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Introduction

The simulation of the inherently quantum mechanical dynamics underlying charge,
energy, and coherence transfer in the condensed phase is one of the most difficult challenges
in computational physics and chemistry. The exponential scaling of the computational cost
with system size makes the quantum-mechanically exact simulations of such processes in
complex systems infeasible. With the exception of a few model Hamiltonians whose form
makes the numerically exact quantum dynamics simulations possible, any simulation of
general condensed-phase systems must rely on approximations [1–33]. Data-driven
machine learning (ML) methods for quantum dynamics emerged as an attractive
alternative to physics-based approximations due to their low computational cost and
high accuracy [34–51]. Development and testing of new simulation methodologies, both
physics- and ML-based, would be greatly facilitated if high-quality reference quantum
dynamics data for a diverse set of quantum systems of interest were available.

Here, we present a QD3SET-1 database, a collection of eight datasets of time-evolved
population dynamics of the two systems: the spin-boson (SB) model and the
Fenna–Matthews–Olson (FMO) light-harvesting complex. The datasets are given in
Table 1. The SB model describes a (truncated or intrinsic) two-level quantum system
linearly coupled to a harmonic bath [52]; [53]. The physics of both the ground state and
dynamics of the SB model is very rich. This has been a continuous subject of study during
past decades. SB has become a paradigmatic model system in the development of
approximate quantum dynamics methods, and nowadays, it is becoming a popular
choice for the development of ML models [38]; [45]; [35].

The FMO system has become one of the most extensively studied natural light-
harvesting complexes [54–60]. Under physiological conditions, the FMO complex forms
a homotrimer consisting of eight bacteriochlorophyll-a (BChla) molecules per monomer.
The biological function of the FMO trimer is to transfer excitation energy from the
chlorosome to the reaction center (RC) [61]. An interest in this light-harvesting system
sparked when two-dimensional electronic spectroscopy experiments detected the presence
of quantum coherence effects in the FMO complex [62]; [63]; [64]. These observations
triggered intense debates about the role this coherence might play in highly efficient
excitation energy transfer (EET).

Early studies of the FMO complex considered only seven-site FMO models comprising
BChla 1–7. Until BChla 8 was discovered, BChla 1 and 6 were both assumed to be possible
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locations for accepting the excitation from the chlorosome because
they are believed to be the nearest pigments to the antenna, which
captures sunlight [65]; [66]; [67]. From there, the energy is
subsequently funneled through two nearly independent routes:
from site 1 to 2 (pathway 1) or from site 6 to sites 7, 5, and 4
(pathway 2). The terminal point of either route is site 3, where the
exciton is then transferred to the RC [68].

Ever since the discovery of the eighth BChla, the role of this
pigment in EET has been extensively investigated [69]; [70]; [71];
[72]; [58]; [73]; [74]; [68]; [75]. In particular, it was shown that
while the population dynamics of the eight-site FMO model is
markedly different from that of a seven-site configuration, the
EET efficiencies in both models were predicted to remain
comparable and very high [68]. BChla 8 has also been
suggested as a possible recipient of the initial excitation.

The dynamics of the FMO model has been a subject of
numerous computational studies, primarily focusing on
understanding the role of the protein environment in the
efficiency of EET (see, e.g., [76]; [77]; [78]; [79]). Numerical
simulations typically employ one of the several parameterized
or fitted into the experimental data FMO model Hamiltonians
that differ in the BChla excitation energies and the couplings
between different BChla [61]; [80]; [54]; [81]; [82]; [83]; [84].
Simulations of the full FMO trimer containing 24 BChlas have also
been performed [85]; [86].

Accompanying this data report, the QD3SET-1 database
contains seven datasets of time-evolved population dynamics
of FMO models with different system Hamiltonians and initial
excitations for several hundreds of bath and system–bath

parameters. The hierarchy of equations of motion (HEOM)
approach [5,7] was used to simulate the population dynamics
of SB and FMOmodels, in one of the seven FMO datasets. HEOM
is a numerically exact method that can describe the dynamics of a
system with a non-perturbative and non-Markovian system–bath
interaction. The high computational cost of HEOM, however,
limits the number of FMO simulations that can be performed
with this method. To generate the other six FMO datasets, an
approximate method—the local thermalizing Lindblad master
equation (LTLME) [87]; [88]—was used.

Some of our data were already used in previous studies
developing and benchmarking ML models for quantum dynamics
simulations [37,38]; [35]; [36]. Here, we regenerate one of the
datasets to augment it with more data and provide many new
datasets generated from scratch (Table 1). To facilitate their use,
we organized the datasets in a coherently formatted database and
provided metadata and extraction scripts. We expect that our
database that accompanies this data report will serve as a
valuable resource in the development of new quantum dynamics
methods.

Methods

Spin-boson dataset

This dataset is regenerated with the same settings and
parameters as in on our previous SB dataset [38] in order to
include all the elements (populations and coherences) of the

TABLE 1 Summary of all datasets. More details are given in the main text. Here, “SB” stands for the spin-boson model. aMODIFIED-QUANTUM_HEOM is the QUANTUM_HEOM

package with some local modifications to make it compatible for larger Hamiltonians. bIn the parameter space E, we define ~ � /Δ � {0, 1}, ~λ � λ/Δ � 0.1{ , 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, ~γ � γ/Δ � 1{ , 2, 3, 4, 5, 6, 7, 8, 9, 10}, and ~β � βΔ � 0.1{ , 0.25, 0.5, 0.75, 1}, where the tunnelingmatrix element Δ is set as an energy unit.
For all combinations of these parameters, the system reduced density matrix was propagated. cIn the parameter space F , we choose the top 500 (most distant)
combinations of (λ, γ, and T) based on farthest-point sampling. The parameter range for each dimension is λ = {10, 40, 70, . . ., 310} cm−1; γ = {25, 50, 75, . . ., 300}
fs rad−1; and T = {30, 50, 70, . . ., 310} K. dIn the parameter space G, we adopt the same procedure as in the parameter space F and choose the most distant 500
points (based on farthest-point sampling) from 3D space (λ, γ, and T) where λ = {10, 40, 70, . . ., 520} cm−1; γ = {25, 50, 75, . . ., 500} cm−1; and T = {30, 50, 70, . . ., 510} K.
eIn the parameter spaceH, the parameter range remains the same as in G. In addition, the same farthest-point sampling was adopted but with the only difference
being that instead of 500, 1,100 most distant sets of parameters were chosen. Approximately 20% of the initial dataset was removed because of the prohibitive
memory requirements. For the remaining 80% of the dataset, HEOM calculations were performed for 2.0 ps using 0.1 fs as a time step. fIn the case of the FMO
complex, this column lists the initially excited sites of the FMO complex in each subset of the corresponding dataset.

Dataset System Hamiltonian(s) Method Dataset
size

Cases Propagation
time (time

step)

Package Parameter
space

References

SB SB SB HEOM

1,000

Symmetric
and

asymmetric
20*/Δ (0.05*/Δ) QUTIP Eb

Regenerated
based on [89]

FMO-Ia

Seven-
site FMO

Adolphs and
Renger

LTLME

Sitesf 1
and 6

1 ns (5 fs) QUANTUM_HEOM F c Regenerated
based on [91]

FMO-Ib

50 ps (5 fs)
MODIFIED-

QUANTUM_HEOMa
Gd This work

FMO-II Cho

FMO-III
Eight-
site FMO

Jia

FMO-IV

Busch and Olbrich

1,500 Sitesf 1, 6
and 8

FMO-V FMO
trimer

FMO-VI Eight-
site FMO

HEOM 879 Sitef 1
2 ps (0.1 fs) PHI He This work
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reduced density matrix (RDM) of the system. The populations and
population differences were published and used previously [38];
[35]. In the following section, we provide a brief summary of the self-
containing presentation of the dataset.

