϕ

1
2
∂r|u|2,−cos ϕ 12∂r|u|

2, 0( )
� −ϵω

2
|A0|2σ 12∂r|u|

2Φ̂.
(110)

This gives the angular momentum contribution from spin as

δ �MField r, ϕ, z( )
� �UField

ω
σ −z cos ϕ 1

2
∂r|u|2, z sinϕ 12∂r|u|

2,−r 1
2
∂r|u|2( ). (111)

By averaging over the cross section, x and y components vanish,
and we calculate

δ �MField z( ) � ∫∞
0
rdr∫2π

0
dϕδ〈MField r, ϕ, z( )〉∫∞

0
rdr∫2π

0
dϕ|u r, ϕ( )|2 ẑ, (112)

where we use the normalisation condition

−∫∞
0
rdr

r

2
∂r|u|2 � −r2

2 |u|2[ ]∞
0
+ ∫∞

0
drr|u|2

� 1
, (113)

and we obtain [28]

δ �MField �
�UField

ω
σzẑ (114)

� Z
N
V
σzẑ. (115)

Therefore, the circular polarised ray carries the spin angular
momentum, and the single photon contributes with the amount
of Zσz along the direction of the polarisation. In our convention
(Figure 1), the left-circularly polarised photon (σz = +1) brings Z,
while the right-circularly polarised photon (σz = −1) brings −Z [28],
as we expected.

2.5 GRIN fibre for a Laguerre-Gauss mode

Next, we consider a GRIN fibre [6, 37], which has a quadratic
dependence of the dielectric constant profile on r, described as
ϵ(r)μ � n(r)2/c2 � (1 − g2r2)/v20, which is equivalent to the
refractive index dependence of n(r)2 � n20(1 − g2r2). We consider
that the distribution of the dielectric constant is sufficiently uniform,
such that we can neglect the derivative, ∇ϵ ≈ 0. The advantages to
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consider a GRIN fibre does not reside purely in practical
availabilities, but we can solve the Helmholtz equations exactly
without employing the paraxial approximation. Therefore, it is a
quite useful model to consider a theoretically sensitive issue like the
splitting of spin and orbital angular momentum from the total
angular momentum. Here, we consider a Laguerre-Gauss mode in a
GRIN fibre within the classical electromagnetic treatment [6] for the
application to the angular momentum.

We continue to use the Lorentz gauge in this subsection, and the
Helmholtz equation in a GRIN fibre becomes

∇2 − 1
v20

1 − g2r2( )∂2t[ ]A � 0. (116)

For the horizontally polarised mode, the solution would be in
the form of A � A(r, ϕ, z) � A(r, ϕ, z)x̂ � A0Ψ (r, ϕ, z)x̂ �
A0ψ(r, ϕ, z)ei(kz−ωt)x̂ � A0u(r, z)eimϕei(kz−ωt)x̂. The solution
becomes [6]

ψ �
����������
2
π

n!

n + |m|( )!

√
1
w0

�
2

√
r

w0
( )|m|

L|m|
n 2

r

w0
( )2( )e− r2

w2
0 eimϕ,

(117)

where the beam waist becomes constant, w0 �
�������
2/(gkn0)

√
, with

kn0 � k0n0 � 2πn0/λ ≠ k, and the dispersion relationship, ω = ω(k),
is given by

ω k( ) �
��������������������
v20k

2 + δω2
0 2n +m + 1( )2

√
+ δω0 2n +m + 1( ), (118)

where δω0 = v0g. The radius of the spherical phase diverges, R→∞,
so that the beam is perfectly collimated to propagate in a GRIN fibre
for a long distance without focussing or de-focussing within the
fibre. The important point, here, is that the profile of the Laguerre-
Gauss mode works as an envelop function, ψ(r, ϕ, z), against the total
wavefunction, Ψ(r, ϕ, z). In the simple plane-wave expansion, the
approximation of ψ(r, ϕ, z) → 1 is employed, but this is not
acceptable when we consider the orbital angular momentum, due
to the vortexed beam shape with a node, characterised by topological
charge.

The Lorentz condition becomes

∇ · A + 1
v20

1 − g2r2( )∂tΦ � 0. (119)

By inserting the horizontally polarised form, A = (A, 0, 0), we obtain

∂xA − iω

v20
1 − g2r2( )Φ � 0, (120)

which gives

Φ � v0
kn0

1
1 − g2r2

1
i
∂xA. (121)

Therefore, we can approximate ∇Φ ≈ v0(0, 0, ∂xA). Together with
this and ∂tA = −iω(A, 0, 0), we obtain

E ≈ iωA, 0,−v0∂xA( ). (122)
We also obtain

B � 0, ∂zA,−∂yA( ). (123)

Then, we can proceed for calculating the momentum and
angular momentum. For that, we need to estimate

R E* × B[ ] � |A0|2〈R iω Ψ∂xΨ*,−Ψ*∂yΨ,−Ψ*∂zΨ( )[ ]〉t. (124)
By evaluating derivatives,

I Ψ*∂rΨ[ ] → 0 (125)
I Ψ*∂ϕΨ[ ] → m (126)
I Ψ*∂zΨ[ ] → kn0, (127)

we obtain

�PField � ϵ
2
ω|A0|2 −m

r
sinϕ,

m

r
cos ϕ, kn0( ) (128)

� �UField

v0
− m

kn0r
sin ϕ,

m

kn0r
cos ϕ, 1( ). (129)

Using the quantisation of the energy for photons, we obtain

�PField � Zkn0
N
V

m

kn0r
Φ̂ + ẑ( ). (130)

Finally, we obtain the angular momentum

�MField r, ϕ, z( ) � �UField

v0
r sin ϕ − m

kn0r
z cos ϕ,(

−r cos ϕ − m

kn0r
z sin ϕ,

m

kn0r
)

� �UField

v0
− m

kn0r
zr̂ − rΦ̂ + m

kn0
ẑ( )

(131)

� ZmN −z
r
r̂ − kn0r

m
Φ̂ + ẑ( ) (132)

For the circular polarised state, we can follow exactly the same
procedure to obtain the spin contribution to the angular
momentum as

δ �MField r, ϕ, z( ) � �UField

ω
σẑ (133)

� Z
N
V
σzẑ. (134)

These results are the same as those obtained by taking the limit
of R → ∞ in the formulas obtained for the free space.

3 Quantum field theory for photons
with spin and orbital angular
momentum

In the previous section, we have confirmed the important
discovery of Allen and collaborators for optical angular
momentum [28]. While it was intriguing to obtain the quantised
angular momentum, solely by accepting the fact that the energy of
the optical ray is quantised as a photon at the end of the calculation,
it is not conclusive whether spin and orbital angular momentum are
really fundamental quantum degrees of freedom of photons or not
[5, 6, 28–36]. In particular, it is highly questionable whether we can
derive a full quantum-mechanical expression solely by using
Poynting vector and the classical expectation for the angular
momentum, r × �PField, because Z is not included in classical
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mechanics as a fundamental constant. In particular, spin is inherent
quantum degree of freedom without a classical counterpart.
Therefore, we need to employ full quantum field theory to
understand the quantum nature of spin and orbital angular
momentum of photons.

3.1 Problems of plane-wave expansions
in QED

3.1.1 Motivation to consider a plane-wave
First, we clarify the problems of using plane-waves for the

description of the coherent monochromatic ray of photons
emitted from a laser source. Historically, the quantum mechanics
was developed to explain black-body radiation, such that it would be
natural for physicists at that time to consider photons of all possible
modes under thermal equilibrium with the Plank distribution
function at finite temperature [7–10]. Therefore, a standard
theory of QED is based on the plane-wave expansions of the
field, imposing the commutation relationship to field operators as
Bosons for photons [7–10]. However, photons are barely interacting
each other due to the absence of charge, and a coherent ray of
photons from a laser source is described by a single mode [6, 32, 60]
essentially similar to the Bose-Einstein condensation, in a sense that
the macroscopic number of photons are occupying the same state.
Due to the absence of the Coulomb interaction between photons,
photons can be treated purely quantum mechanically without
considering the ensemble average [10, 32, 60], such that the
temperature for photons emitted from a laser are equivalent to
zero temperature, even if the measurements are conducted at room
temperature.

