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Orbital Angular Momentum (OAM) of photons are ubiquitously used for numerous
applications. However, there is a fundamental question whether photonic OAM
operators satisfy standard quantummechanical commutation relationship or not;
this also poses a serious concern on the interpretation of an optical vortex as a
fundamental quantum degree of freedom. Here, we examined canonical angular
momentum operators defined in cylindrical coordinates, and applied them to
Laguerre-Gauss (LG) modes in a graded index (GRIN) fibre. We confirmed the
validity of commutation relationship for the LG modes and found that ladder
operators also work properly with the increment or the decrement in units of the
Dirac constant (Z). With those operators, we calculated the quantum-mechanical
expectation value of the magnitude of angular momentum, which includes
contributions from both intrinsic and extrinsic OAM. The obtained results
suggest that OAM characterised by the LG modes exhibits a well-defined
quantum degree of freedom.
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1 Introduction

Quantum commutation relationship between operators is an indispensable
characteristic in connection with measurements of physical observables [1–4]. Angular
momentum operators are especially important as generators of rotation for states with
angular momentum state, |m〉, which is characterised with a quantised integer or a half-
integer, m, along a certain direction (say, z) [1–4]. The states pointing directions such as x-
and y-directions or any other directions in three-dimensional (3D) space are described by
superposition states of orthogonal basis states [1–4], and commutation relationship is used
to rotate the states. The spin, Ŝ, of one-half in units of the Dirac constant, Z = h/(2π), where h
is the Plank constant, for an electron is perfectly described with Pauli’s spin matrices [1–4].
The Orbital Angular Momentum (OAM), L̂, for an electron trapped in spherical potential,
e.g., an electron in an atom, is also characterised with an integer quantum number in units of
Z, where an orbital, such as s, p, d/, described by spherical harmonics, Ym

l , satisfies
L̂
2|l, m〉 � l(l + 1)Z2|l, m〉, with an integer l associated with the magnitude of angular

momentum [1–4]. Furthermore, the total angular momentum, Ĵ � Ŝ + L̂, of their simple
sum is also known as a well-defined quantum angular momentum operator. In general, those
angular momentum operators are described by elegant mathematics—Lie algebra, which is
looked upon as a triumph in the mathematical formulation of quantum mechanics [1–4].

However, this elegant theoretical framework of angular momentum is less trivial in
applying to a photon [5–13], since a photon is usually uni-directionally propagating (say,
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along z). Therefore, the apparent spherical rotational symmetry is
absent for a photon, such that the situation is rather different from
that of an electron confined in a spherically symmetric 3D space. The
propagation direction of a photon sets a natural quantisation axis;
along the propagation direction, the angular momentum operator,
L̂z, is successfully obtained by the classical analogue using the
Poynting vector [5–8, 11–14]. However, angular momentum
operators along the directions perpendicular to the propagation
direction (x-y plane) are not defined uniquely in a gauge-invariant
way [6–8]. It was argued that the spin and OAM operators would
commute [6]. It is now generally believed that the total angular
momentum operator Ĵ for photons is well-defined, while it is
impossible to split into Ŝ and L̂ in a local gauge-invariant way [7,
8, 15], despite a big challenge against this claim [16]. More recently,
it was demonstrated that spin and orbital angular momentum were
successfully separated by considering the SO(3) symmetry [17]. This
is outside the scope of this paper, and we will revisit this issue in a
forthcoming paper.

The nature of structured light is attracting significant attention,
these days [18–23]. The increased bandwidth in fibre optic
communication would be one of the most promising near-term
application [20, 24]. Another attractive application will be for
quantum technologies, where classical entanglement with
orthogonal spin and orbital angular momentum states are
correlated over variable space and time [18–23, 25–30].

Nevertheless, there are several naive questions, which should be
addressed: 1) The spin of a photon could be proper angularmomentum,
which would satisfy commutation relationship, at least in the absence of
OAM. The selection rules of absorption and excitation of a photon in
materials [2–4, 9, 31] are clear evidence to expect that the spin of a
photon is transferred to angular momenta of an electron. If the spin of a
photon is conserved, while accepting well-defined OAM of an electron,
why is it regarded as a classical degree of freedom, which is described by
a commutable operator? It should be treated with an appropriate
quantum commutation relationship, if spin of a photon is a proper
quantum mechanical degree of freedom. Moreover, what about the
relationship between spin of a photon and the polarisation [32, 33]?
Detailed discussion about spin of photons will be provided in a separate
paper [28]. 2) A photon with OAM carries quantised angular
momentum of Zm along the direction of propagation, which was
successfully described by a Laguerre-Gauss (LG) mode in cylindrical
coordinates [5]. Here, some questions arise: Why Z appeared in OAM,
which is usually the evidence of quantisation? If the OAM is a classical
degree of freedom, described by a commutable operator, we normally
expect that Z would not appear, which is clearly not the case. Can we
define standard quantum mechanical canonical angular momentum
operators and apply them to LGmodes? Moreover, what happens if we
define ladder operators for raising or lowering angular momentum in a
standardway, such as L̂± � L̂x ± iL̂y, and apply them to the LGmodes?
Can we show the increment or the decrement of quantised angular
momentum in units of Z? These are non-trivial questions. In this paper,
we will answer to those questions on OAM by directly calculating the
matrix elements.

Here is the outline of this paper: In Section 2, we derive
fundamental principles and equations, which we are relying on,
and explain our model. We are interested in photonics that can be
applied to communication technologies and low-energy
condensed-matter physics. Consequently, we will not deal with

high-energy physics nor those issues related to Lorentz
invariance [7, 8, 15, 16] in this paper. We are considering
monochromatic coherent light from lasers, such that the
incoherent unpolarised light will not be considered, either. The
incoherent unpolarised light corresponds to a beam that the radius
of the Stokes parameters (S1, S2, S3) does not coincide with its
intensity, S0 ≠

����������
S21 + S22 + S23

√
, and thus, it is a typically mixture of

beams with a misalignment, such as radiation from the Sun [9].
Here, we consider a coherent beam with properly aligned along the
direction of the propagation. We have also included detailed
appendices to define associate Laguerre functions and have
shown various mathematical formulas to make this paper self-
contained. Some of the formulas in appendices are newly
derived, particularly for evaluating the ladder operations. We
hope the appendices will help readers, since definitions depend
on literatures for factors and signs.

In Section 3, we explain our methods to evaluate OAM operators.
We clarify the challenges to apply OAM operators to plane-waves,
which are not successful. Nevertheless, this would help to understand
the problem, which we would like to address. There, we show that the
main problem of the plane-waves is a lack of a node at the core of the
waveguide, which is also called as topological charge. We show that this
problem is solved by using LG modes. In Section 4, we show our main
calculation results of various matrix elements for OAM and discuss
their implications. Our results show that the LG modes actually satisfy
the quantum canonical commutation relationship of angular
momentum. We also obtained expectation values of the magnitude
of OAM. Finally, in Section 5, we conclude that OAM is indeed a
genuine quantum-mechanical observable at least in a graded index
(GRIN) fibre [9, 34] satisfying some conditions.

2 Principles and models

2.1 Maxwell’s equations

We start from Maxwell’s equations [9, 10],

∇ × E � −∂B
∂t

(1)

∇ × H � ∂D
∂t

(2)
∇ ·D � 0 (3)
∇ · B � 0, (4)

in a non-magnetic transparent material of the dielectric constant ϵ and
the permittivity μ0 without charges and currents. As usual for describing
electromagnetic fields [9, 10], we use complex oscillation fields in SI
units for electric field E (V/m), displacementD (C/m2), magnetic field
H (A/m), and inductionB (Wb/m2), with materials equationsD � ϵE
and B � μ0H. All physical observables must be expected to be real
without the imaginary part [3] such that experimentally observable
fields should be considered by taking the real part, such as for electric
field E � (E+E*)/2, after the calculation using a complex field of E.
While μ0 is approximately the same as that in vacuum, ϵ is different in a
material from the value of ϵ0 in vacuum [9, 10]. In a non-uniform
material, ϵ = ϵ(r) depends on a position r = (x, y, z). If we assume that
the profile of ϵ is sufficiently uniform (∇ϵ ≃ 0) compared with the size of
wavelength, λ, of a photon, we obtain Helmholtz equation,
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∇2E � μ0ϵ
∂2

∂t2
E, (5)

which is valid in a completely uniform material and in vacuum. In
this paper, we will examine the Helmholtz equation in more detail as
follows, but we will not examine its validity any further. The only
source of deviations would be arising from the case with significant
non-uniformity (∇ϵ ≃ 0). Therefore our analysis will not be valid if ϵ
is significantly changed in nano-metre-scale such as for photonic
crystals [35–38] and other inhomogeneous systems [39, 40].

2.2 Mapping to Schrödinger equation

First, we see the qualitative feature of the Helmholtz equation in
a uniform material by assuming a solution for a linearly polarised
monochromatic plane wave

E x, y, z( ) � E0ψ x, y, z( )ei kz−ωt( )n̂, (6)
where E0 is the magnitude of the electric field, k is the wavenumber
in the material, ω is the angular frequency, the unit vector n̂ is the
direction of the polarisation in the (x, y) plane due to the
transversality of the electromagnetic wave, and ψ(x, y, z) is the
envelope wavefunction of a photon. Inserting E into the Helmholtz
equation, we obtain

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ 2ik

∂

∂z
− k2( )ψ � −μ0ϵω2ψ. (7)

For various practical applications in laser optics, rays from laser
sources are sufficiently collimated, such that the rays can be regarded
as paraxial beams [9]. In such a case, we can use slowly varying
approximation [9] to neglect the second derivative,

∂2ψ

∂z2
≪ k

∂ψ

∂z
, k2ψ, (8)

and obtain [41]

i�λ
∂

∂z
ψ � −

�λ
2

2n
∂2

∂x2
+ ∂2

∂y2
( )ψ, (9)

where we have used the dispersion relationship, ω = vk, with the
velocity v � 1/

���
μ0ϵ

√ � c/n of a photon in a material of a refractive
index of n. The velocity of a photon in vacuum is c � 1/

����
μ0ϵ0

√
and

�λ = λ/(2π) is an angular wavelength. Eq. 9 is exactly the same form
with a standard non-relativistic Schrödinger equation [2, 3, 31,
41, 42].

iZ
∂

∂t
ψ � − Z2

2m
∂2

∂x2
+ ∂2

∂y2
( )ψ (10)

for a particle of mass, m, in a 2D xy-plane at time t. The
correspondence is summarised in Table 1.

This implies the propagation of a photon along a paraxial optical
path follows the same equation, which describes the dynamics of a
massive quantum-mechanical particle [41]. In fact, electron vortices
similar to photonic ones were observed [43], and essentially the
same mathematical and physical techniques were applicable to both
electronic and photonic systems. It is also intuitive to recognise n for
a photon corresponds to m of the particle, such that v is low in a
material with large n similar to the low velocity of a heavy particle.

2.3 Coherent state for photons

On the contrary to the above similarity between electrons and
photons, the important difference is coming from the nature of
statistics between Fermions and Bosons. For photons, we are
considering monochromatic rays from lasers, which are
considered to be in a macroscopic coherent state, exhibiting
Bose-Einstein condensation, enabled by the Bose statistics for
spin integer particles [1, 4, 11, 44]. On the other hand, electrons
are Fermions due to their spin 1/2 characteristics [1, 4], such that a
macroscopic coherence is not expected, except for ordered states,
such as a superconducting state, which is similar to Bose-Einstein
condensation of Cooper pairs [45]. Here, we consider a coherent
state for photons to understand the quantum-mechanical state with
certain polarisation and orbital angular momentum. A coherent
state cannot be described by a fixed number state only due to the
phase coherence. Instead, a coherent state is described by a fixed
phase, while allowing fluctuation in the number of photons from
their average value by a superposition of states with different
number of states [11, 44]. Specifically, a coherent state for σ-
polarisation in a uniform material is described by

|ασ〉 � e−
|ασ |2
2 eασ â

†
σ |0〉

� e−
|ασ |2
2 ∑∞

nσ�0

ασ â
†
σ( )nσ

nσ !
|nσ〉, (11)

where σ = H for horizontally polarised state and σ = V for vertically
polarised state. ασ is a complex number, accounting for the
macroscopic wavefunction [28]. We use horizontally or vertically
polarised states as basis states, for simplicity, but in general we can
take other orthonormal bases such as left/right polarised states and
diagonal/anti-diagonal states [9]. â†σ and âσ are creation and
annihilation operators, satisfying Bose commutation relationship
[4, 11, 44]

âσ , â
†
σ′[ ] � δσ,σ′, (12)

where δ is the Kronecker delta. A coherent state is best characterised
by the fact that it is an eigenstate of an annihilation operator, which
can be directly confirmed by the commutation relationship as

âσ |ασ〉 � e−
|ασ |2
2 ∑∞

nσ�1

αnσ���
nσ !