Spin-boson model
The spin-boson model comprises a two-level quantum

subsystem (TLS) coupled to a bath of harmonic oscillators. The
Hamiltonian has the following standard system–bath form:
Ĥ � Ĥs + Ĥb + Ĥsb. The Hamiltonian of the TLS in the local (or
site) basis {| + 〉, | − 〉} is given by (Z = 1)

Ĥs � ϵ | + 〉〈 + | − | − 〉〈 − |( ) + Δ | + 〉〈 − | + | − 〉〈 + |( ), (1)
where ϵ is the so-called energy bias and Δ is the tunneling matrix
element. The harmonic bath is an ensemble of independent
harmonic oscillators

Ĥb � ∑Nb

j�1

p̂2
j

2mj
+ 1
2
mjω

2
j x̂

2
j

⎛⎝ ⎞⎠, (2)

where {x̂j} and {p̂j} are the coordinates and momenta, respectively,
of Nb independent harmonic bath modes with masses {mj} and
frequencies {ωj}. The TLS and bath are coupled through the
additional term

Ĥsb � −∑Nb

j�1
cjx̂j | + 〉〈 + | − | − 〉〈 − |( ), (3)

where {cj} is the coupling coefficients.
The effects of the bath on the dynamics of the TLS are

collectively determined by the spectral density function [89]

J ω( ) � π

2
∑Nb

j�1

c2j
mjωj

δ ω − ωj( ). (4)

In this work, we choose to employ the Debye form of the spectral
density (Ohmic spectral density with the Drude–Lorentz cutoff) [90]

J ω( ) � 2λ
ωγ

ω2 + γ2
, (5)

where λ is the bath reorganization energy, which controls the
strength of system–bath coupling, and the cutoff frequency γ =
1/τc (τc is the bath relaxation time).

All dynamical properties of the TLS can be obtained from
the RDM

~ραβ t( ) � Trb〈α|e−iĤt/Zρ̂ 0( )eiĤt/Z|β〉, (6)

where α, β ∈ {| + 〉, | − 〉}, ρ̂ is the total density operator, and the
trace is taken over bath degrees of freedom. For example, the
commonly used population difference in benchmark studies is
obtained from the RDM as follows: p+(t) − p−(t) � ~ρ++(t) −
~ρ−−(t).

The initial state of the total system is assumed to be a product
state of the system and bath in the following form:

ρ̂ 0( ) � ρ̂s 0( )ρ̂b 0( ). (7)
In Eq. 7, the bath density operator is an equilibrium canonical

density operator ρ̂b(0) � e−βĤb /Trb[e−βĤb ], where β � (kBT)−1 is the

inverse temperature and kB is the Boltzmann constant. The initial
density operator of the system is chosen to be ρ̂s(0) � | + 〉〈 + |.
These conditions correspond to instantaneous photoexcitation of
the subsystem.

Data generation for the spin-boson model
The dataset for the spin-boson model was generated as described

previously [38]. We also summarize it here. The following system and
bath parameters were chosen: ~ϵ � ϵ/Δ � {0, 1}, ~λ � λ/Δ �
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, ~γ � γ/Δ � {1, 2, 3, 4, 5,
6, 7, 8, 9, 10}, and ~β � βΔ � {0.1, 0.25, 0.5, 0.75, 1}, where the
tunneling matrix element Δ is set as an energy unit. For all
combinations of these parameters, the system RDM was
propagated using the HEOM approach implemented in the QUTIP

software package [91]. The total propagation time was tmaxΔ = 20, and
the HEOM integration time step was set to dtΔ = 0.05. In total,
1,000 HEOM calculations, 500 for symmetric (ϵ/Δ = 0) and 500 for
asymmetric (ϵ/Δ = 1) spin-boson Hamiltonians, were performed. The
dataset contains a set of RDMs from tΔ = 0 to tmaxΔ = 20, saved every
dtΔ = 0.05, for every combination of the parameters (~ϵ, ~λ, ~γ, ~β)
described previously.

Fenna–Matthews–Olson complex datasets

In this section, we first describe the general theory behind the
FMO model Hamiltonian, and later, for each dataset, we provide
specific technical details. Table 1 provides an overview of each
dataset.

FMO model Hamiltonian
The FMO complex in this work is described by the system–bath

Hamiltonianwith the renormalization term Ĥ � Ĥs + Ĥb + Ĥsb + Ĥren.
The electronic system is described by the Frenkel exciton
Hamiltonian

Ĥs � ∑Ne

n�1
En|n〉〈n| + ∑Ne

n,m�1,n≠m
Vnm|n〉〈m|, (8)

where |n〉 denotes that only the nth site is in its electronically excited
state and all other sites are in their electronically ground states, En is
the transition energies, and Vnm is the Coulomb coupling between
nth and mth sites. The couplings are assumed to be constant (the
Condon approximation). It should be noted that the overall
electronic ground state of the pigment protein complex |0〉 is
assumed to be only radiatively coupled to the single-excitation
manifold, and as such, it is not included in the dynamics
calculations. Analogous with the SB model, the bath is modeled
by a set of independent harmonic oscillators. The thermal bath is
coupled to the subsystem’s states |n〉 through the system–bath
interaction term

Ĥsb � ∑Ne

n�1
∑Nb

j�1
cnjx̂j|n〉〈n|, (9)

where each subsystem’s state is independently coupled to its
own harmonic environment and cnj is the pigment–phonon
coupling constants of environmental phonons local to the nth
BChla.
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The FMO model Hamiltonian contains a reorganization term
that counters the shift in the minimum energy positions of harmonic
oscillators introduced by the system–bath coupling. In the case that
each state |n〉 is independently coupled to the environment, the
renormalization term takes the following form:

Ĥren � ∑Ne

n�1
λn|n〉〈n|, (10)

where λn � ∑jc
2
nj/(2mjω2

j) is the bath reorganization energy. The
bath spectral density associated with each electronic state is assumed
to be given by the Lorentz–Drude spectral density (Eq. 5).

Analogous to the SB dataset, the initial state of the total system is
assumed to be a product state of the system and bath. The initial
electronic density operator given by ρ̂s(0)was varied, as described in
the following section. The bath density operator is taken to be the
equilibrium canonical density operator.

FMO-Ia, FMO-Ib, and FMO-II datasets: seven-site
FMO models using the local thermalizing Lindblad
master equation approach

We generated datasets for the two seven-site system (Ne = 7)
Hamiltonians. The FMO-I dataset was generated for the system
Hamiltonian parameterized by Adolphs and Renger [54], and is
given by (in cm−1)

Hs �

200 −87.7 5.5 −5.9 6.7 −13.7 −9.9
−87.7 320 30.8 8.2 0.7 11.8 4.3
5.5 30.8 0 −53.5 −2.2 −9.6 6.0
−5.9 8.2 −53.5 110 −70.7 −17.0 −63.6
6.7 0.7 −2.2 −70.7 270 81.1 −1.3

−13.7 11.8 −9.6 −17.0 81.1 420 39.7
−9.9 4.3 6.0 −63.3 −1.3 39.7 230

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

The FMO-Ia dataset comes directly from our previous studies
[37,49], and the FMO-Ib dataset was generated here for a broader
parameter space described as follows.