In that sense, it would be not suitable for light from a laser by
using a plane-wave for discussing the nature of orbital angular
momentum. Even lights from Sun are not spreading to the entire
universe like plane-waves, and lights are predominantly propagating
along uni-direction with finite spreading as wave-packets. Moreover,
the plane-wave cannot sustain the vortexed lights, as we have shown
in the previous section due to the lack of the node at the centre of the
vortex. Even without the orbital angular momentum (m = 0), the
plane-wave description is not suitable for the light propagating with
the finite mode profile for discussing the nature of spin of photons,
as we shall see below. Plane-waves are suitable for extended states,
spreading to the entire system, while lights propagating in a
waveguide are trapped in bound states. Nevertheless, in this
subsection, we intentionally use the plane-wave to understand
what was the problem to elucidate the nature of the angular
momentum of photons.

3.1.2 Many-body theory for photons
In this subsection, we explain our notation on the use of the

quantum field theory for photons. The use of the plane wave
corresponds to the flat nodeless mode profile, which spreads the
entire volume of the system, which is described by an envelop
function

ψ r, ϕ, z( ) � 1, (135)

and the full single wavefunction for a photon is

Ψ r, ϕ, z( ) � ei kz−ωt+β0( ) (136)
� eiβ, (137)

where β = kz − ωt + β0 describes the standard phase evolution for a
photon, propagating along z and β0 is the arbitrary U(1) global
phase. Here, we consider a propagation in a uniform material, such
that the dispersion is ω = v0k. The normalisation over the volume, V,
is included in A0 ∝N /V, or the electric field strength,
E0 �

����������
2ZωN /(ϵV)√

. The factor of the average number of
photons, N , is coming after taking the quantum-mechanical
average over the coherent state, such that the electric field
strength per photon, e0 �

��������
2Zω/(ϵV)√

, is used to define the
complex electric field operator,

Ê z, t( ) � e0e
iβ âHx̂ + âVŷ( ), (138)

whose complex conjugate (adjoint) is

Ê†
z, t( ) � e0e

−iβ â†Hx̂ + â†Vŷ( ), (139)
where â†H (âH) and â†V (âV) are creation (annihilation) operators for
photons in horizontally (H) and vertically (V) polarised modes [10,
32, 60, 61]. Creation and annihilation operators must satisfy the
commutation relationships for Bosons [10, 32, 60, 61],

âσ , âσ′[ ] � 0 (140)
âσ , â

†
σ′[ ] � δσ,σ′, (141)

where σ and σ′ describe the polarisation, and δσ,σ′ is the
Kronecker delta, which gives 1 for the same mode and 0 for the
orthogonal mode.

The observable electric field operator is given by

Ê � 1
2

Ê + Ê†( ) (142)

� e0
2

âHe
iβ + â†He

−iβ( )x̂ + âVe
iβ + â†Ve

−iβ( )ŷ( ), (143)
which always satisfy the transversality condition

∇ · Ê � ∂zÊz

� 0.
(144)

One would recognise that this is already a big problem when we
consider orbital angular momentum, because of the lack of the small
longitudinal component along z (Table 1), which was responsible to
guarantee the gauge condition. Nevertheless, let’s continue to see
what happens to spin angular momentum under the plane wave
expansion. Please also note that we have not summed up over all
possible electromagnetic modes in a waveguide, because we are
considering a single mode of a monochromatic coherent ray from a
laser source.

The transversality condition for the Coulomb gauge, ∇ · Â � 0,
also yields the vector potential

Â � 1
iω

e0
2

âHe
iβ − â†He

−iβ( )x̂ + âVe
iβ − â†Ve

−iβ( )ŷ( )
� a0

2
âHe

iβ − â†He
−iβ( )x̂ + âVe

iβ − â†Ve
−iβ( )ŷ( ), (145)

which gives the amplitude of the vector potential per photon,
a0 � e0/(iω) �

��������
2Zω/(ϵV)√

/(iω), corresponding to the average
amplitude for the vector potential of A0 � a0

��N√ � e0/(iω) �����������
2ZωN /(ϵV)√

/(iω).
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The magnetic induction operator is calculated as

B̂ � ∇ × Â (146)
� 0, 0, ∂z( ) × Âx, Ây, 0( ) (147)
� −∂zÂy, ∂zÂx, 0( ) (148)
� 1
v0

e0
2

− âVe
iβ + â†Ve

−iβ( )x̂ + âHe
iβ + â†He

−iβ( )ŷ( ) (149)

This corresponds to the average amplitude of the magnetic
induction of |B0| � μ0|H0| � |E0|/v0 � ���ϵμ0

√ |E0|, which gives the
ratio between the magnetic field and the electric field,
η � |H0|/|E0| � ����

μ0/ϵ
√

. In the vacuum, the last value becomes η0 ������
μ0/ϵ0

√
≈ 377 Ω.

We think it is worth for clarifying our definition of the
polarisation for electromagnetic waves (Figure 2). As we
explained in Figure 1, we define our rotation seen from the
detector side, and the positive rotation is for the anti-clock-wise
direction. The electric field and magnetic induction operators are
summarised as

Ê � Êxx̂ + Êyŷ (150)
B̂ � 1

v0
−Êyx̂ + Êxŷ( ), (151)

where the components of the electric field operator are defined as

Êx � e0
2

âHe
iβ + â†He

−iβ( ) (152)

Êy � e0
2

âVe
iβ + â†Ve

−iβ( ). (153)

The relative vectorial relationships are schematically depicted in
Figure 2. In our definition, the vectorial direction of the magnetic
induction is obtained by rotating the electric filed with the amount of
90° along z. The 90°-rotation of the electric field corresponds to the
application of the optical rotator, which rotates the polarisation state
described by Jones vector on the Poincaré sphere with the amount of
180° along S3, which converts the horizontal linear polarisation to
the vertical one or the diagonal linear polarisation to the anti-
diagonal one, while keeping the circular polarised states for both left
and right circulations.

The Hamiltonian is expected to be

Ĥ � ∫ d3r
1
2
Ê · D̂ + 1

2
B̂ · Ĥ[ ]. (154)

Upon inserting field operators, Ê and B̂, we consider a boundary
condition

∫L

0
e±ikzdz � ±

1
ik

e±ikz[ ]L
0
� ±

1
ik

e±ikL − 1( ) � 0, (155)

which is equivalent to the longitudinal phase-matching condition
k = 2πn/L with an integer n ∈ Z for a laser in a cavity with the length
of Lz = L. The actual boundary condition depends on the
experimental preparation, but as far as a coherent ray is emitted
from a laser source, we can assume that the phase is coherent and a
similar boundary condition is satisfied. This also gives

∫L

0
e±i2kzdz � ±

1
i2k

e±i2kz[ ]L
0
� ±

1
i2k

e±i2kL − 1( ) � 0, (156)

and the spatial integration gives the volume V = LxLyLz, which will
be cancelled with the contribution from e20. Finally, we obtain

Ĥ � Zω â†HâH + 1
2

( ) + â†VâV + 1
2

( )[ ], (157)

where zero-point fluctuations of Zω/2 per polarisation degree of
freedom are successfully included.

The momentum density operator for photons is given by

p̂Field � ϵ Ê × B̂( ) (158)
� 1
v20
Ŝ, (159)

where the Ponynting vector operator is

Ŝ � Ê × Ĥ. (160)
The integrated total momentum operator becomes

P̂Field � ∫ d3r p̂Field (161)

� Zkẑ â†HâH + 1
2

( ) + â†VâV + 1
2

( )[ ], (162)

where the zero-point oscillations are included. If we consider a ray,
propagating in an opposite direction, the zero-pint oscillations
cancel each other among photons with +k and −k.