√ ��
nσ

√ |nσ − 1〉

� ασe
−|ασ |2

2 ∑∞
nσ�0

αnσ���
nσ !

√ |nσ〉
� ασ |ασ〉.

(13)

TABLE 1 Mapping of Helmholtz equation to a non-relativistic Schrödinger
equation.

Helmholtz equation Schrödinger equation

Space: z Time: t

Refractive index: n Mass: m

Angular wavelength: �λ Dirac constant: h
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We can also confirm that |ασ〉 is normalised as 〈ασ|ασ〉 = 1. Then, we
can calculate the average number of photons for both polarised states as

〈â†HâH〉 � |αH|2 � NH � N cos2 α (14)
〈â†VâV〉 � |αV|2 � NV � N sin2 α, (15)

where NH and NV are the average number of photons for
horizontally and vertically polarisation, respectively, N = NH +
NV is the total number of photons, and α is the auxiliary angle
(0≤ α≤ π

2) to describe the polarisation. Alternatively, ασ is
determined by the polarisation state as

αH � ��
N

√
cos α (16)

αV � ��
N

√
sin α eiδ , (17)

where δ ∈ (0, 2π) is the phase of the polarisation. The overall
coherent state is described by the direct product as

|αH, αV〉 � |αH〉|αV〉. (18)
Now, we have prepared the coherent state, and the next step is to

consider the quantum many-body description of the
electromagnetic field, which is achieved by considering the
following complex electric field operator

Ê z, t( ) �
����
2Zω
ϵV

√
eiβ âHx̂ + âVŷ( ), (19)

where V is the volume, x̂ and ŷ are unit vectors along x and y, and β =
kz − ωt + β0 describes the trivial time and space evolution with a global
U (1) phase of β0. If we apply Ê(z, t) to the coherent state |αH, αV〉 as,

Ê z, t( )|αH, αV〉 � E z, t( )|αH, αV〉, (20)
we realise the state is an eigenstate of Ê(z, t) with the complex
eigenvalue of

E z, t( ) � E0e
iβ cos αx̂ + eiδ sin αŷ( ), (21)

where E0 �
����������
2ZωN/(ϵV)√

. This means that the coherent state is a
simultaneous eigenstate for diagonalising Ê(z, t) and âσ .
Alternatively, we can consider the coherent state, Ê(z, t)|αH, αV〉,
describes the photonic state of the system, since the multiplication of
the operator does not change the state. In fact, E(z, t) actually
corresponds to the spinor description of the polarisation state as

Ex

Ey
( ) � E0e

iβ cos α
sin α eiδ

( ), (22)

where the matrix part is nothing but a Jones vector [9] to describe
the polarisation state of a photon. Moreover, the overall factor of the
complex electric field of E0e

iβ corresponds to the orbital part of the
wavefunction for photons in a uniform material, which is the
solution of Helmholtz equation.

More generally, for describing a coherent monochromatic ray
from a laser source propagating in a waveguide or a fibre, the
complex electric field operator must be defined as

Ê r, t( ) � E r, t( ) âHx̂ + âVŷ( ), (23)
where the scalar complex electric field, E(r, t) � E0ψ(r)eiβ, describes
the orbital part. The state, Ê(r, t)|αH, αV〉, describes the entire
photonic state, including polarisation. In this case, E(r, t) becomes

Ex

Ey
( ) � E0Ψ r( )eiβ cos α

sin α eiδ
( ), (24)

where the orbital part is described by Ψ(r) = ψ(r)eiβ. Ψ(r) is
determined by the scalar Helmholtz equation

∇2Ψ r( ) � μ0ϵ r( ) ∂
2

∂t2
Ψ r( ), (25)

and thus Ψ(r) is essentially a single-particle wavefunction,
describing the orbital degree of freedom. The reason why a
macroscopic number of photonic state can be described by a
single wavefunction comes from the Bose-Einstein condensed
character of a superposition state. All photons are occupying a
single state with fixed ω, k, δ, and α, while allowing the fluctuation of
the number of photons around its average value of N using a
coherent state. The polarisation state is also described as a
superposition state of two orthogonal polarisation basis states,
coming from intrinsic internal degrees of freedom described by a
Jones vector.

The coherent state for a laser beam can also be written as

|N, α, δ〉 � |αH, αV〉
� e−

|αH |2
2 eαH â

†
He−

|αV |2
2 eαV â

†
V |0〉

� e−
N
2 e

��
N

√
cos αâ†H+eiδ sin αâ†V( )|0〉. (26)

If we want to calculate the real electric field, instead of the complex
field, we should use the electric field operator defined by

Ê � 1
2

Ê + Ê†( ), (27)

which is an observable, such that we can calculate the expectation
value, 〈Ê〉, quantum-mechanically, using |N, α, δ〉.

2.4 Laguerre-Gauss mode in a uniform
material

Above formalism is based on Maxwell equations, quantum
statistics, and superposition principle. Therefore, it is virtually an
exact consequence that Ψ(r) represents the wavefunction of
coherent photonic states and satisfies the Helmholtz equation at
least in a uniform material. The similarity of quantum-mechanical
nature of Ψ(r) was intuitively suggested in many pioneering works
[5, 6, 8, 14]. Now, it becomes clearer that the intuitive correlation is
not merely a coincidence but firmly supported by a quantum many-
body theory rather than classical Maxwell’s equations alone, since
we cannot derive a wavefunction from classical mechanics. Our
formalism contains a standard vacuum state of Quantum Electro-
Dynamics (QED) theory [4] in the limit of n → 1, where Ψ(r) will
become a simple plane wave, Ψ(r) → eiβ.

However, the plane wave is not the only solution of the
Helmholtz equation, since a solution of differential equation
depends also on the symmetry and boundary condition of the
system [5, 9]. This is especially true in condensed matter physics,
because a material is usually patterned in a specific form with a
certain symmetry. Here, we derive a LG mode solution in a uniform
material in cylindrical coordinates by using the slowly varying
approximation [5, 9]. For completeness, we will describe its full
detail in this subsection.
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Our starting point is the Helmholtz equation in cylindrical
coordinates (r, ϕ)

i
∂

∂z
ψ � − 1

2k
∂2r +

1
r
∂r + 1

r2
∂2ϕ( )ψ, (28)

where r � ������
x2 + y2

√
is the radius and ϕ = tan−1 (y/x) is the azimuthal

angle. We will solve this equation by using a trial wavefunction

ψ r, ϕ, z( ) � r

w z( )( )m

f
r

w z( )( )2( )eiP z( )+ik r2
2q z( )+imϕ+iθ z( ), (29)

where w(z) is the beam-waist size, P(z) is the phase shift for a beam
expansion, q(z) is the complex spherical radius, and θ(z) is another
phase shift for radial and azimuthal expansions. Here, we tentatively
assume m ≥ 0 for simplicity, and yet we relax this condition for all
integer values, including negative values, at the end of the
calculation. While the trial wavefunction is inserted into the
Helmholtz equation, it is useful to note that ∂x (fg) = g (∂xf ) + f
(∂x g) = ψ(∂x f )/f + ψ∂x g/g holds. Then, we obtain

2ki iP′ + 1
q

( ) − k2r2

q2
1 − q′( ) − 2kθ′

+ 4

w2

r

w
( )2f″

f
+ 4ki

q

r

w
( )2f′

f
+ 2 2m + 1( )

w2

f′
f

+ 2

w2

f′
f

−2kimw′
w

− 4ki
r2w′
w3

f′
f

+ 2ki
m

q
� 0. (30)

The Gaussian mode solution is given by assuming

∂P

∂z
� i

q
(31)

∂q

∂z
� 1, (32)

which will give us q(z) = z + q0 = z − iz0 and P(z) � i ln(1 + z/q0)
with the confocal parameter z0 � kw2

0/2 � πnw2
0/λ and the

minimum waist of w0. We then obtain the Gaussian factor

eik
r2

2q z( ) � e−
r2

w2 ei
kr2
2R (33)

and the phase-shift factor

eiP z( ) � w0

w
e−iη z( ), (34)

where the beam waist, w(z), the beam radius, R(z), and the phase,
η(z), are given by

w z( ) � w0

���������
1 + z

z0
( )2

√√
(35)

R z( ) � z + z20
z

(36)

η z( ) � tan−1 z

z0
( ). (37)

The focal point of the Gaussian beam is set at the origin, where the
waist becomes minimum w (0) = w0. In a uniform material or a
vacuum, there is no mechanism to confine the mode, and the beam
waist can be arbitrarily controlled by the use of an optical lens up to
the diffraction limit. Thus, w0, and consequently z0, can be
controlled and determined by a boundary condition. It is also

useful to note that kww′ = 2z/z0 and kw2/q � 2(i + z/z0) hold,
and we obtain

−kw2θ′ − 2m − 4
r

w
( )2f′

f
+ 2 m + 1( )f′

f
+ 2

r

w
( )2f″

f
� 0. (38)

We now focus on the last three terms of this equation, which can
be rewritten by exchanging valuables subsequently using ρ = r/w, a =
ρ2, and b = 2a as

−4ρ2f′
f

+ 2 m + 1( )f′
f

+ 2ρ2
f″
f

� 2
f

−2a d

da
+ m + 1( ) d

da
+ a

d2

da2
[ ]f

� 4
f

b
d2

db2
+ m + 1 − b( ) d

db
[ ]f � −4p, (39)

where we used the differential equation for the associate Laguerre
function, Lmp (Section 4),

b
d2

db2
+ m + 1 − b( ) d

db
[ ]Lm

p b( ) � −pLm
p b( ), (40)

such that we can obtain f(b) � Lmp (b) � Lmp (2( r
w)2). The rest of the

Helmholtz equation is

kw2θ′ � −2 2p +m( ), (41)
which gives the phase-shift

θ � − 2p +m( )tan−1 z/z0( ). (42)
Finally, we obtain

ψ r, ϕ, z( ) � w0

w

�
2

√
r

w
( )m

Lm
p 2

r

w
( )2( )

e−
r2

w2 eik
r2
2R eimϕe−i 2p+m+1( )tan−1 z/z0( ),

(43)

which is not normalised, yet. The normNnorm of the wavefunction is
obtained by

N2
norm � ∫∞

0
dr2πr|ψ r, ϕ, z( )|2

� π

2
w2

0∫∞

0
dbbm Lm

p b( )
∣∣∣∣∣ ∣∣∣∣∣2e−b

� π

2
w2

0

p +m( )!
p!

, (44)

where we used the orthogonality condition (Section 4)

∫∞

0
dbe−bbmLm

l b( )Lm
n b( ) � l +m( )!

l!
δl,n. (45)

Thus, we obtain

Nnorm � w0

�����������
π

2
w2

0

p +m( )!
p!

√
. (46)

Now, we consider the case for a negative value of m. The only
source of the azimuthal dependence in the Helmholtz equation is
coming from

∂2ϕψ � −m
2

r2
ψ, (47)

such that the solution does not depend on the sign of m.
Therefore, the final normalised wavefunction becomes
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ψ r, ϕ, z( ) � ����������
2
π

p!

p + |m|( )!√
1
w

�
2

√
r

w
( )|m|

L|m|
p 2

r

w
( )2( )

e−
r2

w2 eik
r2
2R eimϕe−i 2p+|m|+1( )tan−1 z/z0( ).

(48)

Here, the wavefunction was normalised in the xy-plane as∫∞

0
dr2πr|ψ r, ϕ, z( )|2 � 1, (49)

since our main interests in the following sections are orbital
angular momentum, and this normalisation is easier to treat. On
the other hand, in the consideration of the electric field in the
previous subsection, the normalisation was slightly different,
since we have prioritised to have the proper definition of E0
(V/cm) as the electric field. When the number of photons that we
are considering is one, this corresponds to the zero-point
fluctuation of the electric field, e0 �

�������
2Zω/ϵV

√
, but actually a

laser beam contains a macroscopic number of photons. By
comparing the factors between E0 and ψ(r, ϕ, z), we realise
that we should assume V = w(z)2L, where L is the length of
the system along z. This means that the magnitude of the electric
field changes upon propagation due to the change of the beam
waist. If the beam expands, the electric field decreases, and vice
versa. This is attributed to the change in size of the mode profile
for photons. If we use the normalisation of this subsection, E0
should be simply re-defined as E0 �

��������
2ZωN/ϵL

√
.