The FMO-II dataset was generated for the Hamiltonian
parameterized by Cho et al. [81], which takes the following form
(in cm−1):

Hs �

280 −106 8 −5 6 −8 −4
−106 420 28 6 2 13 1
8 28 0 −62 −1 −9 17
−5 6 −62 175 −70 −19 −57
6 2 −1 −70 320 40 −2
−8 13 −9 −19 40 360 32
−4 1 17 −57 −2 32 260

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

The diagonal offset of 12,210 cm−1 is added to both
Hamiltonians. Each site is coupled to its own bath characterized
by the Drude–Lorentz spectral density, Eq. 5, but the bath of each
site is described by the same spectral density.

For the FMO-Ia dataset, the following spectral density
parameters and temperatures were employed: λ = {10, 40, 70,
. . ., 310} cm−1; γ = {25, 50, 75, . . ., 300} fs rad−1; and T = {30, 50,
70, . . ., 310} K. For the FMO-Ib and FMO-II datasets, the spectral
density parameters and temperatures were λ = {10, 40, 70, . . .,
520} cm−1; γ = {25, 50, 75, . . ., 500} cm−1; and T = {30, 50, 70, . . .,
510} K. Our choice of temperatures is relevant for most of the

experiments performed on the FMO and other photosynthetic
complexes [92]; [93]; [56].

For FMO-Ia, FMO-Ib, and FMO-II datasets, farthest-point
sampling [94] was employed to select the most distant points in
the Euclidean space [37] of parameters, which typically more
efficiently covers relevant space than random sampling [94]. We
choose the top 500 (most distant) combinations of (λ, γ, and T)
based on farthest-point sampling. For each selected set of
parameters, the system RDM was calculated using the so-
called local thermalizing Lindblad master equation (LTLME)
approach [95]; [88]. Implemented in the QUANTUM_HEOM

package [5,96], the LTLME method is based on the Lindblad
quantum master equation, which is the commonly used approach
to study the dynamics of open quantum systems [97]; [98]; [99].
Specifically, in the LTLME approach, for each unique frequency
gap between eigenstates of the system Hamiltonian and for every
possible combination of site n, Lindblad operators are
constructed. A sum is carried out over all transitions with a
unique frequency, and the contribution of each population
transfer is weighted by cn*(Ω′)cn(Ω), where cn(Ω) is the nth
site coefficient of exciton (eigenstate) Ω, while cn*(Ω′) is the
complex conjugate corresponding to exciton Ω′. More details can
be found in the work of Mohseni et al. [95].

Coming to data generation, two subsets of the dataset were
generated, one for the initial electronic density operator ρ̂s(0) �
|1〉〈1| corresponding to the initial excitation of site 1 and the
other one for the initial density operator ρ̂s(0) � |6〉〈6|
corresponding to the initial excitation of site 6. In each case,
500 RDM trajectories were generated. The dataset contains both
diagonal (populations) and off-diagonal (coherences) elements
of the RDM on a time grid from 0 to 1 ns (in the case of FMO-Ia)
and 0 to 50 ps (in the case of FMO-Ib and FMO-II) with a 5 fs
time step.

FMO-III and FMO-IV datasets: eight-site FMO
models using the local thermalizing Lindblad
master equation approach

Using the same LTLME-based approach, we generated a
dataset for two different Hamiltonians for the eight-site FMO
model. The first Hamiltonian (FMO-III dataset) was
parameterized by Jia et al. [75]. The electronic system
Hamiltonian is given by (in cm−1)

Hs �

218 −91.0 4.1 −6.3 6.3 −8.8 −7.8 32.4
−91.0 81 28.7 8.2 1.0 8.8 3.4 6.3
4.1 28.7 0 −46.6 −4.4 −9.3 1.3 1.3
−6.3 8.2 −46.6 105 −73.9 −17.7 −59.1 −1.9
6.3 1.0 −4.4 −73.9 105 76.0 −3.1 4.2
−8.8 8.8 −9.3 −17.7 76.0 186 25.9 −11.6
−7.8 3.4 1.3 −59.1 −3.1 25.9 169 −11.9
32.4 6.3 1.3 −1.9 4.2 −11.6 −11.9 154

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(13)
with a diagonal offset of 11,332 cm−1.

The FMO-IV dataset was generated for the Hamiltonian
parameterized by Busch et al. [69] (site energies) and Olbrich
et al. [72] (excitonic couplings) and takes the following form
(in cm−1):

Frontiers in Physics frontiersin.org04

Ullah et al. 10.3389/fphy.2023.1223973

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1223973


Hs �

310 −80.3 3.5 −4.0 4.5 −10.2 −4.9 21.0
−80.3 230 23.5 6.7 0.5 7.5 1.5 3.3
3.5 23.5 0 −49.8 −1.5 −6.5 1.2 0.7
−4.0 6.7 −49.8 180 63.4 −13.3 −42.2 −1.2
4.5 0.5 −1.5 63.4 450 55.8 4.7 2.8

−10.2 7.5 −6.5 −13.3 55.8 320 33.0 −7.3
−4.9 1.5 1.2 −42.2 4.7 33.0 270 −8.7
21.0 3.3 0.7 −1.2 2.8 −7.3 −8.7 505

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(14)
with a diagonal offset of 12,195 cm−1.

The same set of spectral density parameters and
temperatures that was used in the generation of the FMO-Ib
and FMO-II datasets was used here. The LTLME method was
used to propagate the system RDM from 0 to 50 ps with a 5 fs
time step, and three initial states of the electronic system were
considered: sites 1, 6, and 8. The dataset contains both
diagonal (populations) and off-diagonal (coherences)
elements of the RDM. The calculations were performed
using the QUANTUM_HEOM package [96] with some local
modifications to make it compatible for the Hamiltonians
with larger dimension. We refer to this as MODIFIED-

QUANTUM_HEOM implementation.

FMO-V dataset: FMO trimer using the local
thermalizing Lindblad master equation approach

Additionally, we also generated a dataset for the FMO trimer.
The overall excitonic Hamiltonian of all three subunits is
given by

Hs �
HA HB HT

B

HT
B HA HB

HB HT
B HA

⎛⎜⎜⎝ ⎞⎟⎟⎠, (15)

where HA is the subunit Hamiltonian for which we used the same
Hamiltonian as in the FMO-IV dataset (Eq. 14), while HB is the
inter-subunit Hamiltonian, which is taken from the work of Olbrich
et al. [72] and is given by (in cm−1)

HB �

1.0 0.3 −0.6 0.7 2.3 1.5 0.9 0.1
1.5 −0.4 −2.5 −1.5 7.4 5.2 1.5 0.7
1.4 0.1 −2.7 5.7 4.6 2.3 4.0 0.8
0.3 0.5 0.7 1.9 −0.6 −0.4 1.9 −0.8
0.7 0.9 1.1 −0.1 1.8 0.1 −0.7 1.3
0.1 0.7 0.8 1.4 −1.4 −1.5 1.6 −1.0
0.3 0.2 −0.7 4.8 −1.6 0.1 5.7 −2.3
0.1 0.6 1.5 −1.1 4.0 −3.1 −5.2 3.6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)

We propagate dynamics with LTLME from 0 to 50 ps with a 5 fs
time step for the same parameters as were adopted in the
calculations for the FMO-Ib–FMO-IV datasets. The calculations
were performed with the MODIFIED-QUANTUM_HEOM implementation
for the initial excited sites 1, 6, and 8.