3.1.3 Problems to derive angular momentum
operators

Then, we proceed to calculate the angular momentum operator

M̂ � ∫d3r r × p̂field (163)

� ϵ∫ d3r r × Ê × B̂( ) (164)

using plane-wave basis. We use identities [5],

r × Ê × ∇ × Â( )( ) � Ê r · ∇ × Â( )( ) − r · Ê( ) ∇ × Â( )
r · ∇ × Â( ) � riϵijk∂jÂk � ϵijkri∂jÂk � r × ∇( ) · Â,

and split the total angular momentum operator [29–31, 34–36]
into the orbital angular momentum operator L̂ and the spin angular
momentum operator Ŝ

M̂ � L̂ + Ŝ, (165)
where

L̂ � ϵ∫ d3r Ê r · B̂( ) (166)
and

Ŝ � −ϵ∫d3r r · Ê( )B̂ (167)

� −ϵ∫ d3r r · Ê( ) ∇ × Â( ). (168)

But, this is not extremely successful, because L̂ vanishes

L̂ � ϵ∫ d3r Ê r · B̂( ) (169)

� ϵ
v
∫ d3r Êx, Êy, 0( ) −xÊy + yÊx( ) (170)

� 0, (171)

Frontiers in Physics frontiersin.org11

Saito 10.3389/fphy.2023.1225360

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1225360


due to the odd parity symmetry of x and y against the origin, while Êy

and Êx are parity even for plane-waves. Consequently, this proves that
plane-waves cannot sustain the orbital angular momentum. This
result for L̂ may not be a big concern, because we have confirmed
in the previous section, a node in the core of the wave, as topological
charge, is required for a vortexed ray with orbital angular momentum.
However, we have the same problem for Ŝ, as

Ŝ � −ϵ∫ d3r r · Ê( )B̂ (172)

� −ϵ∫d3r xÊx + yÊy( ) −Êy, Êx, 0( ) (173)
� 0, (174)

due to the same argument on the parity symmetries of the integrand.
Moreover, if we continue to use Ŝ, anyway, we can attempt to
integrate like

Ŝi � −ϵ∫ d3r ϵilm rjÊj( ) ∂lÂm( ) (175)

� −ϵ rjÊj( )Âm[ ]∞−∞ + ϵ∫ d3r ϵilmÂm∂l rjÊj( ), (176)

where the first term might vanish [30, 34, 35], if we consider the
mode vanishes at the boundary of the waveguide. The tactic of the
introduction of the vanishing boundary condition [30, 34, 35] can be
justified, if we consider a mode profile, which is not properly taken
into account for plane-waves. Then, we obtain the only finite
component along the direction of the propagation (i = z),

Ŝz � ϵ∫ d3r Ê × Â( ), (177)

which apparently depends on the choice of the gauge [29–31, 34, 35].
We obtained this expression by using the Coulomb gauge, and one
might be able to justify to take only the transversal component of the
vector potential to justify this formula [29, 31]. However, it is still
questionable to retain the finite operator contribution, which has
vanished in the symmetry argument. Nevertheless, if we continue to
proceed to express Ŝz in creation and annihilation operators, we obtain

Ŝz � −i( )Zẑ â†HâV − â†VâH( ), (178)
which makes reasonable sense [29]. Although the derivation, we
have confirmed, in this subsection is not acceptable, the final result is
intriguing.

Next, we show that the problems were coming from the choice of
the expansions of the field by plane-waves. Our goal is to justify the
splitting between spin and orbital angular momentum and to get
more insights for obtaining full quantum operators for spin and
orbital angular momentum. We will achieve this goal by using a
Laguerre-Gauss mode and a standard quantum-field theory for a
vortexed coherent monochromatic ray.

4 Spin and orbital angular momentum
operators in a GRIN fibre

4.1 Principles

We must develop a quantum field theory for a coherent
monochromatic ray for photons, propagating in a waveguide.

Therefore, we need to take topological charge into account for
allowing the vortexed beam with a specially non-trivial profile. In
order to make the argument based on a specific example, we
consider a GRIN fibere, but the application to the other
waveguide will be straightforward. Here, we consider the
fundamental principle to develop the theory.

First, we consider a monochromatic coherent state for photons
[32, 60, 61],

|ασ〉 � e−
|ασ |2
2 eασ â

†
σ |0〉, (179)

where σ describes the polarisation state such as horizontal (H) and
vertical (V) states. ασ is a complex number, which we will obtain,
soon. We can also choose other combinations of orthogonal states
such as diagonal (D) and anti-diagonal (A) or left (L) and right (R)
polarised states. The quantum mechanical expectation value of the
number operators by the coherent state becomes

〈ασ |â†σ âσ |ασ〉 � |ασ |2 (180)
� N σ , (181)

where N σ is the average number of photons in the polarisation
mode of σ [32, 60, 61]. From the total number of photons, we have a
sum rule

N � N H +N V, (182)
which is obtained by assigning

αH �
��
N

√
e−iδ/2 cos α (183)

αV �
��
N

√
e+iδ/2 sin α, (184)

where α is the auxiliary angle to split N into N H and N V by
decomposing the electric field into two orthogonal components, and
δ is the phase between two orthogonal modes. The total state of the
photonic state is described by a direct product as

|α, δ〉 � |αH, αV〉 (185)
� |αH〉|αV〉. (186)

The electromagnetic field, expected from the coherent state,
must be compatible with Maxwell equations and, thus, with the
Helmholtz equation. Both the electric field and themagnetic field are
observalbes and obtained by taking the quantum-mechanical
expectation values by the coherent state. The dominant
contribution for the complex electric field becomes

Ê r, t( ) ≈
����
2Zω
ϵV

√
Ψ r, t( ) âHx̂ + âVŷ( ), (187)

where Ψ(r, t) works as a wavefunction to describe the orbital part of
photons. If we take quantum-mechanical average of Ê(r, t), we
obtain the complex electric field

E r, t( ) � Ex

Ey
( ) (188)

� 〈α, δ|Ê r, t( )|α, δ〉 (189)

�
����
2Zω
ϵV

√
Ψ r, t( )〈α, δ| âHx̂ + âVŷ( )|α, δ〉 (190)

� E0Ψ r, t( ) e−iδ/2 cos α
e+iδ/2 sin α

( ), (191)
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where E0 �
����������
2ZωN /(ϵV)√

as before, and the vectorial part
represents the Jones vector

〈α, δ|Jones〉 � e−iδ/2 cos α
e+iδ/2 sin α

( ), (192)

which describes the spin state of photons [6, 11, 12].
As we have shown in the previous sections, the results should

not depend on the choice of the gauge. We will chose the Coulomb
gauge, such that E(r, t) should satisfy the Helmholtz equation
(Table 1), which is equivalent to imposing Ψ(r, t) to satisfy the
Hemholtz equation,

∇2Ψ r, t( ) � μ0ϵ r( ) ∂
2

∂t2
Ψ r, t( ). (193)

This means that the orbital wavefunction of a photon is described by
the Hemholtz equation rather than the Schrödinger equation. In a
free space, this simply gives the plane-wave, but in a material with
the spatial profile of the dielectric constant, the solution can be
highly non-trivial, depending on the symmetry of the system and
boundary conditions. For a monochromatic ray, we can assume a
simple Plank-Einstein relationship of E = Zω, such that the
wavefunction is described by a single mode of the angular
frequency of ω as Ψ(r, t) = Ψ(r)e−iωt, and we obtain

∇2Ψ r( ) � −ω2μ0ϵ r( )Ψ r( ). (194)

4.2 Hermite-Gauss and Laguerre-Gauss
modes

In a GRIN waveguide, we can assume μ0ϵ(r) � (1 − g2r2)/v20
and Ψ(r) = ψ(x, y)ei(kz−ωt), which allows to de-couple the plane-wave
propagation along z with the mode confinement in (x, y), which is
governed by