It is worth making a remark on the Gouy phase [5, 42, 46–50] of

ϕG � 2p + |m| + 1( )tan−1 z/z0( ), (50)
which is the same as a geometrical phase of Pancharatnam-Berry.
This term appears due to the focusing of the beam, which will change
(Ex, Ey) at z → −∞ to (−Ex,−Ey) at z → +∞ upon crossing the
focal point at z = 0. This change is taken into account within our
orbital wavefunction ψ(r, ϕ, z), where the polarisation state is not
changed. In the absence of OAM, corresponding tom = 0 and p = 0,
this change just accompanies a phase-shift of π. With OAM, the
extra phase factor of eimϕ will contribute to it as an additional phase-
shift of πm, because the focusing corresponds to rotating the phase
from ϕ = 0 to ϕ = π. This global change of the orbital due to focussing
together with the local rotation of the phase by OAM is responsible
for the Gouy phase. In addition, the radial distribution due to the
mode shape described by a Laguerre function will also contribute, in
a similar way. For the radial profile, we have p-nodes along the radial
direction, where the focussing corresponds to change the phase front
located at r =w(z) to r = −w(z). During this change, the nodes along r
will go across the origin, while adding a phase-shift of πp. In
addition, there are nodes at −r, or equivalently (r, ϕ = −π), along
the opposite radial direction. Therefore, the total contribution to the
phase-shift from radial oscillation is 2πp. The actual change of the
phase is not abrupt, and it adiabatically changes in the length scale of
z0. For the propagation in a GRIN fibre, this Gouy phase is,
fortunately, not so important because of the absence of focusing,
as we shall see in the next subsection.

We should be careful for the interpretation of the radial
quantum number, p, which describes the number of nodes along
the radial direction. This value is different from the quantum
number, l, to describe the magnitude of OAM in a spherical
symmetric system by Ym

l , for which the value of m is limited to

be m = l, l − 1, . . ., 0,/ − (l − 1), − l. On the other hand, there is no
such restriction to L|m|

p , where the so-called LG01 mode at p = 0 and
m = 1 can be well-defined, for example. This also means that p
cannot be the proper quantum number to be assigned as the
magnitude of OAM. In fact, the LG mode is not the
simultaneous eigenstate of the magnitude of OAM and the
component of OAM along the quantised axis (z), albeit the
expectation value of the magnitude depending on p. It is
reasonable to expect that there exists the simultaneous
eigenstates, according to the general theory of OAM, but LG
modes do not diagonalise the operator for the magnitude of
OAM. Henceforth, we also use n for the radial quantum number
later, instead of the popular use of p to avoid unnecessary confusion
to the momentum, p = Zk.

2.5 Laguerre-Gauss mode in a graded index
fibre

As another example, for which the Helmholtz equation can be
solved exactly, we also discuss the propagation of a coherent
monochromatic laser beam in the GRIN fibre [9, 34], which has the
refractive index n(r) dependence given by n(r)2 � ϵ(r)/ϵ0
� n20(1 − g2r2), where the graded index parameter, g = 2π/Λ, has
the dimension of inverse length, and g must be small to justify the
derivation of the Helmholtz equation such that the index profile is
sufficiently gentle (Λ≫ λ). We also define the wavenumber in vacuum
as k0 = 2π/λ for a laser beam emitted from the waveguide. The energy of
the photon will not be changed upon the emission, such that ω = ck0 is
valid, while the dispersion relationship, ω = ω(k), in the waveguide is
highly non-trivial, and we will obtain this from the Helmholtz equation.
We also define a constant wavenumber parameter, kn0 � 2π/λn0
� 2πn0

λ � k0n0, since the waveguide is mostly determined by the core
refractive index, n0 = n (0), and this is simply a constant parameter,
where kn0 is different from the true wavenumber, k, responsible for
describing photon momentum of p = Zk.

With those parameters, we can rewrite
μ0ϵω2 � n(r)2/c2(ck0)2 � k20n(r)2 � k2n0(1 − g2r2), and the
Helmholtz equation becomes

∇2 + 2ik
∂

∂z
+ k2n0 − k2( ) + k2n0g

2r2( )ψ � 0. (51)

in the cylindrical coordinate, we can convert this equation to

∂2r +
1
r
∂r + 2ik∂z + ∂z2( + 1

r2
∂2ϕ + k2n0 − k2( ) + k2n0g

2r2)ψ � 0 (52)

One of the conceptual advantages to consider the GRIN
waveguide is that we do not have to worry about the paraxial
slowly varying approximation at all, because the second
derivative along z vanishes. This can be verified by confirming
that the trial wavefunction

ψ r, ϕ, z( ) � r

w0
( )m

f
r

w0
( )2( )eikn0r22q+imϕ, (53)

with the constant waist w0 and the constant complex radius, q,
becomes the solution. Again, we tentatively assume m ≥ 0. By
inserting Eq. 53 into Eq. 52, we obtain
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2kn0i
1
q
+k2n0r2 − 1

q2
+g2( )+ k2n0 −k2( )

+ 4
w2

0

r

w0
( )2

f″
f

+ 4kn0i
q

r

w0
( )2

f′
f
+ 2 2m+1( )

w2

f′
f
+ 2
w2

0

f′
f

+ 2kn0i
m

q
� 0.

(54)

we then obtain a stable Gaussian form by noting

q � −i i
g

(55)

w0 �
����
2

gkn0

√
. (56)

we also use useful identities

2kn0i
1
q
� −4 4

w2
0

(57)

gw2
0 �

2
kn0

, (58)

and the Helmholtz equation then becomes

−2 m + 1( ) + k2n0 − k2( )w2
0

2

+ 2
r

w0
( )2

f″
f

+ 2 m + 1( )f′
f

− 4
r

w0
( )2

f′
f

[ ] � 0. (59)

By noticing that the last three terms in the left-hand side of Eq.
59 can be described by the associated Laguerre function, we obtain

f � Lm
n 2

r

w0
( )2( ), (60)

and the remaining equation becomes

k2 � k2n0 − 2gkn0 2n +m + 1( ). (61)

This provides the solution [9]

k � ω

v0

������������������
1 − 2

δω0

ω
2n +m + 1( )

√
, (62)

where we have defined a phase velocity at the core as v0 = c/n0 and a
frequency shift as δω0 = v0g. By solving Eq. 62 with respect to ω, we
obtain the dispersion relationship

ω �
��������������������
v20k

2 + δω2
0 2n +m + 1( )2

√
+ δω0 2n +m + 1( ). (63)

This dispersion relationship can be intuitively understood as follows:
Since ω ≠ 0 at k = 0, this implies an opening of an energy gap in a
band diagram, meaning that the dispersion is “massive.” The
emergence of an energy gap is reminiscent of the theory of
superconductivity [45] and the Nambu-Anderson-Goldstone-
Higgs theory of a broken symmetry [51–54]. We infer that a
similar symmetry principle is hidden in our system. We will
discuss this in a subsequent paper [55]. Here, we can recognise
the increase of the gap by increasing the radial quantum number, p,
and the quantised OAM number, m, because the discrete photon
energy is related to the confinement degrees of freedom of photons
rather than the free propagation of photons along z.

Finally, we relax the condition for m to allow negative integers
without breaking the formalism. Normalising the wavefunction as
before, we obtain an exact solution

ψ r, ϕ, z( ) � ����������
2
π

n!

n + |m|( )!

√
1
w0

�
2

√
r

w0
( )|m|

L|m|
n 2

r

w0
( )2( )e− r2

w2
0 eimϕ,

(64)

in a GRIN fibre without the slowly varying paraxial approximation.

3 Methods

3.1 Orbital angular momentum for photons

We have confirmed the fundamental principle on how to treat
a coherent laser beam on the basis of Maxwell’s equations and a
quantum many-body theory. In particular, we have understood
why we can describe a macroscopically coherent laser by a single-
particle wavefunction, Ψ(r), due to Bose-Einstein statistics, while
the entire many-body state is described by a coherent state with
both orbital and spin degrees of freedom. Photons are quantum-
mechanical particles with a wave nature; we can also describe
them with Maxwell’s equations together with a quantum many-
body theory. For coherent photons from a laser, it was less
obvious how we can treat the ray quantum-mechanically;
however, a laser produces indistinguishable photons with the
same phase by the stimulated emission process, in which existing
photons in a cavity induce recombinations of electron-hole pairs
to make clones of photons as a results of a chain-reaction. Thus,
we can describe a coherent monochromatic ray by the single
mode of Ψ(r). If the waveguide contains several modes, it is
straightforward to allow the superposition of these
macroscopically coherent beams.

The fundamental equation for describing the orbital character of
Ψ(r) is the Helmholtz equation, instead of the Schrödinger equation,
although we have a significant similarity to a paraxial wave (Table 1).
Unlike in vacuum without a material, where Ψ(r) is a simple plane-
wave, the mode profile ofΨ(r) can be highly non-trivial in materials,
depending on the symmetries of the waveguides and the actual
profile of the refractive index, n(r). In the previous section, we have
obtained LG modes in a GRIN fibre with a uniform material. Here,
the LG modes (LGnm) were clearly labelled by the radial quantum
number n and the quantum optical orbital angular momentum
numberm along the propagation direction. The central theme of this
paper is to examine the validity of this interpretation thatm is indeed
a proper quantum index to describe the optical OAM, and thus the
angular momentum of the orbital is Zm. Under the assumption that
a standard quantum mechanical treatment is also applicable to
photons, described by Ψ(r), we examine the impacts of OAM
operations in the following sections.

3.2 Canonical orbital angular momentum
operators

The most well-established quantum mechanical treatment is
canonical commutation relationship for the position r̂ � (x̂, ŷ, ẑ)
and the momentum p̂ � (p̂x, p̂y, p̂z) operators [1–3]: [x̂, p̂x] � iZ,
[ŷ, p̂y] � iZ, [ẑ, p̂z] � iZ, and commutable relationship among
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other combinations. The OAM operator, l̂, is defined by use of those
r̂ and p̂ as l̂ � r̂ × p̂, such that each component becomes

l̂x � Z

i
y∂z − z∂y( ) (65)

l̂y � Z

i
z∂x − x∂z( ) (66)

l̂z � Z

i
x∂y − y∂x( ), (67)

respectively. In a system with a spherical symmetry, the eigenstate of
these operators are described by Ylm (θ, ϕ) = 〈θ, ϕ|l,m〉, where θ and
ϕ are polar and azimuthal angels, respectively, l and m are quantum
numbers for the magnitude of OAM and the OAM component
along the quantisation axis, respectively [1–3]. Our goal is to obtain
a similar relationship for a system with a cylindrical symmetry,
described by the LG modes. In this section, we will obtain the
operator representation of l̂ in cylindrical coordinates.

The unit vectors of cylindrical coordinates are defined for a
rotation in a 3D Cartesian coordinate along the z-axis,

r̂
Φ̂

( ) � cosϕ sin ϕ
−sin ϕ cos ϕ

( ) x̂
ŷ

( ), (68)

where r̂ is the unit vector along r and Φ̂ is a unit vector along the
azimuthal direction, while z is unchanged. The important point in
this coordinate is ϕ dependence of these unit vectors, i.e., r̂ � r̂(ϕ)
and Φ̂ � Φ̂(ϕ). Therefore, the nabla operator is of the form

∇ � ∂

∂r
,
1
r

∂

ϕ
,
∂

∂z
( ) � ∂

∂r
r̂ + 1

r

∂

∂ϕ
Φ̂ + ∂

∂z
ẑ, (69)

and the Laplacian becomes

∇2 � ∂2

∂r2
+ ∂2

∂z2
+ 1
r2

∂2

∂ϕ2 +
1
r

∂

∂r
, (70)

where we have used

∂

∂ϕ
r̂ ϕ( ) � Φ̂. (71)

This ϕ dependence of r̂(ϕ) and Φ̂(ϕ)makes it difficult to define and
treat the OAM operators for l̂r and l̂ϕ. Instead, we will keep using l̂x
and l̂y, defined above, and we will express them by (r, ϕ, z). In order
to use (r, ϕ) instead of (x, y), we obtain

∂x � cos ϕ∂r − 1
r
sin ϕ∂ϕ, (72)

∂y � sinϕ∂r + 1
r
cos ϕ∂ϕ. (73)

By inserting these into l̂, we obtain

l̂x � Z

i
−z sin ϕ∂r − z

r
cos ϕ∂ϕ + r sin ϕ∂z( ), (74)

l̂y � Z

i
z cos ϕ∂r − z

r
sin ϕ∂ϕ − r cos ϕ∂z( ), (75)

l̂z � Z

i
∂ϕ. (76)

We can readily confirm the original commutation relationship

l̂x, l̂y[ ] � iZl̂z (77)
and its cyclic exchanges

l̂y, l̂z[ ] � iZl̂x, (78)
l̂z, l̂x[ ] � iZl̂y (79)

are all valid in the cylindrical coordinate (r, ϕ, z).
We also obtain raising and lowering operators, respectively, as

l̂+ � l̂x + îly (80)
� Zeiϕ z∂r + z

r
i∂ϕ − r∂z( ), (81)

l̂− � l̂x − îly (82)
� Ze−iϕ −z∂r + z

r
i∂ϕ + r∂z( ). (83)

3.3 Application to plane waves and problems

So far, it was straightforward to develop a theory for photonic
OAM. In this subsection, we will apply our canonical OAM
operator to plane waves to clarify that problems arise.
Specifically, we consider a plane wave with OAM in the
simplest form:

Ψ r, ϕ, z( ) � eikzeimϕ, (84)
which is not the solution of the Helmholtz equation at m ≠ 0.
Nevertheless, it is useful to clarify the potential issue and to explain
what we should address in the following sections.