FMO-VI dataset: an eight-site FMO model using
the hierarchy of equations of motion approach

The LTLME approach provides only an approximate description of
the quantum dynamics of the FMO complex. Therefore, the FMO-
I–FMO-V datasets are useful merely for developing machine learning
models for quantum dynamics studies. For example, they can be used to
train a neural network model, which can then be further improved on
more accurate but smaller datasets (e.g., via transfer learning). However,
LTLME dynamics cannot be used to benchmark other quantum
dynamics methods. In this case, high-quality reference data are needed.

To generate a dataset with accurate FMO dynamics, we performed
HEOM calculations for the eight-site FMOmodel with the Hamiltonian
given by Eq. 14. HEOM calculations were performed using the parallel
hierarchy integrator (PHI) code [100]. The initial dataset was chosen on
the basis of farthest-point sampling, similar to how it was performed in
the FMO-Ib–FMO-V datasets, with the only difference being that instead
of the 500 most distant sets of parameters that were chosen in the
preparation of FMO-Ib–FMO-V data sets, the 1,100 most distant sets of
parameters were used to prepare the initial FMO-VI dataset. For certain
parameters, the RAM requirements exceeded the RAM of computing
nodes available to us (1 TB). Therefore, such parameter sets were
excluded from the dataset. Excluded parameters correspond to low

FIGURE 1
Population dynamics of the eight-site FMO model with the system Hamiltonian given by Eq. 14 calculated using HEOM (solid) and LTLME (dashed)
methods for the following parameters (A): T = 330 K, λ = 10 cm−1, and γ = 475 cm−1 and (B) T = 310 K, λ = 430 cm−1, and γ = 75 cm−1.
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temperatures, high reorganization energies, and low cutoff frequencies.
Such strong non-Markovian regimes pose significant challenges in the
computational studies of open quantum systems. Approximately 20% of
the initial dataset was removed because of prohibitive memory
requirements. We note that even though graphics processing unit
(GPU) implementations of HEOM (e.g., Kreisbeck et al. [101]) are
much faster than their CPU-based counterparts, they are still limited
by the small amount of memory in presently available GPUs.

For the remaining 80% of the dataset, HEOM calculations were
performed for 2.0 ps. To speed up calculations, an adaptive integration
Runge–Kutta–Fehlberg 4/5 [102] (RKF45) method was used, as
implemented in the PHI code. Using adaptive integration reduces both
the total computation time and memory requirements but can lead to
artifacts if the accuracy threshold is set too large [100]. In this work, the
PHI default accuracy threshold of 1·10−6 was used. The initial integration
time step was set to 0.1 fs. In RKF45, the integration time step is varied,
and therefore, the output comprises time-evolved RDMs on an unevenly
spaced time grid. To obtain the RDMs on an evenly spaced time grid of
0.1 fs, cubic spline interpolation was used. The interpolation errors were
examined on a few cases where 0.1 fs fixed time step integration was
feasible. The errors in the populations were found to be less than 10−5,
which is much smaller than the convergence thresholds, as illustrated in
the Technical Validation section of Supplementary Material. The final
FMO-VI dataset contains 879 entries, each comprising all the populations
and coherences for the RDM from 0 to 2 ps with a time step of 0.1 fs.

In Figure 1, we present a comparison of the dynamics of the eight-
site FMO model described by Eq. 14. The calculations were performed
using the LTLME and HEOMmethods for two different parameter sets:
T = 330 K, λ = 10 cm−1, and γ = 475 cm−1 and T = 310 K, λ = 430 cm−1,
and γ = 75 cm−1. The results clearly demonstrate the differences between
the two methods. HEOM, being a numerically exact method, accurately
captures the coherence dynamics of the FMOHamiltonian. On the other
hand, LTLME is an approximate method that does not fully account for
the back-reaction from the bath to the system. As a result, it tends to
underestimate the coherence dynamics in this context.

Data availability statement

All data sets can be accessed at Figshare https://doi.org/10.25452/
figshare.plus.c.6389553. The data sets are stored in standardNumPy [103]
binary file format (.npy) files. The following format of file names was
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beta-XX.npy where X denotes the value of the energy bias ( ε̃), Y is the
reorganization energy λ̃, Z is the cut-off frequency γ̃ and XX is the
inverse temperature β̃ . The following format of file names was adopted in
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where X denotes the number of sites in the FMO model, Y is the
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accessed at https://github.com/Arif-PhyChem/QD3SET.

Author contributions

PD and AU conceived the idea of creating a HEOM-based spin-
boson database. AU conceived the idea of creating an LTLME-based

database for the FMO complex. AK conceived the idea of creating an
FMO dataset using the HEOM method. AU performed the HEOM
calculations for the spin-boson, along with the LTLME calculations
for the FMO complex. AU wrote the provided package for easy
extraction of the data. AK and LH performed the calculations and
created database files for the FMO-VI dataset. All authors analyzed
the results. AK took the lead in writing the original draft of the
manuscript. All authors contributed to the article and approved the
submitted version.

Funding

This work was supported by General University Research (GUR)
Grants and startup funds of the College of Arts and Sciences and the
Department of Physics andAstronomy of theUniversity ofDelaware. PD
acknowledges funding by the National Natural Science Foundation of
China [No. 22003051 and funding via the Outstanding Youth Scholars
(Overseas, 2021) project], the Fundamental Research Funds for the
Central Universities (No. 20720210092), and via the Lab project of
the State Key Laboratory of Physical Chemistry of Solid Surfaces. This
project was supported by the Science and Technology Projects of
Innovation Laboratory for Sciences and Technologies of Energy
Materials of Fujian Province (IKKEM) (No. RD2022070103). AK
acknowledges the Ralph E. Powe Junior Faculty Enhancement Award
from Oak Ridge Associated Universities.

Acknowledgments

This research was supported in part through the use of Data
Science Institute (DSI) computational resources at the University
of Delaware. Calculations were also performed with high-
performance computing resources provided by the Xiamen
University.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or those
of the publisher, the editors, and the reviewers. Any product that may be
evaluated in this article, or claim thatmay bemade by itsmanufacturer, is
not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphy.2023.1223973/
full#supplementary-material

Frontiers in Physics frontiersin.org06

Ullah et al. 10.3389/fphy.2023.1223973

https://doi.org/10.25452/figshare.plus.c.6389553
https://doi.org/10.25452/figshare.plus.c.6389553
https://github.com/Arif-PhyChem/QD3SET
https://www.frontiersin.org/articles/10.3389/fphy.2023.1223973/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2023.1223973/full#supplementary-material
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1223973


References

1. Meyer H, Gatti F, Worth G.Multidimensional quantum dynamics: MCTDH theory
and applications. Wiley (2009).

2. Makri N. Time-dependent quantum methods for large systems. Annu Rev Phys
Chem (1999) 50:167–91. doi:10.1146/annurev.physchem.50.1.167

3. Meyer H-D, Manthe U, Cederbaum L. The multi-configurational time-dependent
Hartree approach. Chem Phys Lett (1990) 165:73–8. doi:10.1016/0009-2614(90)87014-I

4. Wang H, Thoss M. Multilayer formulation of the multiconfiguration time-
dependent hartree theory. J Chem Phys (2003) 119:1289–99. doi:10.1063/1.1580111