∂2x + ∂2y −
ω2g2

v20
r2( ) + −k2 + ω2

v20
( )( )ψ � 0 (195)

In the cartesian coordinate, we can assume

∂2x + ∂2y −
ω2g2

v20
r2( )ψ � −2 g

v0
l +m + 1( )ωψ, (196)

which gives the Hermite-Gauss mode [6]

ψ x, y( ) � Hl

�
2

√ x

w0
( )Hm

�
2

√ y

w0
( )e− r2

w2
0 , (197)

where w0 �
������
2/(gk)√

and Hl is the Hrmite polynomial.
In a cylindrical coordinate,

∂2r +
1
r
∂r + 1

r2
∂2ϕ −

ω2g2

v20
r2( )ψ

� −2 g

v0
2n + |m| + 1( )ωψ,

(198)

which gives the Laguerre-Gauss mode

ψ r, ϕ( ) � �
2

√
r

w0
( )|m|

L|m|
n 2

r

w0
( )2( )e− r2

w2
0 eimϕ. (199)

The dispersion relationship for the Hermite-Gauss mode is
given by a frequency shift, δw0 = v0g, as

ω2 − 2δw0 l +m + 1( )ω − v20k
2 � 0, (200)

and the corresponding equation for the Laguerre-Gauss mode is
obtained by replacing l = 2n and m→ |m|. This can be rewritten by
using the Plank-Einstein relationship for the energy (E = Zω) and
momentum (p = Zk) of a photon,

E2 − 2 Zδw0( ) l +m + 1( )E − v0p( )2 � 0, (201)
which yields

E � Δ ±
����������
Δ2 + v0p( )2√

, (202)
where the energy gap Δ is

Δ � Zδw0 l +m + 1( ) (203)
� m*v20, (204)

which implies that the photon confined in a waveguide is massive
due to the broken symmetry [62–65]. The mass increases with the
increase of the orbital angular momentum m and the radial
quantum number of n. In a weak coupling limit (g → 0), the
effective mass of m* vanishes. We should choose the solution of
the positive energy for the confined mode, propagating the
waveguide, and thus we obtain

E � Δ +
����������
Δ2 + v0p( )2√

. (205)
Below, we will focus on the Laguerre-Gauss mode with a cylindrical
symmetry. We normalise the wavefunction as∫ d3r|Ψ|2 � V, (206)
and the normalised solution becomes

ψ r, ϕ( ) � ����������
2
π

n!

n + |m|( )!

√ �
2

√
r

w0
( )|m|

L|m|
n 2

r

w0
( )2( )e− r2

w2
0 eimϕ,

(207)

where the volume is given by V � w2
0Lz. The amplitude of the

electric field for the ray is given by E0 �
�������������
2ZωN /(ϵw2

0Lz)
√

and the

amplitude per photon is e0 �
�����������
2Zω/(ϵw2

0Lz)
√

.

Now, we will examine the complex electric field operator in
more detail. According to our classical considerations for a
Laguerre-Gauss beam, it was essential to take the small
longitudinal component for ensuring the vortexed beam
sustained by topological charge. This corresponds to add the
longitudinal component, Êz, as

Ê x, y, z, t( ) � Êxx̂ + Êyŷ + Êzẑ (208)
� e0ψe

iβ âHx̂ + âVŷ( ) + Êzẑ (209)
for obtaining a self-consistent result in the Coulomb gauge (Table 1),
for which

Ê � −∂tÂ (210)
must be satisfied. The latter corresponds to the identity for the
complex vector potential operator,
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Â � 1
iω

Ê. (211)

By inserting this into ∇ · Â � 0, we obtain

∇ · Â � e0
iω

∂xΨâH + ∂yΨâV( ) + 1
iω
∂zÊz (212)

� 0, (213)
which gives the longitudinal component of the operator as

Êz � −e0v0
iω

∂xΨâH + ∂yΨâV( ), (214)
where we have used

1
iω
∂z � k

ω
(215)

≈
1
v0
, (216)

which is valid in the weak confinement limit, g → 0.
Consequently, we obtain

Ê � e0 ΨâH,ΨâV,−v0
iω

∂xΨâH + ∂yΨâV( )( ), (217)
whose conjugate becomes

Ê† � e0 Ψ*â†H,Ψ*â†V,+
v0
iω

∂xΨ*â†H + ∂yΨ*â†V( )( ). (218)
The electric field operator is also obtained as

Ê � 1
2

Ê + Ê†( ) (219)

� e0
2

ΨâH + Ψ*â†H,ΨâV + Ψ*â†V,(
−v0
iω

∂xΨâH − ∂xΨ*â†H + ∂yΨâV − ∂yΨ*â†V( )), (220)

whose quantum-mechanical expectation value must always be
real, which is guaranteed by Ê

† � Ê and the electric field of a photon
is observable.

On the other hand, the conjugate of the complex vector potential
operator satisfies

Â† � − 1
iω
Ê†

, (221)
which yields

Â � 1
2

Â + Â†( ) (222)

� 1
iω

1
2

Ê − Ê†( ) (223)

� 1
iω

e0
2

ΨâH − Ψ*â†H,ΨâV − Ψ*â†V,(
−v0
iω

∂xΨâH + ∂xΨ*â†H + ∂yΨâV + ∂yΨ*â†V( )). (224)

This satisfies the transversality condition of the Coulomb gauge

∇ · Â � 0. (225)
It is also straightforward to calculate

B̂ � ∇ × Â (226)
by assuming |∂2xΨ|, |∂2yΨ|, |∂x∂yΨ|≪ |∂z∂xΨ|, |∂z∂yΨ|, which is
justified for a ray predominantly propagating along z in the
waveguide. We obtain

B̂ � 1
v0

e0
2

− ΨâV + Ψ*â†V( ),ΨâH + Ψ*â†H,(
1
ik

∂xΨâV − ∂xΨ*â†V − ∂yΨâH + ∂yΨ*â†H( )), (227)

which guarantees that the magnetic induction is also observable,
B̂
† � B̂. We also confirm that the transversality condition,

Ê · B̂ � 0, (228)
(Figure 2) is also satisfied for a vortexed beam, because

B̂x � − 1
v0
Êy (229)

B̂y � 1
v0
Êx. (230)

By using the obtained Ê and B̂, we obtain the Hamiltonina for a
vortexed ray, as

Ĥ � Zω â†HâH + 1
2

( ) + â†VâV + 1
2

( )[ ], (231)

where we have used |∂2xΨ|, |∂2yΨ|, |∂x∂yΨ|≪ |∂z∂xΨ|, |∂z∂yΨ|, again.
By taking the quantum-mechanical average using the coherent

state, we obtain the total energy of photons,

�Utot � 〈Ĥ〉 � 〈α, δ|Ĥ|α, δ〉 � Zω N + 1( ), (232)
and the energy density of the electromagnetic waves becomes

�UField �
�Utot

V
� Zω

N + 1
V

( ) � Zω n + 1
V

( ), (233)

where the photon density is given by n � N /V.