First, multiplying it by l̂, we obtain

l̂+ r, ϕ, z( )Ψ � Zeiϕ −z
r
m − ikr( )Ψ, (85)

l̂− r, ϕ, z( )Ψ � Ze−iϕ −z
r
m + ikr( )Ψ, (86)

l̂z r, ϕ, z( )Ψ � ZmΨ, (87)
which means that Ψ is indeed an eigenstate for lz and that l̂± is
effectively working to raise and lower the eigenvalue of the
angular momentum component along the direction of the
propagation. If we multiply them by Ψ* from the left, we obtain

Ψ* l̂+ r, ϕ, z( ) Ψ � Zeiϕ −z
r
m − ikr( ), (88)

Ψ* l̂− r, ϕ, z( ) Ψ � Ze−iϕ −z
r
m + ikr( ), (89)

Ψ*l̂z r, ϕ, z( )Ψ � Zm. (90)
by averaging these over space, we obtain

〈l̂x r, ϕ, z( )〉 � 0, (91)
〈l̂y r, ϕ, z( )〉 � 0, (92)
〈l̂z r, ϕ, z( )〉 � Zm. (93)

therefore, the expectation values are reasonably well-defined.
However, if we calculate the complex conjugate of l̂−Ψ simply by

taking its complex conjugate as

Ψ* l̂− r, ϕ, z( )( )† � Ze−i m−1( )ϕ −z
r
m − ikr( )e−ikz, (94)

and multiply this by l̂−Ψ from the right to calculate the norm, we
obtain
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Ψ* l̂− r, ϕ, z( )( )† l̂− r, ϕ, z( )Ψ � Z2
z2

r2
m2 + k2r2( ), (95)

which is a positive real value. On the other hand, the direct
calculation of Ψ*l̂+ l̂−Ψ becomes

Ψ*̂l+ r, ϕ, z( )l̂− r, ϕ, z( )Ψ � Z2
z2

r2
m2 + 2ikz + kr( )2 +m( ). (96)

This implies that

l̂− r, ϕ, z( )( )† ≠ l̂+ r, ϕ, z( ), (97)

which means that the l± is not observable for the Hilbert space
spanned by the plane waves with OAM. We can also confirm the
conjugate relationships

Ψ* l̂+ r, ϕ, z( )( )† l̂+ r, ϕ, z( )Ψ � Z2
z2

r2
m2 + k2r2( ) (98)

Ψ*l̂− r, ϕ, z( )l̂+ r, ϕ, z( )Ψ � Z2
z2

r2
m2 + 2ikz + kr( )2 −m( ), (99)

which also imply

l̂+ r, ϕ, z( )( )† ≠ l̂− r, ϕ, z( ). (100)
We also see

Ψ* l̂− r, ϕ, z( )( )† l̂− r, ϕ, z( )Ψ � Ψ* l̂+ r, ϕ, z( )( )† l̂+ r, ϕ, z( )Ψ, (101)

showing a classical result without providing commutation
relationship. This is a remarkable difference from the standard
quantum mechanics [3], which shows the canonical commutation
relationship upon the calculation of the norm for l̂±Ym

l (θ, ϕ).
On the other hand, the direct calculation shows

Ψ*l̂+ r, ϕ, z( )l̂− r, ϕ, z( )Ψ − Ψ*l̂− r, ϕ, z( )l̂+ r, ϕ, z( )Ψ
� 2ZΨ*l̂z r, ϕ, z( )Ψ, (102)

such that the commutation relationship

l̂+ r, ϕ, z( ), l̂− r, ϕ, z( )[ ] � 2Zl̂z r, ϕ, z( ) (103)

is indeed satisfied on the average.
These apparent contradiction and inconsistency are coming

from the assumption of the ill-defined plane-wave wavefunction,
Ψ(r, ϕ, z) = eikzeimϕ. This is confirmed by calculating themagnitude of
the OAM along the radial direction as

Ψ* l̂
2

x + l̂
2

y( )Ψ � Z2 m2z
2

r2
+ k2r2 + 2ikz( ), (104)

which gives an imaginary part, thus showing that the magnitude is
not observable. If we take the average over z ∈ (0, L), we obtain

∫L

0

dz

L
Ψ* l̂

2

x + l̂
2

y( )Ψ � Z2 m2 L
2

3r2
+ k2r2 + ikL( ), (105)

which is still a complex value. Further average over r ∈ (0, R), where
R is the radius of a cylindrical waveguide, gives

∫R

0

2πrdr

πR2 ∫L

0

dz

L
Ψ* l̂

2

x + l̂
2

y( )Ψ
� Z2

2m2L2

3R2 lnR − ln 0( ) + 1
2
k2R2 + ikL( ), (106)

which diverges at the origin. We can also integrate over z ∈ (L/2, L/
2), and obtain

∫R

0

2πrdr

πR2 ∫L/2

−L/2
dz

L
Ψ* l̂

2

x + l̂
2

y( )Ψ � Z2
m2L2

6R2 lnR − ln 0( ) + 1
2
k2R2( ),
(107)

which becomes a real value, but still diverges at the origin.
The position-dependent average of the radial magnitude

suggests that it contains extrinsic contributions of OAM. For
both coordinates, we could not avoid the ultraviolet divergences
at the origin, which are coming from the finite amplitude of the
wavefunction at the origin. Without having a node at the origin, the
magnitude of the OAM required to sustain the phase described by
eimϕ is impossible to exist.

However, for the LG modes, which always have nodes at the
centre (r = 0) of the waveguide for ∀m ≠ 0, there is a chance that the
OAM can be well-defined quantum-mechanically. Our main
purpose of this work is to confirm the validity of this concept of
OAM, using canonical orbital angular momentum operators defined
in this section, for the LG modes in a cylindrical GRIN fibre. In the
next section, we will confirm positive results, including the
observable nature of the magnitude and the commutation
relationship for OAM.

4 Mathematical formulas

4.1 Laguerre function

We describe full details of Laguerre and associate Laguerre
functions and related formulas in this section [56–58]. First, we
consider a differential equation

a
d2

da2
+ 1 − a( ) d

da
+ n[ ]f � 0, (108)

which will be solved by assuming a Taylor series expansion

f � ∑∞
j�0

aja
j, (109)

which gives

∑∞
j�0

aj j + 1( )2aj+1 + n − j( )aj[ ] � 0. (110)

This provides a recurrence formula

aj+1 � − n − j( )2
j + 1( )2aj (111)

for j = 0, 1, 2, . . ., n, and aj = 0 for j > n. Therefore, we obtain

aj � −1( )j n!

j!( )2 n − j( )!a0. (112)

The differential equation cannot be determined uniquely without
providing a boundary condition. The same is true for a special
function, such that there exists a room to choose the arbitrary value
of a0, while it is a standard rule to choose a0 > 0 in mathematics. Our
definition in this paper is a0 = 1, but other people are also using
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a0 = n! as an alternative definition. In this way, we obtain the
solution, f = fn(a), as

Ln a( ) � ∑n
j�0

−1( )j
j!

n!

j!( ) n − j( )!aj (113)

� ∑n
j�0

−1( )j
j!

nCj a
j, (114)

where nCj is a binomial coefficient.

4.1.1 Rising operator
By directly calculating the derivative, we obtain

a
d

da
− a[ ]Ln a( ) � ∑n+1

j�0
−1( )j
j!

n + 1( )!
j! n + 1 − j( )! jaj, (115)

which can be combined with this identity

n + 1( )Ln a( ) � ∑n+1
j�0

−1( )j
j!

n + 1( )!
j! n + 1 − j( )! n + 1 − j( )aj, (116)

to obtain

a
d

da
− a + n + 1( )[ ]Ln a( ) � n + 1( )Ln+1 a( ). (117)

This formula works as a raising operator to increase the radial
index, n.

4.1.2 Lowering operator
Quite similarly, we can also obtain the lowering operator.

Calculating a derivative,

a
d

da
Ln a( ) � ∑n

j�0

−1( )j
j!

n!

j! n − j( )! jaj (118)

� ∑n−1
j�0

−1( )j
j!

n − 1( )!
j! n − 1 − j( )! n

n − j( ) jaj+ n
−1( )n
n!

an (119)

together with the identity

−nLn a( ) � ∑n−1
j�0

−1( )j
j!

n!

j! n − 1 − j( )! −n( ) n

n − j
aj − −1( )n

n!
an,

(120)
we obtain the lowering operation formula,

a
d

da
− n[ ]Ln a( ) � −nLn−1 a( ). (121)

By summing up raising and lowering operators, we also obtain
the recurrence relationship

2n + 1 − a( )Ln a( ) � n + 1( )Ln+1 a( ) + nLn−1 a( ), (122)
which correlate 3 successive Laguerre functions.

4.1.3 Generating function
The generating function is defined as a function, whose

coefficients of series expansion are Laguerre functions. Therefore,
it is defined as

G t, τ( ) � ∑∞
i�0

Li t( )τ i. (123)

By inserting the series expansion form of Li(t), we obtain

G t, τ( ) � ∑∞
i�0

∑i
j�0

−1( )j
j!

i!

j! i − j( )!tjτi (124)

� ∑∞
i�0

∑∞
k�0

−1( )j
j!

k + j( )!
j!k!

tjτk+j, (125)

where we used k = i − j in the 2nd line. Together with the binomial
theorem

1
1 − τ

( )j+1
� ∑∞

k�0

k + j( )!
k!j!

τk, (126)

we finally obtain the analytic formula for the generating function as

G t, τ( ) � 1
1 − τ

∑∞
j�0

1
j!

− tτ

1 − τ
( )j

(127)

� 1
1 − τ

exp − tτ

1 − τ
( ). (128)

Using this generating function, we can obtain the orthogonality
relationship, which is used to confirm the orthogonality against
modes with different radial numbers and calculate the normalisation
factors. In order to derive it, we evaluate the following sum of the
integrals, ∑∞

i�0
∑∞
i′�0

τ iτ′i′∫∞

0
dte−tLi t( )Li′ t( )

� 1
1 − τ( ) 1 − τ′( )∫∞

0
dt exp −t 1 − ττ′

1 − τ( ) 1 − τ′( )( )
� 1

1 − ττ′ exp −t 1 − ττ′
1 − τ( ) 1 − τ′( )( )[ ]∞

0

� 1
1 − ττ′

� ∑∞
i

ττ′( )i
� ∑∞

i

∑∞
i′
δi,i′τ

iτ′i′. (129)

Comparing the first term and the last one, we obtain∫∞

0
dt e−tLi t( )Li′ t( ) � δi,i′. (130)

4.1.4 Rodrigues formula
Rodrigues formula is an operator form of the representation of

Laguerre function, which will be suitable for quantummechanics. In
order to obtain it, we just need to evaluate the following function

et
dn

dtn
tne−t( ) � ∑n

j�0

n!

j! n − j!( ) n!

n − j!( ) −1( )n−jtn−j

� n!∑n
j�0

−1( )j
j!

n!

j! n − j!( )tj
� n!Ln t( ), (131)

and thus, we obtain

Ln t( ) � 1
n!
et
dn

dtn
tne−t( ). (132)
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4.2 Associated Laguerre function

The associated Laguerre function is defined as

Lm
n t( ) � −1( )m dm

dtm
Ln+m t( ). (133)

The factor of (−1)m guarantees the first Taylor series expansion
coefficient of a0 to be positive a0 > 0 as a mathematical convention.

The differential equation for the associated Laguerre function is
derived from that of the Laguerre function

t
d2

dt2
+ 1 − t( ) d

dt
+ n[ ]Ln t( ) � 0, (134)

by the mth derivative of this equation,

dm

dtm
t
d2

dt2
( ) + dm

dtm
1 − t( ) d

dt
( ) + n

dm

dtm
[ ]Ln t( ) � 0, (135)

which becomes,

t
d2

dt2
+ m + 1 − t( ) d

dt
+ n −m( )[ ] −1( )m dm

dtm
Ln t( ) � 0. (136)

By exchanging n → n + m, we obtain

t
d2

dt2
+ m + 1 − t( ) d

dt
+ n[ ]Lm

n t( ) � 0. (137)

We also obtain the Taylor series expansion of Lmn (t) by direct
calculation. Inserting the series expression for Ln(t) into the
definition, we obtain

Lm
n t( ) � −1( )m dm

dtm
∑n+m
j�0

−1( )j
j!

n +m( )!
j! n +m − j( )!tj (138)

� −1( )m ∑n+m
j�m

−1( )j
j!

n +m( )!
j! n +m − j( )! j!

j −m( )!tj−m
� ∑n

j�0

−1( )j
j!

n +m( )!
j +m( )! n − j( )!tj, (139)

which shows that the term at j = 0 is indeed positive.