5. Tanimura Y. Numerically “exact” approach to open quantum dynamics: The
hierarchical equations of motion (HEOM). J Chem Phys (2020) 153:020901. doi:10.
1063/5.0011599

6. Tanimura Y, Kubo R. Two-time correlation functions of a system coupled to a heat
bath with a Gaussian–Markoffian interaction. Proc Jpn Soc (1989) 58:1199–206. doi:10.
1143/jpsj.58.1199

7. Tanimura Y. Nonperturbative expansion method for a quantum system coupled to
a harmonic-oscillator bath. Phys Rev A (1990) 41:6676–87. doi:10.1103/PhysRevA.41.
6676

8. Greene SM, Batista VS. Tensor-train split-operator Fourier transform (tt-soft)
method: Multidimensional nonadiabatic quantum dynamics. J Chem Theor Comput.
(2017) 13:4034–42. doi:10.1021/acs.jctc.7b00608

9. Kapral R. Progress in the theory of mixed quantum-classical dynamics. Annu Rev
Phys Chem (2006) 57:129–57. doi:10.1146/annurev.physchem.57.032905.104702

10. Kapral R. Surface hopping from the perspective of quantum–classical Liouville
dynamics. Chem Phys (2016) 481:77–83. doi:10.1016/j.chemphys.2016.05.016

11. Min SK, Agostini F, Tavernelli I, Gross EK. Ab initio nonadiabatic dynamics with
coupled trajectories: A rigorous approach to quantum (de) coherence. J Phys Chem Lett
(2017) 8:3048–55. doi:10.1021/acs.jpclett.7b01249

12. Min SK, Agostini F, Gross EKU. Coupled-Trajectory quantum-classical approach
to electronic decoherence in nonadiabatic processes. Phys Rev Lett (2015) 115:073001.
doi:10.1103/physrevlett.115.073001

13. Gao X, Geva E. Improving the accuracy of quasiclassical mapping Hamiltonian
methods by treating the window function width as an adjustable parameter. The J Phys
Chem A (2020) 124:11006–16. doi:10.1021/acs.jpca.0c09750

14. Crespo-Otero R, Barbatti M. Recent advances and perspectives on nonadiabatic
mixed quantum–classical dynamics. Chem Rev (2018) 118:7026–68. doi:10.1021/acs.
chemrev.7b00577

15. Subotnik JE, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N.
Understanding the surface hopping view of electronic transitions and
decoherence. Annu Rev Phys Chem (2016) 67:387–417. doi:10.1146/annurev-
physchem-040215-112245

16.Wang L, Akimov A, Prezhdo OV. Recent progress in surface hopping: 2011–2015.
J Phys Chem Lett (2016) 7:2100–12. doi:10.1021/acs.jpclett.6b00710

17. McLachlan AD. A variational solution of the time-dependent Schrodinger
equation. Mol Phys (2006) 8:39–44. doi:10.1080/00268976400100041

18. Tully JC. Molecular dynamics with electronic transitions. J Chem Phys (1990) 93:
1061–71. doi:10.1063/1.459170

19. Shushkov P, Li R, Tully JC. Ring polymer molecular dynamics with surface
hopping. J Chem Phys (2012) 137:22A549. doi:10.1063/1.4766449

20. Huo P, Miller TF, Coker DF. Communication: Predictive partial linearized path
integral simulation of condensed phase electron transfer dynamics. J Chem Phys (2013)
139:151103. doi:10.1063/1.4826163

21. Kapral R, Ciccotti G. Mixed quantum-classical dynamics. J Chem Phys (1999) 110:
8919–29. doi:10.1063/1.478811

22. Miller WH, Cotton SJ. Classical molecular dynamics simulation of
electronically non-adiabatic processes. Faraday Discuss (2016) 195:9–30. doi:10.
1039/c6fd00181e

23. Sun X, Geva E. Equilibrium fermi’s golden rule charge transfer rate constants in
the condensed phase: The linearized semiclassical method vs classical marcus theory.
J Phys Chem A (2016) 120:2976–90. doi:10.1021/acs.jpca.5b08280

24. Chenu A, Scholes GD. Coherence in energy transfer and photosynthesis. Annu
Rev Phys Chem (2015) 66:69–96. doi:10.1146/annurev-physchem-040214-121713

25. Han L, Ullah A, Yan Y-A, Zheng X, Yan Y, Chernyak V. Stochastic equation of
motion approach to fermionic dissipative dynamics. i. formalism. J Chem Phys (2020)
152:204105. doi:10.1063/1.5142164

26. Ullah A, Han L, Yan Y-A, Zheng X, Yan Y, Chernyak V. Stochastic equation of
motion approach to fermionic dissipative dynamics. ii. numerical implementation.
J Chem Phys (2020) 152:204106. doi:10.1063/1.5142166

27. Yan Y-A, Zheng X, Shao J. Piecewise ensemble averaging stochastic liouville
equations for simulating non-markovian quantum dynamics. New J Phys (2022) 24:
103012. doi:10.1088/1367-2630/ac94f1

28. Chen Z-H, Wang Y, Zheng X, Xu R-X, Yan Y. Universal time-domain prony
fitting decomposition for optimized hierarchical quantum master equations. J Chem
Phys (2022) 156:221102. doi:10.1063/5.0095961

29. Runeson JE, Lawrence JE, Mannouch JR, Richardson JO. Explaining the efficiency
of photosynthesis: Quantum uncertainty or classical vibrations? J Phys Chem Lett (2022)
13:3392–9. doi:10.1021/acs.jpclett.2c00538

30. Runeson JE, Richardson JO. Generalized spin mapping for quantum-classical
dynamics. J Chem Phys (2020) 152:084110. doi:10.1063/1.5143412

31. Guo M, Wang Z, Wang F. Equation-of-motion coupled-cluster theory for double
electron attachment with spin–orbit coupling. J Chem Phys (2020) 153:214118. doi:10.
1063/5.0032716

32. Mandal A, Yamijala SS, Huo P. Quasi-diabatic representation for nonadiabatic
dynamics propagation. J Chem Theor Comput (2018) 14:1828–40. doi:10.1021/acs.jctc.
7b01178

33. Ye J, Sun K, Zhao Y, Yu Y, Kong Lee C, Cao J. Excitonic energy transfer in light-
harvesting complexes in purple bacteria. J Chem Phys (2012) 136:245104. doi:10.1063/1.
4729786

34. Herrera Rodríguez LE, Kananenka AA. Convolutional neural networks for long
time dissipative quantum dynamics. J Phys Chem Lett (2021) 12:2476–83. doi:10.1021/
acs.jpclett.1c00079

35. Herrera LE, Ullah A, Rueda KJ, Dral PO, Kananenka A. A comparative study of
different machine learning methods for dissipative quantum dynamics. Machine Learn
Sci Tech (2022) 3:045016. doi:10.1088/2632-2153/ac9a9d

36. Ullah A, Dral PO. One-shot trajectory learning of open quantum systems
dynamics. J Phys Chem Lett (2022) 13:6037–41. doi:10.1021/acs.jpclett.2c01242

37. Ullah A, Dral PO. Predicting the future of excitation energy transfer in light-
harvesting complex with artificial intelligence-based quantum dynamics. Nat Commun
(2022) 13:1930–8. doi:10.1038/s41467-022-29621-w