4.3 Momentum and angular momentum
operators for photons

We define the complex momentum operator,

P̂Field � ∫ d3r ϵÊ × B̂, (234)
whose conjugate is

P̂†

Field � ∫ d3r ϵ Ê × B̂( )† (235)

� ∫ d3r ϵ B̂ × Ê( ) (236)
≠ P̂Field. (237)

Therefore, P̂Field is not observable. Nevertheless, the momentum
operator,

P̂Field � 1
2

P̂Field + P̂†

Field( ), (238)

is observable, because P̂Field � P̂
†

Field. We can also define the
momentum-density operator, p̂Field, before the integration as

p̂Field �
1
2
ϵ Ê × B̂( ) + Ê × B̂( )†( ), (239)

whose average over space becomes

P̂Field � 1
V

∫ d3r p̂Field. (240)
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The major component along z is obtained as

P̂z � ∫ d3r
ϵ
v0

ÊxÊx + ÊyÊy( ) (241)

� Zk n̂H + 1
2

( ) + n̂V + 1
2

( )[ ], (242)
as we expected. In a similar way, we calculate

P̂x � Z

2iV
∫ d3r Ψ*∂xΨ − Ψ∂xΨ*( ) n̂H + 1

2
+ n̂V + 1

2
( )[

+ Ψ*∂yΨ + Ψ∂yΨ*( ) â†HâV − â†VâH( ) + Ψ*∂yΨ + Ψ∂yΨ*( )],
(243)

where the last term ofΨ*∂yΨ +Ψ∂yΨ* will be cancelled when we
calculate

P̂x � 1
2

P̂x + P̂†

x( ) (244)

� Z

2iV
∫ d3r Ψ*∂xΨ − Ψ∂xΨ*( ) n̂H + 1

2
+ n̂V + 1

2
( )[

+ Ψ*∂yΨ + Ψ∂yΨ*( ) â†HâV − â†VâH( )]. (245)

We can simplify the integrands as

Ψ*∂xΨ − Ψ∂xΨ* � 2iI Ψ*∂xΨ[ ] (246)
� 2iI Ψ* cosϕ∂r − 1

r
sin ϕ∂ϕ( )Ψ[ ]

� −2im
r

sin ϕ,
(247)

and

Ψ*∂yΨ + Ψ∂yΨ* � 2R Ψ*∂yΨ[ ] (248)
� 2R Ψ* sin ϕ∂r + 1

r
cos ϕ∂ϕ( )Ψ[ ]

� 2R Ψ* sin ϕ∂r( )Ψ[ ] (249)

� sin ϕ u*∂ru + u∂ru*( ) (250)
� sin ϕ∂r|u|2. (251)

Then, we obtain

P̂x � 1
V

∫ d3r −Zm
r

sin ϕ( ) n̂H + 1
2
+ n̂V + 1

2
( )[

+ Z
2i
sinϕ∂r|u|2 â†HâV − â†VâH( )]. (252)

We obtain

p̂x � −Zm
r

sin ϕ n̂H + n̂V + 1( )
+Z
2i
sin ϕ∂r|u|2 â†HâV − â†VâH( ). (253)

Similarly, we calculate

P̂y � Z

2iV
∫ d3r Ψ*∂yΨ − Ψ∂yΨ*( ) n̂H + 1

2
+ n̂V + 1

2
( )[

− Ψ*∂xΨ + Ψ∂xΨ*( ) â†HâV − â†VâH( ) + Ψ*∂xΨ + Ψ∂xΨ*( )],
(254)

and then, we obtain

P̂y � 1
2

P̂y + P̂†

y( ) (255)

� Z

2iV
∫d3r Ψ*∂yΨ − Ψ∂yΨ*( ) n̂H + 1

2
+ n̂V + 1

2
( )[

− Ψ*∂xΨ + Ψ∂xΨ*( ) â†HâV − â†VâH( )], (256)

for which, we calculate the integrands,

Ψ*∂yΨ − Ψ∂yΨ* � 2iI Ψ*∂yΨ[ ] (257)
� 2iI Ψ* sin ϕ∂r + 1

r
cos ϕ∂ϕ( )Ψ[ ]

� 2im
r

cos ϕ,
(258)

and

Ψ*∂xΨ + Ψ∂xΨ* � 2R Ψ*∂xΨ[ ] (259)
� 2R Ψ* cos ϕ∂r − 1

r
cos ϕ∂ϕ( )Ψ[ ] (260)

� 2R Ψ* cosϕ∂r( )Ψ[ ] � cos ϕ u*∂ru + u∂ru*( )
� cos ϕ∂r|u|2.

(261)
Then, we obtain

P̂y � 1
V

∫ d3r
Zm

r
sinϕ n̂H + 1

2
+ n̂V + 1

2
( )[

− Z
2i
cos ϕ∂r|u|2 â†HâV − â†VâH( )], (262)

whose integrand becomes

p̂y � Zm

r
cos ϕ n̂H + n̂V + 1( )

−Z
2i
cos ϕ∂r|u|2 â†HâV − â†VâH( ). (263)

If we move to the cylindrical coordinate (r, ϕ, z), we obtain the
momentum-density operators

p̂r � 0 (264)
p̂ϕ �

Zm

r
n̂H + n̂V + 1( ) − Z

2i
∂r|u|2 â†HâV − â†VâH( ) (265)

p̂z � Zk n̂H + n̂V + 1( ). (266)
Finally, we can calculate the angular momentum-density

operators by assuming

m̂ � r × p̂. (267)
In the Cartesian coordinate, (x, y, z) = (r cos ϕ, r sin ϕ, z), we obtain

m̂x � Zkr sin ϕ − Zm

r
z cos ϕ( ) n̂H + n̂V + 1( )

−Z
2i
z cos ϕ∂r|u|2 â†HâV − â†VâH( ) (268)

m̂y � −Zkr cos ϕ − Zm

r
z sin ϕ( ) n̂H + n̂V + 1( )

+ Z
2i
z sin ϕ∂r|u|2 â†HâV − â†VâH( ) (269)

m̂z � Zm n̂H + n̂V + 1( ) − Z

2i
r∂r|u|2 â†HâV − â†VâH( )

� Zm n̂H + n̂V + 1( ) + Z

i
â†HâV − â†VâH( ), (270)

where we have used

−∫∞
0
rdrr

1
2
∂r|u|2 � −r2

2 |u|2[ ]∞
0
+ ∫∞

0
drr|u|2

� 1
(271)
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at the last line.
In the cylindrical coordinate, m̂ becomes

m̂r � −Zmz

r
n̂H + n̂V + 1( )

− Z
2i
z cos 2ϕ( )∂r|u|2 â†HâV − â†VâH( ) (272)

m̂ϕ � −Zkr n̂H + n̂V + 1( )
+Z
2i
z sin 2ϕ( )∂r|u|2 â†HâV − â†VâH( ) (273)

m̂z � Zm n̂H + n̂V + 1( ) + Z

i
â†HâV − â†VâH( ) (274)

� l̂z + ŝz, (275)
where the last line is especially important, since we finally

obtained orbital and spin angular momentum operators

l̂z � Zm n̂H + n̂V + 1( ) (276)
ŝz � Z

i
â†HâV − â†VâH( ), (277)

respectively.
When we integrate over space, we realise∫ dϕ cosϕ � ∫ dϕ sin ϕ � 0. (278)

Thus, we obtain

P̂x � P̂y � 0 (279)
P̂z � Zk n̂H + n̂V + 1( ). (280)

For the angular momentum operator, defined by

M̂ � 1
V
∫ d3r m̂ (281)

� 1
V
∫ d3r r × P̂, (282)

we obtain

M̂x � M̂y � 0 (283)
M̂z � L̂z + Ŝz, (284)

where

L̂z � Zm n̂H + n̂V + 1( ) (285)
Ŝz � Z n̂L − n̂R( ). (286)

For the spin operator, the number operators of left and right circular
states are used, which are defined as n̂L � â†LâL and n̂R � â†RâR,
respectively, where the field operators are obtained by unitary
transformations,

â†L
â†R

( ) � 1�
2

√ 1 i
1 −i( ) â†H

â†V
( ) (287)

and

âL
âR

( ) � 1�
2

√ 1 −i
1 i

( ) âH
âV

( ). (288)

Here, we could split the total angular momentum operator into
orbital and spin angular momentum operators without the apparent
gauge dependence. We could perform a gauge transformation for
photons, but due to the absence of charge for photons, the gauge
field will not couple to the change of the angular momentum

operators. The gauge independence is obvious in our expressions,
because the number of photons should not depend on the choice of
the gauge, otherwise the total energy of the system can change
depending on the arbitrary choice of the gauge.