4.2.1 Generating function
The generating function for the associated Laguerre function is

defined by

G t, τ( ) � ∑∞
i�0

Lm
i t( )τi (140)

� ∑∞
i�0

∑n
j�0

−1( )j
j!

n +m( )!
j +m( )! n − j( )!tjτi

� ∑∞
j�0

∑∞
k�0

−1( )j
j!

j + k +m( )!
j +m( )!k! tjτj+k. (141)

Using the binomial theorem,

1
1 − τ

( )j+m+1
� ∑∞

k�0

k + j +m( )!
k! j +m( )! xk, (142)

we obtain

G t, τ( ) � ∑∞
j�0

−1( )j
j!

1
1 − τ

( )j+m+1
tτ( )j (143)

� 1
1 − τ

( )m+1 ∑∞
j�0

−1( )j
j!

− tτ

1 − τ
( )j

(144)

� 1
1 − τ

( )m+1
exp − tτ

1 − τ
( ). (145)

4.2.2 Recurrence relationship
We obtain the recurrence relationship for the associated

Laguerre function. By calculating the derivative of the generating
function by τ, we obtain

∑∞
n�0

Lm
n t( )nτn−1

� m + 1( ) e−
tτ
1−τ

1 − τ( )m+2 −
e−

tτ
1−τ

1 − τ( )m+1
t 1 − τ( ) + tτ

1 − τ( )2
� m + 1

1 − τ
∑∞
n�0

Lm
n t( )τn − t

1 − τ( )2 ∑∞n�0 Lm
n t( )τn.

(146)

Then, we obtain

∑∞
n�0

Lm
n t( )nτn−1 1 − τ( )2

� m + 1
1 − τ

∑∞
n�0

Lm
n t( )τn 1 − τ( ) − t∑∞

n�0
Lm
n t( )τn,

(147)

from which we obtain the recurrence relationship

n + 1( )Lm
n+1 t( ) − 2n +m + 1 − t( )Lm

n t( ) + n +m( )Lm
n−1 t( ) � 0 (148)

for n ≥ 1.

4.2.3 Ladder operators for radial quantum number
For obtaining ladder operators, we calculate the derivative of the

generating function by t as

∑∞
n�0

d

dt
Lm
n t( )τn � − τ

1 − τ
∑∞
n�0

Lm
n t( )τn, (149)

which becomes

∑∞
n�0

d

dt
Lm
n t( )τn −∑∞

n�0

d

dt
Lm
n t( )τn+1 � −∑∞

n�0
Lm
n t( )τn+1. (150)

Then, we obtain the identity for lowering n

d

dt
Lm
n t( ) � d

dt
− 1[ ]Lm

n−1 t( ). (151)

However, this expression is not perfect, since the derivative
operator remained in the right-hand side, which will be
removed later.

Next, we construct the raising operator by calculating the
derivative of the recurrence equation by t as

n+1( ) d

dt
−1[ ]Lm

n t( )+Lm
n t( )− 2n+m+1− t( ) d

dt
Lm
n t( )

+ n+m( ) d
dt
Lm
n−1 t( ) � 0,

(152)

which becomes
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n +m − t( ) d
dt

+ n[ ]Lm
n t( ) � n +m( ) d

dt
[ ]Lm

n−1 t( ). (153)

by using the lowering identity, this becomes

n +m − t( ) d

dt
− 1[ ]Lm

n−1 t( ) + nLm
n t( ) � n +m( ) d

dt
Lm
n−1 t( ), (154)

which gives the raising operator

t
d

dt
− t + n +m + 1[ ]Lm

n t( ) � n + 1( )Lm
n+1 t( ) (155)

for n ≥ 1. This expression is preferable, since the derivative operation
appeared only in the left-side. Together with this raising operator
and the recurrence formula, we can eliminate Lmn+1(t) to obtain the
lowering operator

t
d

dt
− n[ ]Lm

n t( ) � − n +m( )Lm
n−1 t( ), (156)

while keeping m unchanged. These ladder operations for the
associated Laguerre functions are consistent with those for
Laguerre function in the limit of m = 0.

4.2.4 Ladder operators for orbital angular
momentum

The above formulas for raising and lowering the radial quantum
numbers are known in literatures [56–58], while we could not find
appropriate formulas for raising and lowering quantum number m
for orbital angular momentum without affecting the radial quantum
number of n. Here, we derived these by direct calculations. First, we
obtain the raising operator by calculating

Lm+1
n t( ) � −1( )m+1 d

m+1

dtm+1Ln+m+1 t( ) (157)

� − d

dt
−1( )m dm

dtm
L n+1( )+m t( ) (158)

� − d

dt
Lm
n+1 t( ) (159)

� − d

dt
− 1[ ]Lm

n t( ). (160)

Thus, the raising operator is described as

d

dt
− 1[ ]Lm

n t( ) � −Lm+1
n t( ). (161)

It was less straightforward to obtain the lowering operator. As
for preparations, we recognised several useful recurrence formulas

Lm+1
n t( ) � − d

dt
− 1[ ]Lm

n t( ), (162)

Lm+1
n t( ) � − d

dt
Lm
n+1 t( ), (163)

Lm+1
n t( ) � Lm+1

n−1 t( ) + Lm
n t( ), (164)

Lm
n t( ) � Lm

n−1 t( ) + Lm−1
n t( ). (165)

By using the recurrence formula, we obtain

Lm
n−1 t( ) � 2n +m + 1 − t

n +m
Lm
n t( ) − n + 1

n +m
Lm
n+1 t( ). (166)

Next, we use the raising operator for n to obtain

Lm
n+1 t( ) � 1

n + 1
t
d

dt
− t + n +m + 1[ ]Lm

n t( ). (167)

By combining these equations, we obtain

Lm
n−1 t( ) � 1

n +m
n − t

d

dt
[ ]Lm

n t( ). (168)

Inserting this into Eq. (B33), we obtain the lowering operator

t
d

dt
+m[ ]Lm

n t( ) � n +m( )Lm−1
n t( ). (169)

4.2.5 Orthogonality relationship
The orthogonality relationship is obtained in a similar way by

using the generating function

∑∞
n�0

Lm
n t( )τn � e− tτ

1−τ

1 − τ( )m+1, (170)

and calculating the sum

∑∞
n�0

∑∞
n′�0

τnτ′n′∫∞

0
dte−ttmLm

n t( )Lm
n′ t( )

� 1

1 − τ( )m+1 1 − τ′( )m+1∫∞

0
dttme

−t 1−ττ′
1−τ( ) 1−τ′( )

� m!

1 − ττ′( )m+1

� ∑∞
n�0

∑∞
n′�0

n +m( )!
n!

δn,n′τ
nτ′n′,

(171)

where we used the binomial theorem

1
1 − ττ′( )m+1

� ∑∞
n�0

n +m( )!
n!m!

τnτ′n. (172)

Thus, we obtain the orthogonality relationship

∫∞

0
dte−ttmLm

n t( )Lm
n′ t( ) � n +m( )!

n!
δn,n′. (173)

4.2.6 Rodrigues formula
The Rodrigues formula for the associated Laguerre function is

obtained by the direct calculations. First, we calculate

Lm
n t( ) � −1( )m dm

dtm
Ln+m t( )

� −1( )m dm

dtm
1

n +m( )!e
t d

n+m

dtn+m
tn+me−t( )[ ]

� dm

dtm
∑n+m
k�0

1
n +m − k( )!t

n+m−k⎡⎣ −1( )n−k n +m( )!
n +m − k( )!k!]

� ∑n
k�0

1
n +m − k( )!

n +m − k( )!
n − k( )! tn−k

−1( )n−k n +m( )!
n +m − k( )!k!

� ∑n
k�0

n +m( )!
n +m − k( )!k! n − k( )! −t( )n−k

(174)
On the other hand, we calculate
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1
n!
t−met

dn

dtn
tn+me−t( ) � ∑n

k�0

n +m( )!
k! n − k( )! n +m − k( )! −t( )n−k (175)

By comparison, we obtain the Rodrigues formula

Lm
n t( ) � 1

n!
t−met

dn

dtn
tn+me−t( ). (176)

4.2.7 Integration formulas
We also obtained integration formulas for the associated

Laguerre functions:

∫∞

0
dae−aamLm

n a( )Lm
n′ a( ) � n +m( )!

n!
δn,n′, (177)

∫∞

0
dae−aamLm

n a( )Lm−1
n a( ) � n +m( )!

n!
, (178)

∫∞

0
dae−aam+1Lm+1

n a( )Lm
n a( ) � n +m + 1( )!

n!
, (179)

∫∞

0
dae−aam+1Lm

n a( )Lm
n a( ) � n +m( )!

n!
2n +m + 1( ). (180)

These are useful to calculate the matrix elements. We also obtained
an identity,

m∫∞
0
dae−aam−1Lm

n a( )Lm
n a( ) + n +m( )!

n!
� 2∫∞

0
dae−aamLm

n a( )Lm+1
n a( ).

(181)

5 Results and discussions

We consider applications of the canonical OAM operators to the
LG modes in a GRIN fibre. We use the normalised LG mode [5,
6, 8–10]

Ψm
n r, ϕ, z( ) � 〈r, ϕ, z|Ψm

n 〉 (182)

� 1
w0

����������
2
π

n!

n + |m|( )!

√ �
2

√
r

w0
( )|m|

L|m|
n 2

r

w0
( )2( )e− r2

w2
0 eimϕeikz, (183)

where n is the radial quantum number and m is the quantum
number of OAM along the direction of propagation. In principle, we
should also consider a superposition state made of the LG modes
with different quantum numbers [59–61], but we will not consider
this in this paper for simplicity; yet our formalism works well. We
define a normalised cross-sectional area as a � 2r2/w2

0 to simplify
calculations. We use various formulas for associate Laguerre
functions, which are summarised in the previous section.

5.1 Expectation value

First, we have checked the expectation values of l̂ by use of the
LG modes. This was straightforward by noting
l̂±ψm

n ∝ψm±1
n ∝ ei(m±1)ϕ and

∫2π

0

dϕ

2π
e±iϕ � 0, (184)

and thus we obtain

〈l̂x〉 � 0, (185)

〈l̂y〉 � 0, (186)
〈l̂z〉 � Zm. (187)

Therefore, the quantum-mechanical expectation value of OAM is
well-defined for all directions. This is a single particle expectation
value, and the total angular momentum, L̂z, along z for a coherent
state is obtained by multiplying N as 〈L̂z〉 � ZmN.

5.2 Ladder operations

We will evaluate ladder operations to the LG modes. The
calculations are straightforward but tedious, so that we will split
them into several sections.

5.2.1 Rising operation for m > 0
We assume m > 0 and calculate

l̂+Ψm
n � Zei m+1( )ϕeikz

1
w0

���������
2
π

n!

n +m( )!

√ �
2

√
r

w0
( )m

e
− r2

w2
0

· z
m

r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( ) − z
m

r
− ikr( )Lm

n a( ),
(188)

Where the last factor becomes

z
m

r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( ) − z
m

r
− ikr( )Lm

n a( )

� 2
�
2

√ z

w0

�
2

√
r

w0
( ) d

da
Lm
n a( ) − 1

2
Lm
n a( ) − ikw2

0

4z
Lm
n a( )( )

� −2 �
2

√ z

w0

�
2

√
r

w0
( ) Lm+1

n a( ) − 1
2

1 − ikw2
0

2z
( )Lm

n a( )( ),
(189)

Where we have used

d

da
− 1[ ]Lm

n a( ) � −Lm+1
n a( ). (190)

Therefore, we obtain

l̂+Ψm
n r, ϕ, z( ) � −2 �

2
√ z

w0
Z

��������
n +m + 1

√
Ψm+1

n r, ϕ, z( )
· 1 − 1

2
1 − ikw2

0

2z
( ) Lm

n a( )
Lm+1
n a( )( ). (191)

The most significant part of this expression is that we confirm
l̂+Ψm

n ∝Ψm+1
n , which means that the raising operator properly works

to increase the quantum number m of OAM. Unfortunately, the
coefficient is not a constant, which depends on both z and r through
a. Therefore, the shape of the orbital would be significantly distorted
upon the application of l̂+. Nevertheless, the main role of l̂+ to
increase m was successfully confirmed for m > 0.

5.2.2 Rising operation for m = 0
We then continue to calculate for m = 0 as

l̂+Ψ0
n � Zeiϕeikz

1
w0

���������
2
π

n!

n + 1( )!

√ �����
n + 1

√
e
− r2

w2
0

· z 4
r

w2
0

d

da
− 2

r

w2
0

( ) − ikr( )L0
n a( ),

(192)

Frontiers in Physics frontiersin.org13

Saito 10.3389/fphy.2023.1225346

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1225346


where the last factor becomes

z + 4
r

w2
0

d

da
− 2

r

w2
0

( ) − ikr( )L0
n a( )

� 2
�
2

√ z

w0

�
2

√
r

w0
( ) d

da
L0
n a( ) − 1

2
L0
n a( ) − ikw2

0

4z
L0
n a( )( )

� − 2
�
2

√ z

w0

�
2

√
r

w0
( ) L1

n a( ) − 1
2

1 − ikw2
0

2z
( )L0

n a( )( ),
(193)

and thus we obtain

l̂+Ψ0
n r, ϕ, z( ) � −2 �

2
√ z

w0
Z

�����
n + 1

√
Ψ1

n r, ϕ, z( )
· 1 − 1

2
1 − ikw2

0

2z
( )L0

n a( )
L1
n a( )( ), (194)

which is exactly the same expression with that of m > 0.