38. Ullah A, Dral PO. Speeding up quantum dissipative dynamics of open systems
with kernel methods. New J Phys (2021) 23:113019. doi:10.1088/1367-2630/ac3261

39. Naicker K, Sinayskiy I, Petruccione F. Machine learning for excitation energy
transfer dynamics. Phys Rev Res (2022) 4:033175. doi:10.1103/physrevresearch.4.
033175

40. Akimov AV. Extending the time scales of nonadiabatic molecular dynamics via
machine learning in the time domain. J Phys Chem Lett (2021) 12:12119–28. doi:10.
1021/acs.jpclett.1c03823

41. Secor M, Soudackov AV, Hammes-Schiffer S. Artificial neural networks as
propagators in quantum dynamics. J Phys Chem Lett (2021) 12:10654–62. doi:10.
1021/acs.jpclett.1c03117

42. Banchi L, Grant E, Rocchetto A, Severini S. Modelling non-markovian quantum
processes with recurrent neural networks. New J Phys (2018) 20:123030. doi:10.1088/
1367-2630/aaf749

43. Bandyopadhyay S, Huang Z, Sun K, Zhao Y. Applications of neural networks to
the simulation of dynamics of open quantum systems. Chem Phys (2018) 515:272–8.
doi:10.1016/j.chemphys.2018.05.019

44. Yang B, He B, Wan J, Kubal S, Zhao Y. Applications of neural networks to
dynamics simulation of Landau–Zener transitions. Chem Phys (2020) 528:110509.
doi:10.1016/j.chemphys.2019.110509

45. Wu D, Hu Z, Li J, Sun X. Forecasting nonadiabatic dynamics using hybrid
convolutional neural network/long short-term memory network. J Chem Phys (2021)
155:224104. doi:10.1063/5.0073689

46. Lin K, Peng J, Gu FL, Lan Z. Simulation of open quantum dynamics with
bootstrap-based long short-term memory recurrent neural network. J Phys Chem Lett
(2021) 12:10225–34. doi:10.1021/acs.jpclett.1c02672

47. Tang D, Jia L, Shen L, FangWH. Fewest-switches surface hopping with long short-
term memory networks. J Phys Chem Lett (2022) 13:10377–87. doi:10.1021/acs.jpclett.
2c02299

48. Lin K, Peng J, Xu C, Gu FL, Lan Z. Realization of the trajectory propagation in the
mm-sqc dynamics by using machine learning (2022). arXiv preprint arXiv:2207.05556.

49. Lin K, Peng J, Xu C, Gu FL, Lan Z. Automatic evolution of machine-learning-
based quantum dynamics with uncertainty analysis. J Chem Theor Comput (2022) 18:
5837–55. doi:10.1021/acs.jctc.2c00702

50. Choi M, Flam-Shepherd D, Kyaw TH, Aspuru-Guzik A. Learning quantum
dynamics with latent neural ordinary differential equations. Phys Rev A (2022) 105:
042403. doi:10.1103/PhysRevA.105.042403

51. Zhang L, Ullah A, Pinheiro M, Jr, Dral PO, Barbatti M. Excited-state dynamics
with machine learning. In: Quantum Chemistry in the age of machine learning. Elsevier
(2023). p. 329–53.

52. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W.
Dynamics of the dissipative two-state system. Rev Mod Phys (1987) 59:1–85. doi:10.
1103/revmodphys.59.1

Frontiers in Physics frontiersin.org07

Ullah et al. 10.3389/fphy.2023.1223973

https://doi.org/10.1146/annurev.physchem.50.1.167
https://doi.org/10.1016/0009-2614(90)87014-I
https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/5.0011599
https://doi.org/10.1063/5.0011599
https://doi.org/10.1143/jpsj.58.1199
https://doi.org/10.1143/jpsj.58.1199
https://doi.org/10.1103/PhysRevA.41.6676
https://doi.org/10.1103/PhysRevA.41.6676
https://doi.org/10.1021/acs.jctc.7b00608
https://doi.org/10.1146/annurev.physchem.57.032905.104702
https://doi.org/10.1016/j.chemphys.2016.05.016
https://doi.org/10.1021/acs.jpclett.7b01249
https://doi.org/10.1103/physrevlett.115.073001
https://doi.org/10.1021/acs.jpca.0c09750
https://doi.org/10.1021/acs.chemrev.7b00577
https://doi.org/10.1021/acs.chemrev.7b00577
https://doi.org/10.1146/annurev-physchem-040215-112245
https://doi.org/10.1146/annurev-physchem-040215-112245
https://doi.org/10.1021/acs.jpclett.6b00710
https://doi.org/10.1080/00268976400100041
https://doi.org/10.1063/1.459170
https://doi.org/10.1063/1.4766449
https://doi.org/10.1063/1.4826163
https://doi.org/10.1063/1.478811
https://doi.org/10.1039/c6fd00181e
https://doi.org/10.1039/c6fd00181e
https://doi.org/10.1021/acs.jpca.5b08280
https://doi.org/10.1146/annurev-physchem-040214-121713
https://doi.org/10.1063/1.5142164
https://doi.org/10.1063/1.5142166
https://doi.org/10.1088/1367-2630/ac94f1
https://doi.org/10.1063/5.0095961
https://doi.org/10.1021/acs.jpclett.2c00538
https://doi.org/10.1063/1.5143412
https://doi.org/10.1063/5.0032716
https://doi.org/10.1063/5.0032716
https://doi.org/10.1021/acs.jctc.7b01178
https://doi.org/10.1021/acs.jctc.7b01178
https://doi.org/10.1063/1.4729786
https://doi.org/10.1063/1.4729786
https://doi.org/10.1021/acs.jpclett.1c00079
https://doi.org/10.1021/acs.jpclett.1c00079
https://doi.org/10.1088/2632-2153/ac9a9d
https://doi.org/10.1021/acs.jpclett.2c01242
https://doi.org/10.1038/s41467-022-29621-w
https://doi.org/10.1088/1367-2630/ac3261
https://doi.org/10.1103/physrevresearch.4.033175
https://doi.org/10.1103/physrevresearch.4.033175
https://doi.org/10.1021/acs.jpclett.1c03823
https://doi.org/10.1021/acs.jpclett.1c03823
https://doi.org/10.1021/acs.jpclett.1c03117
https://doi.org/10.1021/acs.jpclett.1c03117
https://doi.org/10.1088/1367-2630/aaf749
https://doi.org/10.1088/1367-2630/aaf749
https://doi.org/10.1016/j.chemphys.2018.05.019
https://doi.org/10.1016/j.chemphys.2019.110509
https://doi.org/10.1063/5.0073689
https://doi.org/10.1021/acs.jpclett.1c02672
https://doi.org/10.1021/acs.jpclett.2c02299
https://doi.org/10.1021/acs.jpclett.2c02299
https://doi.org/10.1021/acs.jctc.2c00702
https://doi.org/10.1103/PhysRevA.105.042403
https://doi.org/10.1103/revmodphys.59.1
https://doi.org/10.1103/revmodphys.59.1
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1223973


53.Weiss U.QuantumDissipative Systems. Series in modern condensed matter physics.
World Scientific (2012).