It is interesting to be aware that there exists contributions from
zero-point oscillations in the orbital angular momentum for a ray
propagating towards one direction. Such a zero-point fluctuation is
absent for spin. We do not know exactly why a zero-point
fluctuation has not been appeared for spin. But, spin is an
internal degree of freedom for photons, which can never be
removed. On the other hand, orbital angular momentum (m ≠ 0)
could be suspended, if the waveguide is small enough to allow only
the single mode. In such a single mode waveguide, the zero-point
fluctuation can also be suppressed. However, as far as the waveguide
allows the higher order mode with non-zero orbital angular
momentum, the zero-point fluctuation must be remained.
Another possible reason is found in the expression of calculated
spin and orbital angular momentum. The orbital angular
momentum is expressed as the sum of numbers of photons in
2 orthogonal polarisation states (n̂L + n̂R � n̂H + n̂V), while spin
angular momentum is given by the difference of these states
(n̂L − n̂R). Even if zero-point fluctuations exist in both
polarisation, it will be cancelled in the difference, while it will
become twice in the sum. This means that the spin state must be
one or the other in the measurement, and the contribution to the
spin angular momentum depends on the sign, which means that the
left and right circularly polarised states contributes in a destructive
way. On the other hand, both polarisations contribute to orbital
angular momentum in a constructive way. This difference might be
the origin of the difference in zero-point fluctuations.

Another interesting point is that we could obtain only the
angular momentum operators along the direction of the
propagation from simple analogy from the classical counter part
defined by m̂ � r × p̂. This does not prove that there is no
perpendicular components for spin and orbital angular
momentum. In fact, the perpendicular components of spin states
can be described by the superposition state of left and right circular
polarised states. We emphasise this point and discuss the full
components of spin and orbital angular momentum operators,
latter.

5 Origin of photonic spin angular
momentum

Before proceeding to consider the full orbital angular
momentum operators, further, in this section, we discuss the
origin of the photonic spin angular momentum for a coherent
monochromatic ray without an orbital angular momentum in a
general waveguide (Figure 3). Spin of a photon is an inherent
quantum degree of freedom, which should be described
quantum-mechanically rather than classically. In the absence of
the orbital angular momentum (m = 0), we should not have any issue
to regard the total angular momentum is exclusively coming from
spin. Therefore, the situation would be simpler than the splitting of
spin and orbital angular momentum. We check the derivation of the
last section for the case of m = 0 in detail to understand spin of
photons.
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For photons propagating in a waveguide, it is essential to take
the mode profile [6] into account, which means |∂rΨ| ≠ 0. On the
other hand, we will employ the paraxial approximation,
|∂2xΨ|, |∂2yΨ|, |∂x∂yΨ|≪ |∂z∂xΨ|, |∂z∂yΨ|, which is justified for a
ray propagating in a waveguide, because the propagation is
predominantly along one direction of z. We assume a complex
electric field operator is given by

Ê x, y, z, t( ) � e0ψe
iβ âHx̂ + âVŷ( ) + Êzẑ. (289)

From the Coulomb gauge condition,

∇ · Â � 0, (290)
we obtain the longitudinal component,

Êz � −e0v0
iω

∂xΨâH + ∂yΨâV( ), (291)

which was not considered in the plane-wave expansions. The
existence of this small longitudinal component is responsible to
obtain the spin angular momentum operator, properly. Then, we
obtain the same expression for Ê, B̂, Â, Ĥ, and P̂z.

On the other hand, in the absence of the angular orbital
momentum, the mode profile is described by a real function,
ψ(x, y) ∈ R, except for the global phase of eiβ. Consequently, we
obtain

P̂x � 1
V

∫d3r
Z

2i
sin ϕ∂r|u|2 â†HâV − â†VâH( )[ ] (292)

P̂y � 1
V

∫d3r −Z
2i
cos ϕ∂r|u|2 â†HâV − â†VâH( )[ ], (293)

which correspond to

p̂x �
Z

2i
sin ϕ∂r|u|2 â†HâV − â†VâH( ) (294)

p̂y � − Z
2i
sin ϕ∂r|u|2 â†HâV − â†VâH( ) (295)

p̂z � Zk n̂H + n̂V + 1( ) (296)
in a Cartesian coordinate, and

p̂r � 0 (297)
p̂ϕ � −Z

2i
∂r|u|2 â†HâV − â†VâH( ) (298)

p̂z � Zk n̂H + n̂V + 1( ) (299)
in a cylindrical coordinate.

Then, we calculate

m̂x � Zkr sin ϕ n̂H + n̂V + 1( )
−Z
2i
z cos ϕ∂r|u|2 â†HâV − â†VâH( ) (300)

m̂y � −Zkr cos ϕ n̂H + n̂V + 1( )
+Z
2i
z sinϕ∂r|u|2 â†HâV − â†VâH( ) (301)

m̂z � Z

i
â†HâV − â†VâH( ), (302)

in a Cartesian coordinate, and

m̂r � − Z
2i
z cos 2ϕ( )∂r|u|2 â†HâV − â†VâH( ) (303)

m̂ϕ � −Zkr n̂H + n̂V + 1( )
+Z
2i
z sin 2ϕ( )∂r|u|2 â†HâV − â†VâH( )

(304)
m̂z � Z

i
â†HâV − â†VâH( ) (305)

� ŝz. (306)
After the integration, finally, we obtain

P̂x � P̂y � 0 (307)
P̂z � Zk n̂H + n̂V + 1( ), (308)

as before, while

M̂x � M̂y � 0 (309)
M̂z � Ŝz, (310)

where the total angular momentum along z is solely described by the
spin angular momentum

Ŝz � Z n̂L − n̂R( ), (311)
as we expected, and the orbital angular momentum vanishes. We
also confirmed that the final result depends solely on the difference
of number of photons between left and right circularly polarised
photons, such that Ŝz is independent on the choice of the gauge.
Therefore, our results are independent on the mode profile, and the
expression of Ŝz is validated for an arbitrary mode profile as far as
the mode is propagating predominantly along one direction.

6 Principle of rotational symmetry for
photonic spin states

In the previous sections, we have obtained the spin operator only
along the direction of the propagation as,

Ŝz � Z n̂L − n̂R( ) (312)

� Z â†L, â†R( ) 1 0
0 −1( ) âL

âR
( ) (313)

� Zψ̂†
LRσ3ψ̂LR , (314)

where ψ̂†
LR � (â†L, â†R) and ψ̂LR are creation and annihilation operators in

a chiral spinor representation by using the analogy with the classical
mechanics, m̂ � r × p̂. This means that we could obtain only the Ising
spin along the direction of propagation from the classical correspondence
of m̂ � r̂ × p̂. It might be appropriate, since the Ising spin is classical, and
it does not represent the quantummechanical superposition states.While
we do not know the exact reason why we could obtain a reasonable
expression of Ŝz, while the calculated angular momentum along the
direction perpendicular to the propagation became zero, M̂x � M̂y � 0.
This does not necessarily mean that the quantum field operators of Ŝx
and Ŝy vanish, because the spin states of photons, polarised perpendicular
to the direction of the propagation, can be described by superposition
states of left and right circularly polarised states. Clearly, the
correspondence from the classical mechanics, using m̂ � r × p̂, was
not enough to derive Ŝx and Ŝy, such that we need a guiding
principle for spin operators.
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Here, we impose the principle of rotational invariance for
photonic polarisation states to describe the propagation in a
waveguide with a cylindrical symmetry or a free space. We know
that there exists two orthogonal polarised states for describing the
photonic state, and we choose left and right circularly polarised
states as basis states, for example. Then, we use SU(2) Lie-Algebra
[66], and spin should work as a generator of rotation [7–10],

D̂ n̂, δϕ( ) � exp −iσ · n̂ δϕ

2
( )( ), (315)

where n̂ describes the unit vector (|̂̂n| � 1) pointing towards the
rotational axis, δϕ is the angle of rotation, for which the anti-clock-
wise rotation (left rotaion), seen from the top of the rotational axis, is
taken to be positive (Figure 1), and σ = (σ1, σ2, σ3) describes the Pauli
matrices

σ1 � 0 1
1 0

( ), σ2 � 0 −i
i 0

( ), σ3 � 1 0
0 −1( ), (316)

which satisfy the commutation relationship [σ i, σj] � 2iϵijkσk and
the anti-commutation relationship σ i, σj{ } � 2δij1, where ϵijk is
Levi-Civita symbol for a completely antisymmetric tensor and δij
is the Kronecker delta, for components i, j, k = 1, 2, 3 or x, y, z, and 1
is the 2 × 2 identity matrix,

1 � 1 0
0 1

( ). (317)

Then, we obtain Ŝx simply by rotating Ŝz with the amount of π/2
along y as,

Ŝx � D̂ ŷ,
π

4
( )ŜzD̂†

ŷ,
π

4
( ) (318)

� ψ†
LRσ1ψLR. (319)

Similarly, we obtain Ŝy by rotating −π/2 along x as,

Ŝy � D̂ x̂,−π
4

( )ŜzD̂†
x̂,−π

4
( ) (320)

� ψ†
LRσ2ψLR. (321)

We also define

Ŝ0 � Zψ†
LR1ψLR, (322)

to account for the total number of coherent photons for each
polarised components. This also accounts for the time averaging
of incoherent lights, which we are not discussing, here.