5.2.3 Rising operation for m < 0
We obtain a similar result by directly calculating

l̂+Ψm
n � Zei m+1( )ϕeikz

1
w0

���������
2
π

n!

n −m( )!

√ �
2

√
r

w0
( )−m

e
− r2

w2
0

· z −m
r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( ) − z
m

r
− ikr( )L−m

n a( ),
(195)

where the last factor becomes

z −m
r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( ) − z
m

r
− ikr( )L−m

n a( )

� �
2

√ z

w0

w0�
2

√
r

( )
2

d

da
−m( )L−m

n a( ) − aL−m
n a( ) − ikw2

0

z
L−m
n a( )( )

� 2
�
2

√ z

w0
n −m( ) w0�

2
√

r
( )L−m−1

n a( )

1 − a

2
1

n −m
1 + ikw2

0

2z
( ) L|m|

n a( )
L|m+1|
n a( )( ),

(196)

where we have used

a
d

da
−m[ ]L−m

n a( ) � n −m( )L−m−1
n a( ). (197)

Thus, we obtain

l̂+Ψm
n r, ϕ, z( ) � 2

�
2

√ z

w0
Z

�����
n −m

√
Ψm+1

n r, ϕ, z( )
· 1 − a

2
1

n −m
1 + ikw2

0

2z
( ) L|m|

n a( )
L|m+1|
n a( )( ). (198)

therefore, the raising operator is successfully working to increment
m, independently of the value and the sign of m.

5.2.4 Lowering operation for m < 0
Next, we apply the lowering operator to the case for m < 0, and

obtain

l̂−Ψm
n � Zei m−1( )ϕeikz

1
w0

������������
2
π

n!

n −m + 1( )!

√ ��������
n −m + 1

√ �
2

√
r

w0
( )−m

· e−
r2

w2
0 −z −m

r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( )( −zm
r
+ ikr)L−m

n a( ),
(199)

Where the last factor becomes

−z −m
r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( ) − z
m

r
+ ikr( )L−m

n a( )

� − 4z
r

w2
0

d

da
− 1
2

( )L−m
n a( ) − aLm

n a( ) − ikw2
0

4z
L−m
n a( )( )

� 2
�
2

√
z

�
2

√
r

w2
0

L−m+1
n a( ) 1 − 1

2
1 − ikw2

0

2z
( ) L|m|

n a( )
L|m−1|
n a( )( ),

(200)

Which yields

l̂−Ψm
n r, ϕ, z( ) � 2

�
2

√ z

w0
Z

��������
n −m + 1

√
Ψm−1

n r, ϕ, z( )
· 1 − 1

2
1 − ikw2

0

2z
( ) L|m|

n a( )
L|m−1|
n a( )( ). (201)

this also shows that the lowering operator can actually lower m
to m − 1.

5.2.5 Lowering operation for m = 0
Similarly, we obtain for m = 0:

l̂−Ψ0
n � Ze−iϕeikz

1
w0

���������
2
π

n!

n + 1( )!

√ �����
n + 1

√
e
− r2

w2
0

· −z 4
r

w2
0

d

da
− 2

r

w2
0

( ) + ikr( )L0
n a( ),

(202)

Where the last factor becomes

−z 4
r

w2
0

d

da
− 2

r

w2
0

( ) − ikr( )L0
n a( )

� −2 �
2

√ �
2

√
r

w0
L1
n a( ) − 1

2
1 − ikw2

0

2z
( )L0

n a( )( ), (203)

Which yields

l̂−Ψ0
n r, ϕ, z( ) � −2 �

2
√ z

w0
Z

�����
n + 1

√
Ψ−1

n r, ϕ, z( )
1 − 1

2
1 − ikw2

0

2z
( )L0

n a( )
L1
n a( )( ). (204)

This is the same formula as that we obtained for m < 0.

5.2.6 Lowering operation for m > 0
Finally, we apply the lowering operator to the case form > 0, and

obtain

l̂−Ψm
n � Zei m−1( )ϕeikz

1
w0

������������
2
π

n!

n +m − 1( )!

√
1�����

n +m
√

�
2

√
r

w0
( )m

· e−
r2

w2
0 −z m

r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( ) − z
m

r
+ ikr( )Lm

n a( ),
(205)

where the last factor becomes

−z m

r
+ 4

r

w2
0

d

da
− 2

r2

w2
0

( ) − z
m

r
+ ikr( )Lm

n a( )

� −z
r

2 a
d

da
+m( ) − a − ikr2

z
( )Lm

n a( )

� −2 z
r

n +m( )Lm−1
n a( ) − r2

w2
0

1 + ikw2
0

2z
( )Lm

n a( )( ),
(206)

which yields
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l̂−Ψm
n r, ϕ, z( ) �−2 �

2
√ z

w0
Z

�����
n +m

√
Ψm−1

n r, ϕ, z( )
· 1 − 1

n +m

a

2
1 + ikw2

0

2z
( ) Lm

n a( )
Lm−1
n a( )( ). (207)

therefore, the lowering operator is also successfully
working to decrementm, independently of the value and the sign ofm.

Thus, in this subsection, by obtaining the wavefunction after the
ladder operations, we confirmed that the ladder operations work to
change the quantised OAM along the propagation direction in units of Z.

5.3 Norm after ladder operations

In this subsection, we obtain the norm of the wavefunctions after
ladder operations. We calculate it for separately depending on the sign
of m, as in the previous subsection. We have extensively used the
integration formulas, which are summarised in Section 4.

5.3.1 Norm of l̂+Ψm
n for m ≥ 0

First, we rewire the wavefunction by using the formula,
Lmn (a) � Lm+1

n (a) − Lm+1
n−1 (a), as

l̂+Ψm
n � −2 �

2
√ z

w0
Z

��������
n +m + 1

√
ψm+1
n

1
2

1 + ikw2
0

2z
( ) + 1

2
1 − ikw2

0

2z
( ) Lm+1

n a( )
Lm+1
n a( )( ). (208)

Then, we obtain∫∞
0
2πrdr|̂l+ψm

n r,ϕ,z( )|2
�2 z

w0
( )2

Z2 n+m+1( ) 1− ikw
2
0

2z
( ) 1+ ikw

2
0

2z
( )

· 1
w2

0

∫∞

0
2πrdr

2
π

n!

n+m+1( )!a
m+1e−aLm+1

n a( )Lm+1
n a( )(

+∫∞
0
2πrdr

2
π

n!

n+m+1( )!a
m+1e−aLm+1

n−1 a( )Lm+1
n−1 a( ))

�Z2 2
z

w0
( )2

+1
2
kw0( )2( ) 2n+m+1( ).

(209)

5.3.2 Norm of l̂+Ψm
n for m < 0

Similarly, we obtain∫∞
0
2πrdr|̂l+ψm

n r, ϕ, z( )|2
� 8

z

w0
( )2

Z2 n −m( ) n!

n −m − 1( )!
1
w2

0

w2
0

· ∫∞
0
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n a( )L−m−1
n a( )(

− 1
n −m

∫∞

0
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n a( )L−m
n a( )

+ 1

4 n −m( )2 1 + k2w4
0

4z2
( )∫∞

0
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n a( )L−m
n a( ))

� 8
z

w0
( )2

Z2 n −m( ) n!

n −m − 1( )!
· n −m − 1( )!

n!
− n −m( )!

n!

1
n −m

(
+ 1

4 n −m( )2 1 + k2w4
0

4z2
( ) n −m( )!

n!
2n −m + 1( ))

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n −m + 1( ).

(210)

5.3.3 Norm of l̂−Ψm
n for m ≤ 0

Next, we calculate the norm of l̂−Ψm
n for m ≤ 0 as∫∞

0
2πrdr|̂l−ψm

n r, ϕ, z( )|2
� 8

z

w0
( )2

Z2 n −m + 1( ) n!

n −m + 1( )!
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1 + k2w4
0

4z2
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z
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2
kw0( )2( ) 2n −m + 1( ).

(211)

5.3.4 Norm of l̂−Ψm
n for m > 0

Finally, we calculate l̂−Ψm
n for m > 0 as∫∞

0
2πrdr|̂l−ψm

n r, ϕ, z( )|2
� 8

z

w0
( )2
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n +m − 1( )!
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0
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(212)

5.3.5 Summary of the norm of l̂±Ψm
n

The above direct calculations show that we obtain the same
norm for l̂±Ψm

n :

∫∞

0
2πrdr|̂l±ψm

n r, ϕ, z( )|2 � Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n + |m| + 1( ),

(213)
which is independent of the sign ofm. The first term is coming from
the origin dependent extrinsic OAM, while the second term
corresponds to the contribution from the intrinsic OAM, which
is always positive and finite. The obtained form of (Zkw0)2/2 �
(pw0)2/2 with the momentum p = Zk is intuitively understandable,
since pw0 has the dimension of the angular momentum. As for the
case of the plane wave, however, the fact that we obtain 〈|̂l+ψm

n |2〉 �
〈|̂l−ψm

n |2〉 means that we cannot confirm the validity of the
commutation relationship, and thus, we cannot obtain the
expectation value of the magnitude of OAM by simple norm
calculations. This might be linked to the fact that the
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applications of ladder operations contain position dependent
factors, such that the orbitals are significantly distorted. In fact,
the LG modes are not eigenstates for the magnitude of the OAM,
and they are superposition states with different magnitude of the
OAM. Nevertheless, we can calculate the expectation value of the
magnitude of the OAM, as we shall see below. For that purpose, it is
inevitable to calculate 〈l̂+ l̂−〉 and 〈l̂− l̂+〉, directly, using the LG
modes, which are shown in the next subsection.

5.4 Validity of commutation relationship for
LG modes

First, we must calculate the wavefunction of l̂+ l̂−Ψm
n and l̂− l̂+Ψm

n

and calculate the expectation value. This is straightforward but
tedious. Again, we will split calculations for positive and negative
values of m.

5.4.1 Ladder operators
Before calculating the matrix elements, we will describe

operators, l̂+ l̂− and l̂− l̂+, by using cylindrical coordinates (r, ϕ, z), as

l̂+ l̂−
Z2

� Zeiϕ z∂r + z

r
i∂ϕ − r∂z( )

Ze−iϕ −z∂r + z

r
i∂ϕ + r∂z( )

� z −z∂2r −
z2

r2
i∂ϕ + z

r
i∂r∂ϕ + ∂z + r∂r∂z( )

+z
r
i −z∂ϕ∂r + z

r
i∂ϕ2 + r∂ϕ∂z( )

+z
r
i −i( ) −z∂r + z

r
i∂ϕ + r∂z( )

−r −∂r − z∂z∂r + i

r
∂ϕ + z

r
i∂z∂ϕ + r∂2z( )

� −z2∂2r −
z2

r
∂r − z2

r2
∂2ϕ

+ 1 + 2z∂z( )r∂r − r2∂2z + 2z∂z − i∂ϕ,

(214)

and

l̂− l̂+
Z2

� Ze−iϕ −z∂r + z

r
i∂ϕ + r∂z( )Z

eiϕ z∂r + z

r
i∂ϕ − r∂z( )

� − z z∂2r −
z2

r2
i∂ϕ + z

r
i∂r∂ϕ − ∂z − r∂r∂z( )

+ z

r
i z∂ϕ∂r + z

r
i∂ϕ2 − r∂ϕ∂z( )

− z

r
z∂r + z

r
i∂ϕ − r∂z( )

+ r ∂r + z∂z∂r + i

r
∂ϕ + z

r
i∂z∂ϕ − r∂2z( )

� − z2∂2r −
z2

r
∂r − z2

r2
∂2ϕ

+ 1 + 2z∂z( )r∂r − r2∂2z + 2z∂z + i∂ϕ.

(215)

Thus, we also confirmed the commutation relationship for l̂±,

l̂+, l̂−[ ] � 2Zl̂z. (216)

therefore, if we apply these operators to an LG mode, we must
confirm that this identity is always valid. This is useful to check the
validity of the calculation.

5.4.2 l̂+ l̂− operation for m ≥ 0
First, we evaluate various terms as follows:

∂rΨm
n � 1

w0

���������
2
π

n!

n +m( )!

√ �
2

√
r

w0
( )m

e
− r2

w2
0 eimϕeikz

·1
r

m + 2a
d

da
− a[ ]Lm

n a( ),
(217)

r∂rΨm
n � 1

w0

���������
2
π

n!

n +m( )!