54. Adolphs J, Renger T. How proteins trigger excitation energy transfer in the fmo
complex of green sulfur bacteria. Biophys J (2006) 91:2778–97. doi:10.1529/biophysj.
105.079483

55. Ishizaki A, Fleming GR. Theoretical examination of quantum coherence in a
photosynthetic system at physiological temperature. Proc Natl Acad Sci U.S.A (2009)
106:17255–60. doi:10.1073/pnas.0908989106

56. Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E, Wen J, et al.
Long-lived quantum coherence in photosynthetic complexes at physiological
temperature. Proc Natl Acad Sci U.S.A (2010) 107:12766–70. doi:10.1073/pnas.
1005484107

57. Harush EZ, Dubi Y. Do photosynthetic complexes use quantum coherence to
increase their efficiency? Probably not. Sci Adv (2021) 7:eabc4631. doi:10.1126/sciadv.
abc4631

58. Ritschel G, Roden J, Strunz WT, Aspuru-Guzik A, Eisfeld A. Absence of quantum
oscillations and dependence on site energies in electronic excitation transfer in the
Fenna–Matthews–Olson trimer. J Phys Chem Lett (2011) 2:2912–7. doi:10.1021/
jz201119j

59. Shim S, Rebentrost P, Valleau S, Aspuru-Guzik A. Atomistic study of the long-
lived quantum coherences in the Fenna–Matthews–Olson complex. Biophys J (2012)
102:649–60. doi:10.1016/j.bpj.2011.12.021

60. Fenna RE, Matthews BW. Chlorophyll arrangement in a bacteriochlorophyll
protein from Chlorobium limicola. Nature (1975) 258:573–7. doi:10.1038/258573a0

61. Milder MTW, Brüggemann B, Grondelle RV, Herek JL. Revisiting the optical
properties of the FMO protein. Photosynthesis Res (2010) 104:257–74. doi:10.1007/
s11120-010-9540-1

62. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T, Cheng YC, et al. Evidence
for wavelike energy transfer through quantum coherence in photosynthetic systems.
Nature (2007) 446:782–6. doi:10.1038/nature05678

63. Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A, Coker DF,
et al. Using coherence to enhance function in chemical and biophysical systems. Nature
(2017) 543:647–56. doi:10.1038/nature21425

64. Engel GS. Quantum coherence in photosynthesis. Proced Chem (2011) 3:222–31.
22nd Solvay Conference on Chemistry. doi:10.1016/j.proche.2011.08.029

65. Renger T, May V. Ultrafast exciton motion in photosynthetic antenna systems:
The fmo-complex. J Phys Chem A (1998) 102:4381–91. doi:10.1021/jp9800665

66. Louwe RJW, Vrieze J, Hoff AJ, Aartsma TJ. Toward an integral interpretation of
the optical steady-state spectra of the fmo-complex of prosthecochloris aestuarii. 2.
exciton simulations. The J Phys Chem B (1997) 101:11280–7. doi:10.1021/jp9722162

67. List NH, Curutchet C, Knecht S, Mennucci B, Kongsted J. Toward reliable
prediction of the energy ladder in multichromophoric systems: A benchmark study on
the fmo light-harvesting complex. J Chem Theor Comput (2013) 9:4928–38. doi:10.
1021/ct400560m

68. Moix J, Wu J, Huo P, Coker D, Cao J. Efficient energy transfer in light-
harvesting systems, III: The influence of the eighth bacteriochlorophyll on the
dynamics and efficiency in FMO. J Phys Chem Lett (2011) 2:3045–52. doi:10.1021/
jz201259v

69. Busch MSa., Mü h F, Madjet ME-A, Renger T. The eighth bacteriochlorophyll
completes the excitation energy funnel in the FMO protein. J Phys Chem Lett (2011) 2:
93–8. doi:10.1021/jz101541b

70. Huang RY-C, Wen J, Blankenship RE, Gross ML. Hydrogen–deuterium exchange
mass spectrometry reveals the interaction of fenna–matthews–olson protein and
chlorosome csma protein. Biochemistry (2012) 51:187–93. doi:10.1021/bi201620y

71. Bina D, Blankenship RE. Chemical oxidation of the FMO antenna protein from
Chlorobaculum tepidum. Photosynthesis Res (2013) 116:11–9. doi:10.1007/s11120-013-
9878-2

72. Olbrich C, Jansen TLC, Liebers J, Aghtar M, Strumpfer J, Schulten K, et al.
From atomistic modeling to excitation transfer and two-dimensional spectra of the
FMO light-harvesting complex. J Phys Chem B (2011) 115:8609–21. doi:10.1021/
jp202619a

73. Mühlbacher L, Kleinekathöfer U. Preparational effects on the excitation energy
transfer in the fmo complex. J Phys Chem B (2012) 116:3900–6. doi:10.1021/jp301444q

74. Tronrud DE,Wen J, Gay L, Blankenship RE. The structural basis for the difference
in absorbance spectra for the FMO antenna protein from various green sulfur bacteria.
Photosynthesis Res (2009) 100:79–87. doi:10.1007/s11120-009-9430-6

75. Jia X, Mei Y, Zhang JZ, Mo Y. Hybrid QM/MM study of FMO complex with
polarized protein-specific charge. Scientific Rep (2015) 5:17096. doi:10.1038/srep17096

76. Shabani A, Mohseni M, Rabitz H, Lloyd S. Efficient estimation of energy transfer
efficiency in light-harvesting complexes. Phys Rev E (2012) 86:011915. doi:10.1103/
PhysRevE.86.011915

77. Wu J, Liu F, Shen Y, Cao J, Silbey RJ. Efficient energy transfer in light-harvesting
systems, i: Optimal temperature, reorganization energy and spatial–temporal
correlations. New J Phys (2010) 12:105012. doi:10.1088/1367-2630/12/10/105012

78. Suzuki Y, Watanabe H, Okiyama Y, Ebina K, Tanaka S. Comparative study on
model parameter evaluations for the energy transfer dynamics in
Fenna–Matthews–Olson complex. Chem Phys (2020) 539:110903. doi:10.1016/j.
chemphys.2020.110903

79. Mohseni M, Shabani A, Lloyd S, Rabitz H. Energy-scales convergence for optimal
and robust quantum transport in photosynthetic complexes. J Chem Phys (2014) 140:
035102. doi:10.1063/1.4856795

80. Vulto SIE, Baat MAD, Louwe RJW, Permentier HP, Neef T, Miller M, et al.
Exciton simulations of optical spectra of the FMO complex from the green sulfur
bacterium chlorobium tepidum at 6 K. J Phys Chem B (1998) 102:9577–82. doi:10.1021/
jp982095l

81. Cho M, Vaswani HM, Brixner T, Stenger J, Fleming GR. Exciton analysis in 2D
electronic spectroscopy. J Phys Chem B (2005) 109:10542–56. doi:10.1021/jp050788d

82. Hayes D, Engel G. Extracting the excitonic Hamiltonian of the fenna-matthews-
olson complex using three-dimensional third-order electronic spectroscopy. Biophysical
J (2011) 100:2043–52. doi:10.1016/j.bpj.2010.12.3747

83. Kell A, Blankenship RE, Jankowiak R. Effect of spectral density shapes on the
excitonic structure and dynamics of the fenna–matthews–olson trimer from
chlorobaculum tepidum. J Phys Chem A (2016) 120:6146–54. doi:10.1021/acs.jpca.
6b03107

84. Rolczynski BS, Yeh S-H, Navotnaya P, Lloyd LT, Ginzburg AR, Zheng H, et al.
Time-domain line-shape analysis from 2d spectroscopy to precisely determine
Hamiltonian parameters for a photosynthetic complex. J Phys Chem B (2021) 125:
2812–20. doi:10.1021/acs.jpcb.0c08012