The general polarisation coherent state in the chiral basis is
described by Bloch state [7–10]

〈θ, ϕ|Bloch〉 �
e−i

ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (323)

where θ is the polar angle and ϕ is the azimuthal angle. By taking the
quantum mechanical average of spin operators Ŝ � (Ŝ0, Ŝx, Ŝy, Ŝz)
over the coherent Bloch state, we obtain the expectation values

S � 〈Ŝ〉 (324)

�
S0
S1
S2
S3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (325)

� ZN
1

sin θ cos ϕ
sin θ sin ϕ
cos θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (326)

which means that the Stokes parameters [11–14, 16–20, 67, 68] to
describe the polarisation state of coherent photons were actually the
quantum-mechanical expectation values of spin for photons.

We can also go back to the original horizontal-vertical (HV)
basis by the unitary transformation, which we obtained from the
classical correspondence using m̂ � r × p̂ as,

Ŝz � Z â†H, â†V( ) 0 −i
i 0

( ) âH
âV

( ) (327)

� Zψ̂†
HVσ2ψ̂HV, (328)

where ψ̂†
HV � (â†H, â†V) and ψ̂HV are the spinor representations of

creation and annihilation operators in HV-basis. For this basis, we
should assign σ = (σ3, σ1, σ2) by the cyclic exchange. Then, we obtain

Ŝx � Zψ̂†
HVσ3ψ̂HV, (329)

and

Ŝy � Zψ̂†
HVσ1ψ̂HV. (330)

We can also re-write

Ŝx � Z n̂H − n̂V( ) (331)
Ŝy � Z â†HâV + â†VâH( ) (332)
Ŝz � Z −iâ†HâV + iâ†VâH( ). (333)

The quantum mechanical expectation values using coherent state of
|αH, αV〉 are immediately calculated as

〈Ŝx〉 � Z N H −N V( ) (334)
� ZN cos2 α − sin2 α( ) (335)
� ZN cos 2α( ) (336)

〈Ŝy〉 � Z αH* αV + αV* αH( ) (337)
� ZN eiδ cos α sin α + e−iδ cos α sin α( ) (338)
� ZN cos δ sin 2α( ) (339)

〈Ŝz〉 � Z −iαH* αV + iαV*αH( ) (340)
� ZN −ieiδ cos α sin α + ie−iδ cos α sin α( ) (341)
� ZN sin δ sin 2α( ). (342)

We can also use the Jones vector to calculate the spin expectation
values by using the coherent state, and we obtain

〈Ŝ〉 � ZN
1

cos 2α( )
sin 2α( )cos δ
sin 2α( )sin δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (343)

which is consistent with the above results obtained in the
chiral representation. The spatial components of Stokes
parameters, S = (S1, S2, S3), are usually shown in Poincaré
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sphere. In the Jones vector description, the polar angle γ = 2α is
measured from S1 axis and the azimuthal angle δ is measured
from S2 in the S2-S3 plane.

We can also confirm the sum rule

S0 �
����������
S21 + S22 + S23

√
(344)

for the expectation values in the coherent spin states.
We also obtained the commutation relationships [16–20, 67, 68]

for spin operators as

Ŝx, Ŝy[ ] � 2iZŜz, (345)
Ŝy, Ŝz[ ] � 2iZŜx, (346)
Ŝz, Ŝx[ ] � 2iZŜy, (347)

which are valid for both chiral and Jones bases. Therefore, we
obtained the spin operators for all components as generators of
rotations for polarisation state of a coherent monochromatic ray of
photons.

Now, we are ready to discuss what was Ŝz obtained from
m̂ � r × p̂. If we focus on the spatial components of the Stokes
operators, Ŝ � (Ŝx, Ŝy, Ŝz), it is equivalent to the helicity operator
[10, 69], which is defined as the projection of the spin operators to
the unit vector along the direction of the propagation, k̂ � k/k, as

ĥz � Ŝ · k̂ (348)
� Ŝz. (349)

The helicity operator naturally sets the direction of the quantisation
axis of spin aligned to the direction of the propagation. Nevertheless,
this does not exclude the other polarisation states nor the spin
components, perpendicular to the direction of the propagation. The
spin expectation values are observables, as clearly established as
polarimetry [11, 12]. Please also note that the expectation values of
spin components are independent on the value of the quantum
orbital angular momentum, m, because we have allowed the
vortexed ray with non-zero topological charge. In that sense, our
results show that the spin angular momentum is independent on the
orbital angular momentum. Therefore, our framework is a natural
extension of a standard QED theory to account for the spatial profile
of the orbital wavefunction of photons, and we found that the spin
angular momentum was not affected by the orbital angular
momentum.

It is amazing to consider why Stokes and Poincaré [2–6] could
establish the descriptions of polarisation states using these
parameters before the discoveries of quantum mechanics and the
quantum field theories. It is also astonishing to be aware that Stokes
and Poincaré [2, 3] properly assigned the correct order parameters
S � 〈Ŝ〉 � (S0, Sx, Sy, Sz) in the 4-dimensional time-space
coordinate, before the discovery of Einstein’s theory of relativity,
the Ginzburg-Landau theory of phase transitions, and the invention
of a laser.

7 Higher-order Poincaré sphere

Now, we will extend our discussions for quantum-mechanical
nature of orbital angular momentum for photons. In order to make

the argument specific, we consider a GRIN fibre under a cylindrical
symmetry, again, but the extension to a more general waveguide is
straightforward, as we discussed in sections for obtaining spin
operators. In the preceding sections, we obtained the orbital
angular momentum along the direction of the propagation as,

L̂z � Zm n̂H + n̂V + 1( ). (350)
There is no doubt that L̂z describes the quantum orbital angular
momentum along the direction of the propagation, because the
expectation value becomes

〈L̂z〉 � Zm N + 1( ). (351)
This means that the orbital angular momentum is not dependent on
the polarisation state, as far as the average number of total photons,
N , is fixed.

Our next challenge is to identify the corresponding transverse
operators, which should satisfy the commutation relationship. In
conjunction with the argument for spin operators, L̂z must also be
the helicity operator of orbital angular momentum,

L̂z � L̂ · k̂, (352)
if we could successfully define the orbital angular momentum
operator, L̂ � (L̂x, L̂y, L̂z).

For further consideration of the orbital angular momentum, we
should consider the orbital wavefunction,

ψm
n r, ϕ, z( ) � 〈r, ϕ, z|n,m〉 (353)

� 1
w0

���������
2
π

n!

n +m( )!