√
am/2e−a/2eimϕeikz

· 2 n +m( )Lm−1
n −mLm

n − aLm
n[ ], (218)

1
r
∂rΨm

n � 1
w0

���������
2
π

n!

n +m( )!

√
am/2e−a/2eimϕeikz

· 2
w2

0

−2Lm+1
n + Lm

n + m

a
Lm
n[ ], (219)

−z2∂2rΨm
n � −2 z2

w2
0

1
w0

���������
2
π

n!

n +m( )!

√
am/2e−a/2eimϕeikz

· m m − 1( ) 1
a
Lm
n a( ) + 2Lm+1

n a( )[
− 4n + 2m + 3( )Lm

n a( ) + aLm
n a( )],

(220)

−z
2

r2
∂2ϕΨm

n � 2
z2

w2
0

m21
a
Ψm

n , (221)

−r2∂2zΨm
n � 1

2
k2w2

0aΨm
n , (222)

r∂r + 2z∂zr∂r( )Ψm
n � 1 + 2ikz( )r∂rΨm

n , (223)
2z∂zΨm

n � 2ikzΨm
n , (224)

and finally

−i∂ϕΨm
n � mΨm

n . (225)

By summing up some of these terms, we obtain

−z2∂2r −
z2

r
∂r − z2

r2
∂2ϕ[ ]Ψm

n

� 2
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1
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���������
2
π

n!

n +m( )!

√
am/2e−a/2eimϕeikz
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n a( ) + aLm
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+ 2Lm+1
n a( ) − Lm

n a( ) − m

a
Lm
n a( ) + m2

a
Lm
n a( )]

� 2
z2

w2
0

1
w0

���������
2
π

n!

n +m( )!

√
am/2e−a/2eimϕeikz

· 2 2n +m + 1( )Lm
n a( ) − aLm

n a( )[ ].

(226)

By using the integration formulas (Section 4), we finally obtain

∫∞
0
2πrdr Ψm

n r, ϕ, z( )( )*l̂+ r, ϕ, z( )l̂− r, ϕ, z( )Ψm
n r, ϕ, z( )

� Z22
z

w0
( )2

2 2n +m + 1( ) − 2n +m + 1( )( )
+ Z2 1 + 2ikz( ) 2 n +m( ) −m − 2n +m + 1( )( )
+ Z21

2
kw0( )2 2n +m + 1( ) + Z22ikz + Z2m

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n +m + 1( ) + Z2 m − 1( ).

(227)
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5.4.3 l̂− l̂+ operation for m ≥ 0
The only source of the difference between l̂+ l̂− and l̂− l̂+

operations is coming from the sign of i∂ϕ. Therefore, it is
straightforward to obtain∫∞

0
2πrdr Ψm

n r, ϕ, z( )( )*l̂− r, ϕ, z( )l̂+ r, ϕ, z( )Ψm
n r, ϕ, z( )

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n +m + 1( ) − Z2 m + 1( ) (228)

This result, together with the previous result for 〈l̂− l̂+〉,
confirms that the commutation relationship over average
indeed satisfies

〈 l̂+, l̂−[ ]〉 � 2Z〈l̂z〉, (229)

where 〈l̂z〉 � Zm for m ≥ 0.

5.4.4 l̂+ l̂− operation for m ≤ 0
We can proceed form ≤ 0 in a similar way. First, we evaluate the

factors:

r∂rΨm
n � 1

w0

���������
2
π

n!

n −m( )!

√
a−m/2e−a/2eimϕeikz

· 2 n −m( )L−m−1
n a( ) +mL−m

n a( ) − aL−m
n a( )[ ], (230)

1
r
∂rΨm

n � 1
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���������
2
π

n!

n −m( )!

√
a−m/2e−a/2eimϕeikz

· 2
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0

−2L−m+1
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n a( ) − m

a
L−m
n a( )[ ], (231)

−z2∂2rΨm
n � −2 z2

w2
0

1
w0

���������
2
π

n!

n −m( )!

√
a−m/2e−a/2eimϕeikz

· m m + 1( ) 1
a
L−m
n a( ) + 2L−m+1

n a( )[
− 4n − 2m + 3( )L−m

n a( ) + aL−m
n a( )],

(232)

and the other factors are the same ones for m ≥ 0. Then, we obtain
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∂r − z2
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∂2ϕ[ ]Ψm
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� 2
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���������
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π

n!
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−m m + 1( ) 1

a
L−m
n a( ) − aL−m

n

2L−m+1
n a( ) − L−m

n a( )
+m
a
L−m
n a( ) + m2

a
L−m
n a( )]

� 2
z2

w2
0

1
w0

���������
2
π

n!

n −m( )!

√
a−m/2e−a/2eimϕeikz

· 2 2n +m + 1( )L−m
n a( ) − aL−m

n a( )[ ].

(233)

Therefore, we finally obtain∫∞
0
2πrdr Ψm

n r, ϕ, z( )( )*l̂+ r, ϕ, z( )l̂− r, ϕ, z( )Ψm
n r, ϕ, z( )

� Z22
z

w0
( )2

2 2n −m + 1( ) − 2n −m + 1( )( )
+ Z2 1 + 2ikz( ) 2 n −m( ) +m − 2n −m + 1( )( )
+ Z21

2
kw0( )2 2n −m + 1( ) + Z22ikz + Z2m

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n −m + 1( ) + Z2 m − 1( ).

(234)

5.4.5 l̂− l̂+ operation for m ≤ 0
Again, the only source of the change between l̂+ l̂− and l̂− l̂+

operations is coming from the sign of i∂ϕ, such that we obtain∫∞
0
2πrdr Ψm

n r, ϕ, z( )( )*l̂− r, ϕ, z( )l̂+ r, ϕ, z( )Ψm
n r, ϕ, z( )

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n −m + 1( ) − Z2 m + 1( ). (235)

Therefore, the commutation relationship over average

〈 l̂+, l̂−[ ]〉 � 2Z〈l̂z〉, (236)

is also valid for m ≤ 0.

5.5 Summary of expectation values of l̂+ l̂−
and l̂− l̂+ operations

The above results are summarised as follows,

∫∞
0
2πrdr Ψm

n r, ϕ, z( )( )*l̂+ r, ϕ, z( )l̂− r, ϕ, z( )Ψm
n r, ϕ, z( )

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n + |m| + 1( ) + Z2 m − 1( ),

(237)
and ∫∞

0
2πrdr Ψm

n r, ϕ, z( )( )*l̂− r, ϕ, z( )l̂+ r, ϕ, z( )Ψm
n r, ϕ, z( )

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n + |m| + 1( ) − Z2 m + 1( ),

(238)
which are independent of the sign of m. The commutation
relationship over average

〈 l̂+, l̂−[ ]〉 � 2Z〈l̂z〉, (239)

is also valid for ∀m.

5.6 Magnitude of OAM

The above calculations have confirmed the quantum
commutation relationship, [l̂+, l̂−] � 2Zl̂z, as an expectation value
after the application to the LG mode. This is trivial, because the
commutation relationship is valid at the operator level, such that it
should be valid even after the application to the LG mode.
Nevertheless, obtained matrix elements of expectation values of
l̂+ l̂− and l̂− l̂+ are useful to evaluate the magnitude of the OAM,
because the inner product of the vectorial OAM operator is
described as

l̂ · l̂ � l̂
2

x + l̂
2

y + l̂
2

z (240)
� l̂+ l̂− + l̂

2

z − Zl̂z (241)
� l̂− l̂+ + l̂

2

z + Zl̂z. (242)
We can confirm that the expectation value is independent of
whether we are using 〈l̂+ l̂−〉 or 〈l̂− l̂+〉, and we obtain
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∫∞
0
2πrdrΨm

n r, ϕ, z( )*̂l · l̂Ψm
n r, ϕ, z( )

� ∫∞
0
2πrdrΨm

n r, ϕ, z( )*l̂+ l̂−Ψm
n r, ϕ, z( ) + Z2m m − 1( )

� ∫∞
0
2πrdrΨm

n r, ϕ, z( )*l̂− l̂+Ψm
n r, ϕ, z( ) + Z2m m + 1( )

� Z2 2
z

w0
( )2

+ 1
2
kw0( )2( ) 2n + |m| + 1( )

+ Z2 m + 1( ) m − 1( ).

(243)

The expectation value does not depend on the sign ofm, which is
reasonable in a system with a helical symmetry. The first term
contains the origin (z = 0) dependent contribution of the extrinsic
OAM. If we take the average over z ∈ (0, L), we obtain

〈̂l · l̂〉 � Z2 2
3

L

w0
( )2

+ 1
2
kw0( )2( ) 2n + |m| + 1( ) + Z2 m + 1( )

× m − 1( ),
(244)

while if we average over z ∈ (−L/2, L/2), it becomes

〈̂l · l̂〉 � Z2 1
6

L

w0
( )2

+ 1
2
kw0( )2( ) 2n + |m| + 1( ) + Z2 m + 1( )

× m − 1( ).
(245)

The other contributions are from intrinsic OAM. If m ≫ 1, the
most of the energy of photons is used to sustain the rotating motion
as OAM, such that Zδω0m≫ Zv0k in the dispersion relationship. In
this limit, the intrinsic OAM is dominated by the contribution from
Zm, which is consistent with the above formula.

In the opposite limit of the absence of the definite quantised
OAM (n =m = 0), the beam becomes a simple Gaussian wave. Even
in this case,

〈l̂2intrinsic〉 → 1
2
Zkw0( )2 − Z2 ~

1
2

pw0( )2 − Z2 (246)

holds, which is an intuitive formula, because the same amount of the
angular momentum magnitude with spin of Z is subtracted. The
finite intrinsic OAM is coming from quantum mechanical
fluctuations due to l̂x, l̂y, and quantum commutation
relationship. Even if the quantum number of the mode is zero
(m = 0), the quantum fluctuation is inevitable, such that the finite
value of the magnitude remains as the zero-point fluctuation. If the
spin component of Z is negligible, the OAM fluctuation is of the
order of ����

〈l̂2〉
√

~ p
w0�
2

√ � pw1, (247)

where w1 � w0/
�
2

√
is the effective waist for the OAM. The total

amount of fluctuation as a coherent laser beam is obtained by
multiplying the number of photons, N.

5.7 Transfer matrix element

Finally, we calculate the matrix elements of l̂± among the LG
modes with different m. In order to allow these to couple, the phase
matching condition must be satisfied, such that the energy, Zω, and

the momentum, p = Zk, would be conserved through the operation
of l̂±. Otherwise, the transfer matrix elements would vanish due to
the destructive interference upon propagation. Strictly speaking,
such a condition would not be satisfied during the propagation in the
GRIN fibre, since the value of k would be different among modes
with different m due to the dispersion relationship. Therefore, the
coupling is expected only in the limit of g → 0 as a Gaussian beam,
where the dispersion is almost negligible and the material is
considered to be almost uniform. We also assume that the beam
is sufficiently collimated, such that the impact of the Gouy phase is
negligible. We then obtain

∫∞
0
dr2πr ψm+1

n r, ϕ, z( )( )*l̂+ψm
n r, ϕ, z( )

� −Z z

w0

�����������
2 n +m + 1( )√

1 + i
kw2

0

2z
( ) (248)

for m ≥ 0,

∫∞
0
dr2πr ψm+1

n r, ϕ, z( )( )*l̂+ψm
n r, ϕ, z( )

� Z
z

w0

���������
2 n + |m|( )√

1 − i
kw2

0

2z
( ) (249)

for m < 0, ∫∞
0
dr2πr ψm−1

n r, ϕ, z( )( )*l̂−ψm
n r, ϕ, z( )

� −Z z

w0

��������
2 n +m( )√

1 − i
kw2

0

2z
( ) (250)

for m > 0, and∫∞
0
dr2πr ψm−1

n r, ϕ, z( )( )*l̂−ψm
n r, ϕ, z( )

� Z
z

w0

������������
2 n + |m| + 1( )√

1 + i
kw2

0

2z
( ) (251)

for m ≤ 0, respectively, If we take the average over z ∈ (0, T),
assuming a thickness of T for the optical plate to increment or
decrement the value of m, these results show

〈m + 1|̂l+ m| 〉( )* � −Z �����������
2 n +m + 1( )√ 1

2
T

w0
− ikw0( )

� 〈m|̂l− m + 1| 〉
(252)

for m ≥ 0, and

〈m + 1|̂l+ m| 〉( )* � −Z ���������
2 n + |m|( )√ 1

2
T

w0
+ ikw0( )

� 〈m|̂l− m + 1| 〉
(253)

for m < 0. For both cases, the relationship,

〈m + 1|̂l+ m| 〉( )* � 〈m|̂l− m + 1| 〉, (254)

is always valid for ∀m. This implies

l̂
†

+ � l̂− (255)
l̂
†

− � l̂+ (256)
for a system described at least in a Hilbert space spanned by the LG
modes. These results also suggest that OAM can be a proper
quantum mechanical observable, satisfying the commutation
relationship, at least for a system described by the LG modes.