85. Ke Y, Zhao Y. Hierarchy of forward-backward stochastic Schrödinger equation.
J Chem Phys (2016) 145:024101. doi:10.1063/1.4955107

86. Wilkins DM, Dattani NS. Why quantum coherence is not important in the
fenna–matthews–olsen complex. J Chem Theor Comput (2015) 11:3411–9. doi:10.1021/
ct501066k

87. Bourne Worster S, Stross C, Vaughan FM, Linden N, Manby FR. Structure and
efficiency in bacterial photosynthetic light harvesting. J Phys Chem Lett (2019) 10:
7383–90. doi:10.1021/acs.jpclett.9b02625

88. Abbott JW. Quantum dynamics of bath influenced excitonic energy transfer in
photosynthetic pigment-protein complexes. Master Thesis. Bristol: University of Bristol
United Kingdom (2020). doi:10.5281/zenodo.7229807

89. Caldeira A, Leggett A. Path integral approach to quantum Brownian motion.
Physica A: Stat Mech its Appl (1983) 121:587–616. doi:10.1016/0378-4371(83)90013-4

90. Wang H, Song X, Chandler D, Miller WH. Semiclassical study of electronically
nonadiabatic dynamics in the condensed-phase: Spin-boson problem with debye
spectral density. J Chem Phys (1999) 110:4828–40. doi:10.1063/1.478388

91. Johansson J, Nation P, Nori F. Qutip: An open-source python framework for the
dynamics of open quantum systems. Comput Phys Commun (2012) 183:1760–72.
doi:10.1016/j.cpc.2012.02.021

92. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR. Two-
dimensional spectroscopy of electronic couplings in photosynthesis. Nature (2005) 434:
625–8. doi:10.1038/nature03429

93. Harel E, Engel GS. Quantum coherence spectroscopy reveals complex dynamics in
bacterial light-harvesting complex 2 (LH2). Proc Natl Acad Sci (2012) 109:706–11.
doi:10.1073/pnas.1110312109

94. Dral PO. Mlatom: A program package for quantum chemical research assisted by
machine learning. J Comput Chem (2019) 40:2339–47. doi:10.1002/jcc.26004

95. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A. Environment-assisted
quantum walks in photosynthetic energy transfer. J Chem Phys (2008) 129:174106.
doi:10.1063/1.3002335

96. Abbott JW. jwa7/quantum_heom (2019). Github repository: https://github.com/
jwa7/quantum_HEOM (accessed on November 1, 2022).

97. Breuer H-P, Petruccione F. The theory of open quantum systems. New York, NY:
Oxford University Press (2002).

98. Gardiner C, Zoller P, Zoller P. Quantum noise: A handbook of markovian and
non-markovian quantum stochastic methods with applications to quantum optics. In:
Springer series in synergetics. Springer (2004).

99. Rivas Á, Huelga S. SpringerBriefs in physics. Springer Berlin Heidelberg
(2011).Open quantum systems: An introduction

100. Strümpfer J, Schulten K. Open quantum dynamics calculations with the
hierarchy equations of motion on parallel computers. J Chem Theor Comput (2012)
8:2808–16. doi:10.1021/ct3003833

101. Kreisbeck C, Kramer T, Rodríguez M, Hein B. High-performance solution of
hierarchical equations of motion for studying energy transfer in light-harvesting
complexes. J Chem Theor Comput (2011) 7:2166–74. doi:10.1021/ct200126d

102. Fehlberg E. Some old and new Runge-Kutta formulas with stepsize control and
their error coefficients. Computing (1985) 34:265–70. doi:10.1007/bf02253322

103. Oliphant TE. Python for scientific computing. Comput Sci Eng (2007) 9:10–20.
doi:10.1109/mcse.2007.58

Frontiers in Physics frontiersin.org08

Ullah et al. 10.3389/fphy.2023.1223973

https://doi.org/10.1529/biophysj.105.079483
https://doi.org/10.1529/biophysj.105.079483
https://doi.org/10.1073/pnas.0908989106
https://doi.org/10.1073/pnas.1005484107
https://doi.org/10.1073/pnas.1005484107
https://doi.org/10.1126/sciadv.abc4631
https://doi.org/10.1126/sciadv.abc4631
https://doi.org/10.1021/jz201119j
https://doi.org/10.1021/jz201119j
https://doi.org/10.1016/j.bpj.2011.12.021
https://doi.org/10.1038/258573a0
https://doi.org/10.1007/s11120-010-9540-1
https://doi.org/10.1007/s11120-010-9540-1
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature21425
https://doi.org/10.1016/j.proche.2011.08.029
https://doi.org/10.1021/jp9800665
https://doi.org/10.1021/jp9722162
https://doi.org/10.1021/ct400560m
https://doi.org/10.1021/ct400560m
https://doi.org/10.1021/jz201259v
https://doi.org/10.1021/jz201259v
https://doi.org/10.1021/jz101541b
https://doi.org/10.1021/bi201620y
https://doi.org/10.1007/s11120-013-9878-2
https://doi.org/10.1007/s11120-013-9878-2
https://doi.org/10.1021/jp202619a
https://doi.org/10.1021/jp202619a
https://doi.org/10.1021/jp301444q
https://doi.org/10.1007/s11120-009-9430-6
https://doi.org/10.1038/srep17096
https://doi.org/10.1103/PhysRevE.86.011915
https://doi.org/10.1103/PhysRevE.86.011915
https://doi.org/10.1088/1367-2630/12/10/105012
https://doi.org/10.1016/j.chemphys.2020.110903
https://doi.org/10.1016/j.chemphys.2020.110903
https://doi.org/10.1063/1.4856795
https://doi.org/10.1021/jp982095l
https://doi.org/10.1021/jp982095l
https://doi.org/10.1021/jp050788d
https://doi.org/10.1016/j.bpj.2010.12.3747
https://doi.org/10.1021/acs.jpca.6b03107
https://doi.org/10.1021/acs.jpca.6b03107
https://doi.org/10.1021/acs.jpcb.0c08012
https://doi.org/10.1063/1.4955107
https://doi.org/10.1021/ct501066k
https://doi.org/10.1021/ct501066k
https://doi.org/10.1021/acs.jpclett.9b02625
https://doi.org/10.5281/zenodo.7229807
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1063/1.478388
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1038/nature03429
https://doi.org/10.1073/pnas.1110312109
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1063/1.3002335
https://github.com/jwa7/quantum_HEOM
https://github.com/jwa7/quantum_HEOM
https://doi.org/10.1021/ct3003833
https://doi.org/10.1021/ct200126d
https://doi.org/10.1007/bf02253322
https://doi.org/10.1109/mcse.2007.58
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1223973

	QD3SET-1: a database with quantum dissipative dynamics datasets
	Introduction
	Methods
	Spin-boson dataset
	Spin-boson model
	Data generation for the spin-boson model

	Fenna–Matthews–Olson complex datasets
	FMO model Hamiltonian
	FMO-Ia, FMO-Ib, and FMO-II datasets: seven-site FMO models using the local thermalizing Lindblad master equation approach
	FMO-III and FMO-IV datasets: eight-site FMO models using the local thermalizing Lindblad master equation approach
	FMO-V dataset: FMO trimer using the local thermalizing Lindblad master equation approach
	FMO-VI dataset: an eight-site FMO model using the hierarchy of equations of motion approach


	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