√ �
2

√
r

w0
( )m

Lm
n 2

r

w0
( )2( )e− r2

w2
0 eimϕeikz,

(354)

and its energy dispersion

Em
n k( ) � Zωm

n k( ) (355)
� Δm

n +
�������������
Δm
n( )2 + Zv0k( )2

√
, (356)

where the energy gap,

Δm
n � Zδw0 2n + |m| + 1( ), (357)

is dependent on the quantum numbers n and m. From
this dispersion, we recognise that the frequency depends on n
and |m|, such that the coupling between modes with different
quantum numbers would not be coherently maintained for a
long-distance propagation, because the phase and group velocities
are different. For a monochromatic ray, considered in this work, we
will not discuss the coupling between modes with different energies.
We also neglect the coupling between modes with the different
values of n, such that the coupling within the same n is considered,
which is not explicitly shown below for simplicity. On the other
hand, the modes with m and −m are degenerate, such that the
coherent coupling among these modes are allowed. Moreover, these
modes are orthogonal,

〈−m|m〉 � ∫2π

0

dϕ

2π
e+imϕe+imϕ (358)

� 0, (359)
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form ≠ 0. Therefore, we can consider the coherent coupling between
|m〉 and | − m〉, which is described by SU(2), and phases and
amplitudes of these orthogonal components will determine the
quantum mechanical average of the orbital angular momentum,
similar to the Stokes parameters on the Poincaré sphere.

First, we consider the consequence of the coupling between |m〉
and | − m〉 for the angular momentum along z, which should
become

L̂
m

z � Zm∑
σ

â†mσ âmσ − â†−mσ â−mσ( ) (360)

� Zm∑
σ

â†mσ , â†−mσ( ) 1 0
0 −1( ) âmσ

â−mσ
( )

� Zm∑
σ

ψ̂†
mσσ

m
3 ψ̂mσ ,

(361)

where σm3 � σ3 works for SU(2) space of the |m|-th orbital angular
momentum, ψ̂†

mσ � (â†mσ , â
†
−mσ) and ψ̂mσ are spinor representations

of the photonic field operators for m and −m, and creation and
annihilation operators with the angular momentum m and the spin
σ are defined â†mσ and âmσ , respectively. The relationship between the
single particle wavefunction and the operator, â†mσ , is given by

ψm
n r, ϕ, z( ) � 〈r, ϕ, z|â†mσ |0〉 (362)

� 〈r, ϕ, z|n,m〉, (363)
which is independent on the polarisation state, σ. Therefore, the
single particle wavefunction describes the orbital degree of freedom
including the orbital angular momentum. We realised the zero-
point oscillations have not contributed to L̂

m
z , because the

contributions from the opposite angular momentum cancel out.
Then, we apply the same principle for spin to the orbital angular

momentum, that photonic votexed states are rotationally invariant
for the light propagation in a waveguide with a cylindrical symmetry
or a free space. This means that we can allow arbitrary superposition
states between |m〉 and | − m〉 defined by their relative phases and
amplitudes. This allows us to use the SU(2)-Lie algebra for
describing the orbital angular momentum operators, which are
represented as

L̂
m

0 � Zm∑
σ

ψ̂†
mσ1

mψ̂mσ (364)

L̂
m

x � Zm∑
σ

ψ̂†
mσσ

m
1 ψ̂mσ (365)

L̂
m

y � Zm∑
σ

ψ̂†
mσσ

m
2 ψ̂mσ , (366)

where (1m, σmx , σmy , σmz ) � (1, σ1, σ2, σ3) is applied to the Hilbert
space spanned by |m〉 and | − m〉. This means that we are
focussing on the direct product space of orbital and spin,
described by SU(2) ⊗ SU(2).

Within this Hilbert space, we realise that the helicity operator is
obtained as

L̂
m

z � L̂
m · k̂ (367)

� Zm∑
σ

n̂mσ − n̂−mσ( ) (368)

where the number operator is defined as n̂mσ � â†mσ âmσ and we have
defined spatial components of orbital angular momentum operators
as an operational vector, L̂

m � (L̂mx , L̂my , L̂mz ).

For example, if we take the quantum-mechanical average over
the coherent spin state with the average number of photons N , we
obtain

L̂
m

x � ZmN 1m (369)
L̂
m

x � ZmN σmx (370)
L̂
m

y � ZmN σmy (371)
L̂
m

z � ZmN σmz , (372)
while we still expect non-trivial expectation values for the orbital
angular momentum.

Moreover, if we assume the superposition state of the orbitals of |
m〉 and | − m〉 with the polar angle of Θ and the azimuthal angle of
Φ in the higher-order Poincaré sphere [70–74], the higher-order
Bloch state becomes

〈Θ,Φ|Bloch〉 � e−i
Φ
2 cos Θ/2( )〈m|Bloch〉

+e+iΦ2 sin Θ/2( )〈−m|Bloch〉
� e−iΦ/2 cos Θ/2( )

e+iΦ/2 sin Θ/2( )( ), (373)

which yields the expectation value of the orbital angular
momentum as

L � 〈L̂〉 (374)

�
L0

L1

L2

L3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (375)

� ZmN
1

sinΘ cosΦ
sinΘ sinΦ

cosΘ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (376)

This shows that the vortexed photon with the topological charge of
m has an angular momentum of Zm and the vectorial direction of
the orbital angular momentum is proportional to the spatial vector,
L = (L1, L2, L3), shown in the higher-order Poincaré sphere.

We can also confirm the sum rule

L0 �
����������
L2
1 + L2

2 + L2
3

√
(377)

for the expectation values for the coherent vortexed states, similar to
the spin state.

The commutation relationships for orbital angular momentum
operators are obtained as

L̂
m

x , L̂
m

y[ ] � 2iZmL̂
m

z , (378)
L̂
m

y , L̂
m

z[ ] � 2iZmL̂
m

x , (379)
L̂
m

z , L̂
m

x[ ] � 2iZmL̂
m

y , (380)

where the unusual factor of 2 is coming from the SU(2) nature of the
Hilbert space for coupling among Zm and −Zm, which we are
considering due to the energy coherence of the mode, similar to
the case for spin operators.

More generally, the entire Hilbert space is described by the direct
sum for states with differentm, composed of 2m degrees of freedom
from multiple SU(2) spaces and 1 degree of freedom from U(1) for
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m = 0, as SU(2) ⊕/⊕ SU(2) ⊕ U(1){ } ⊗ SU(2), where the last part
of ⊗ SU(2) describes the direct product to the spin space.

For the free space, in the limits of g→ 1 and v0 → c, the states of
photons with different m would degenerate due to the closing of the
energy gap. In this case, the coherent superposition between states
with differentm will be allowed. The total Hilbert space will become
the direct product between the orbital Hilbert space and the spin
Hilbert space, SU(2m + 1) ⊗ SU(2) with m → ∞, in principle.

8 Conclusion

We have confirmed the historical derivations of the angular
momentum using classical electromagnetic waves of Laguerre-Gauss
modes. While extending the treatment towards the quantum field
theory, we have found that the plane-wave expansions cannot
sustain a vortex with topological charge, which also leads erroneous
results of zero angular momentum and gauge dependent expressions.

The problem could be overcome by taking the small longitudinal
component along the direction of the propagation due to the finite
mode profile of the ray. As a result, we obtained helicity operators for
both spin and orbital angular momentum. By accepting the principle
of the rotational symmetries of photonic states in a waveguide with a
cylindrical symmetry, we obtain the angular momentum operators
as generators of rotations for both spin and orbital angular
momentum. We have also shown that the Stokes parameters in
Poincaré sphere are actually quantum-mechanical averages of spin
operators by coherent states. We could extend this concept to the
orbital angular momentum in higher-order Poincaré sphere.

In conclusion, spin and orbital angular momentum are intrinsic
quantum degrees of freedom for photons. We have shown that the
splitting of spin and orbital angular momentum from the total orbital
angular momentum is achievable for a coherent monochromatic ray of
photons emitted from a laser source. Therefore, spin and orbit can be
treated independently, as far as the waveguide for the propagation is
rotationally symmetric and coupling between them is negligible. We
believe that our results will be valuable for various applications of spin
and orbital angular momentum of photons, because fully quantum-
mechanical degrees of freedom are available by using ubiquitously-
available laser sources.
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