Frontiers in Physics frontiersin.org18

Saito 10.3389/fphy.2023.1225346

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1225346


Experimentally, there are many successful demonstrations to
control m [62–68]. In this paper, we have provided a theoretical
justification for enabling the increment or decrement of the
quantum number, m, thus confirming quantum-mechanical
description of the OAM.

5.8 Application to numerical calculations

As an application of this theory, we have numerically
calculated how the mode profile is changed up by the ladder
operations (Figures 1, 2). Here, we assume a Gaussian profile in
the input beam with λ = 1.55 μm in a GRIN fibre with the
maximum refractive index at the core of n0 = 1.50. The
refractive index of the core is assumed to be changed dn =
0.05 over the core radius of 25 μm, which corresponds to the
GRIN parameter of g = 0.05/25 = 0.002 [(μm)−1]. We assume a
horizontally polarised mode, such that the complex electric field
has only x-component, as (Ex, Ey) � (Ψ0

0(r,ϕ, z), 0). The
wavefunction Ψ0

0(r, ϕ, z) is normalised to be unity, upon the
integration of |Ψ0

0(r, ϕ, z)| over space. Figures 1A, B show the
amplitude, |Ex|, and the phase, ϕx, of the calculated input mode,

respectively. There is no phase singularity in ϕx, and the
amplitude is peaked at the centre of the core in the
waveguide, as we expected. Then, we have applied the ladder
operation to the input, as l̂+Ψ0

0(r, ϕ, z), and we have calculated the
amplitude and the phase of the output, as shown in Figures 1C, D.
We confirmed the typical doughnut shape in the intensity [5, 6,
8–13], while the left vortex is confirmed for increasing the phase
along the counter-clock-wise direction. The phase singularity is
found at the centre of the mode, where the intensity
vanishes. This confirms that our ladder operator worked
properly to increment the quantum number of the orbital
angular momentum.

We have also confirmed the generation of the left vortex along
the direction of the propagation (Figure 2). We have assumed the
same parameters to calculate the mode profiles in Figure 1, and
considered that a vortex lens [5, 23, 59–61, 67, 69–73], is located at
the middle of the direction of the propagation (z) at z = 0. In the
calculation, we have used the ladder operation of
l̂+(r, ϕ, z � 0)Ψ0

0(r, ϕ, z), which allows to consider the intrinsic
orbital angular momentum with the vanishing effective thickness of
the vortex T → 0. It is clear that the vortex lens successfully
converted the Gaussian beam to the left vortex. It is

FIGURE 1
Ladder operation to increment the quantumnumber for orbital angular momentum. (A) The amplitude and (B) the phase of the input Gaussian beam
without a vortex. (C) The amplitude and (D) the phase of the output beam after the ladder operation. The left vortex with topological charge of 1 is
generated upon the ladder operation.
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straightforward to apply our analytic formulas for more complex
mode with n ≠ 0 and m ≠ 0.

5.9 Extension and limitation of the theory

So far, we have discussed applications of canonical orbital
angular momentum operators to Laguerre-Gauss modes in a
GRIN fibre, and found that the ladder operations worked
properly and analytically calculated the magnitude of orbital
angular momentum. This is consistent with a view that orbital
angular momentum is a well-defined quantum observable at least in
a GRIN fibre. However, if orbital angular momentum is properly
defined only in a GRIN fibre, applications of the present theory is
limited. Finally, we discuss about the possibility to extend our theory
for a more generic case and its limitation.

The reason why we have considered the GRIN fibre is that we
can treat Laguerre-Gauss modes virtually exactly within the paraxial
approximation. This allows us to consider the collimated beam,
propagating in the GRIN fibre, for the fixed waist, w0. The GRIN
fibre contains a limit of a uniform material at g = 0, where the most
important application would be the vacuum at n0 = 1. In the
vacuum, however, we need to consider the propagation
dependent waist of w = w(z) and the spherical beam radius of
R = R(z), as we derived in Section 2.4. It is also important to consider
the Gouy phase [5, 42, 46–50]. These factors will add extra
contributions during the applications of ladder operations.

Fortunately, these extra contributions are negligible for the
sufficiently large confocal parameter, known also as Rayleigh
length, z0 � πn0w2

0/λ≫ λ. For example, if w0 = 1.0 mm, z0 =
2.0 m for λ = 1.55 μm, such that the present work is mostly
varied for experiments on an optical bench. In other words, the
present theory is applicable for a sufficiently collimated beam. For
the diffraction limited narrow beam, z0 ~ w0 ~ λ, a direction
application of our theory must be carefully considered. For the
intermediate case, z0 > w0 > λ, we can apply our theory near the
beam waist, z ≪ z0. Usually, the thickness (T) of the region, where
the refractive index is changed locally in a vortex lens, is of the order
of λ, and such that we can consider T ≪ z0, which justifies the
increment and the decrement of orbital angular momentum upon
applications of a vortex lens.

Finally, we would like to discuss briefly whether our theory can
applicable to other families of structured light, such as Hermite-Gauss
[5, 9], Bessel-Gauss [74–77], and Ince-Gauss [78] beams. The Bessel-
Gauss beams are quite attractive, since it prevents the diffraction and the
mode shape is preserved upon propagation [74–77]. It is beyond the
scope of the present work to develop ladder operations to these special
functions in general rather than Laguerre-Gauss beams, but Laguerre-
Gauss beams have correlation to Hermite-Gauss beams [5, 9]. The
Hemite-Gauss beams in the GRIN fibre is given by

Φl,m r, ϕ, z( ) � 〈r, ϕ, z|Φl,m〉 (257)

� 1
w0

����������
1

π2l+m−1l!m!

√
Hl

�
2

√
x

w0
( )Hm

�
2

√
y

w0
( ) e

− r2

w2
0 eikz, (258)

FIGURE 2
Generation of the left vortex upon passing through a vortex lens. The vortex lens was assumed to be located at z=0, where the Gaussian input beam
is converted to be the left vortex. (A) Real part and (B) imaginary part of the complex electric field, Ex , whose intensity was normalised to be unity upon
integrating over space. The isosurfaces of R(Ex) � 0.025 and −0.025 are shown in red and blue, while the isosurfaces of I(Ex) � 0.025 and −0.025 are
shown in magenta and cyan. The phase is rotating along the counter-clock-wise direction, seen from the direction of the propagation (z > 0) in the
detector side.
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where Hl(x) and Hm(y) are Hermite functions with l and m as
quantum numbers for horizontal and vertical directions [5, 9].
We are interested in the relationship to the Laguerre-Gauss

beams Ψm
n (r, ϕ, z) � 〈r,ϕ, z|Ψm

n 〉 for the fundamental mode,
and we use the formulas of Lm0 (x) � 1, H0(x) = 1, and H1(x) =
2x. As we have seen above, the Laguerre-Gauss beam of |Ψm

0 〉

FIGURE 3
The higher-order Poincaré sphere for orbital angular momentum. By considering the superposition states between the left and the right vortexed
states with topological charge ofm and −m, respectively, the expectation values of the orbital angular momentum, (ℓ1, ℓ2, ℓ3), are calculated, which form
the sphere with the radius of Zm per a photon. (A) The amplitude and (B) the phase of superposition states are calculated at typical points. The ladder
operators of l̂± change the radius of the sphere by incrementing and decrementing m.

Frontiers in Physics frontiersin.org21

Saito 10.3389/fphy.2023.1225346

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1225346


gives the expectation value of 〈L̂z〉 � ZmN. This means that the
direction of the propagation becomes the quantisation axis for
orbital angular momentum and the left vortexed state,
|L, m〉 � |Ψm

0 〉, carries orbital angular momentum of Zm per a
photon. We also realise that the mode is degenerate with another
mode with the opposite chirality of the right vortexed state,
|R, m〉 � |Ψ−m

0 〉. Then, according to the quantum mechanical
superposition principle, we consider the superposition state
between orthogonal states of |L, m〉 and ‖R, m〉, which forms
the SU(2) states [2, 3, 9, 9, 10, 13, 36–38, 79–88]. The generators
of rotation in su(2) Lie algebra [89–92] become

ℓ̂1 � Zmσ1 (259)
ℓ̂2 � Zmσ2 (260)
ℓ̂3 � Zmσ3, (261)

where σi (i = 1, 2, 3) is the Pauli matrix, and the commutation
relationship becomes

ℓ̂i, ℓ̂j[ ] � 2Zm∑3
k�1

ϵijkℓ̂k, (262)

where ϵijk is a complete anti-symmetric tensor. Then, we obtain the
horizontal state in orbital angular momentum state as

〈r, ϕ, z|H, m〉 � 1�
2

√ 〈r, ϕ, z|Ψm
0 〉 + 〈r, ϕ, z|Ψ−m

0 〉( ) (263)
� 〈r, ϕ, z|Φ1,0〉, (264)

where we have used the formula of r (eimϕ + e−imϕ) = 2r cos(ϕ) = 2x.
This means that the Laguerre-Gauss beam is converted into the
Hermite-Gauss beam [5]. Similarly, the vertical state in orbital
angular momentum becomes

〈r, ϕ, z|V, m〉 � 1�
2

√ −〈r, ϕ, z|Ψm
0 〉 + 〈r, ϕ, z|Ψ−m

0 〉( ) (265)
� −i〈r, ϕ, z|Φ0,1〉, (266)

where we have used the formula of r (−eimϕ +
e−imϕ) = −2ir sin(ϕ) = −i2y. Therefore, both horizontal and
vertical states in orbital angular momentum are described by
Hermite-Gauss beams [5]. We can calculate the average orbital
angular momentum per a photon as (ℓ1, ℓ2, ℓ3) � (〈ℓ̂1〉, 〈ℓ̂2〉, 〈ℓ̂3〉),
which can be shown on the higher-order Poincaré sphere [59–61,
69, 93], as shown in Figure 3. The left and right Laguerre-Gauss
beams with topological charge of m correspond to the north pole
at Z(0, 0, m) and the south pole at Z(0, 0, − m), respectively. The
superposition state of these states form the higher-order Poincaré
sphere. The horizontal and vertical states in orbital angular
momentum correspond to the points at Z(m, 0, 0) and Z(−m,
0, 0), respectively. The mode profiles of these beams are
horizontal and vertical dipoles, respectively, and the
superposition state among these states by a rotator along the
ℓ3 axis correspond to rotate the direction of the dipole. Therefore,
the diagonal and anti-diagonal states can also be described by the
Hermite-Gauss beams, such that the states along the equator in

the higher-order Poincaré sphere can be described by the
Hermite-Gauss beams. The ladder operators l̂± corresponds to
increment and decrement the radius of ± Z to move among
spheres with different radius. For coherent photons with N
photons, the radius is multiplied with N, which increases upon
increasing the power.

6 Conclusion

A photon, an elementary particle with the internal spin
degree of freedom, can have an orbital degree of freedom [5,
6, 8–13]. In a vacuum, a photon travels at the speed of light, c, and
is described by a plane wave [10]. The many-body state for
photons can be described by a QED theory [1, 4, 11, 12, 44].
On the other hand, for a photon confined to a region with a larger
refractive index, i.e., a waveguide, the mode is described as a
confined mode, which is a bound state with a discrete energy
level. The nature of this mode is completely different from that
described by a plane wave allowing a continuous energy
spectrum. We have shown that the fundamental equation to
describe the orbital wavefunction of photons in a waveguide is
Helmholtz equation [9, 10] for a monochromatic coherent beam
emitted from a laser, where the spin degree of freedom is
described by a Jones vector. We must solve the Helmholtz
equation in a material including the refractive index profile
and the symmetry of the system [88]. The reason why the
many-body photonic state can be described by a single
wavefunction is based on the Bose-Einstein condensation
nature of a coherent state that allows a macroscopic number
of photons to occupy the lowest energy state, because of the Bose
statistics due to the integer spin. As a specific example, we have
considered a GRIN fibre with a cylindrical symmetry, for which
we could solve the Helmholtz equation exactly by using LG
modes [5, 6, 8–12].

We have defined canonical OAM operators in cylindrical
coordinates and have applied them to the LG modes. We have
confirmed that the OAM is quantised along the direction of
propagation and that the quantum-mechanical expectation
value is indeed obtained as Zm, while the average values
along the directions perpendicular to the propagation vanish.
We have found that the ladder operators to increase or decrease
m work successfully to increment or decrement in units of Z. We
could also calculate the quantum-mechanical average of the
magnitude of OAM as a function of the radial quantum
numbers of n and m. We have also confirmed the
contributions from the intrinsic OAM and the origin-dependent
extrinsic OAM. Finally, we have calculated the matrix elements of the
ladder operators and have confirmed that the angular momentum
operators are observable at least in the Hilbert space spanned by the LG
modes. From those results, we conclude that the OAM is a proper
quantum-mechanical degree of freedom and that a standard quantum-
mechanical treatment is applicable to a monochromatic coherent beam
of photons.
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