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An effective infrared image segmentation algorithm is essential for non-contact
fault diagnosis of circuit boards. However, the uneven grayscale of the infrared
images, multiple target regions, and large radiation noise pose challenges to
achieving accurate segmentation and efficient data extraction for the interested
regions. In this paper, we propose a segmentation algorithm based on the
Deeplabv3+ network, using the lightweight MobileNetV2 as a replacement for
the original Xception backbone network to improve computational efficiency and
reduce overfitting. We also employ a composite loss function and cosine
annealing learning rate to balance foreground-background segmentation and
avoid local optima. Furthermore, we integrate the Convolutional Block Attention
Module (CBAM) to extract and combine important spatial and channel features,
allowing the algorithm to focus on identifying elements of the circuit board
instead of background pixels, thereby improving segmentation accuracy.
Experimental results demonstrate that our proposed algorithm achieves state-
of-the-art performance in terms of both segmentation accuracy and
computational efficiency on our self-built infrared circuit board dataset, with a
MIoU of 90.34%, MPA of 95.26%, and processing speed of 25.19 fps. Overall, our
proposed segmentation algorithm can effectively identify the key regions of
interest in infrared images of circuit boards, providing technical support for
non-contact diagnosis.
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1 Introduction

The proper functioning of the airborne electronic system is crucial for the safe operation
of civil aircraft. However, traditional fault diagnosis techniques face challenges with the
current airborne circuit systems, which have high component density and large circuit scale
[1]. These challenges result in difficulties in diagnosis, low generalization, long time
consumption, and low accuracy of traditional contact diagnosis methods [2]. To
overcome these issues, non-contact fault diagnosis technology based on Infrared
Thermography has emerged as a promising alternative [3]. Infrared Thermography uses
an infrared camera to obtain temperature information from key components of the circuit,
facilitating the fault diagnosis of circuit components. However, the success of infrared-based
fault diagnosis depends on accurately acquiring temperature information from the heating
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element regions, which requires the development of an effective and
accurate segmentation algorithm for the infrared image region of
interest.

There are twomain categories of existing semantic segmentation
methods: traditional methods and deep learning-based methods.
Traditional image segmentation methods frequently utilize machine
learning algorithms, such as thresholding [4], edge detection [5], and
clustering [6], and often depend on handcrafted features, such as
histograms of oriented gradient [7] and scale-invariant feature
transform [8]. With the rapid development of deep learning
technology, researchers have increasingly applied it to image
segmentation tasks, including semantic segmentation [9–11] and
instance segmentation. Considering the focus of this paper is on the
segmentation of electronic components on circuit boards, we will
primarily discuss the development of deep learning-based semantic
segmentation methods.

In the field of semantic segmentation, U-Net [12] and SegNet
[13] are two commonly used models. U-Net adopts a symmetrical
structure and is known for its ability to fuse features from different
levels during the upsampling and downsampling processes to
recover missing local information. On the other hand, SegNet
employs a unique pooling method that records the position of
the maximum value during the downsampling process. This
allows for the restoration of positional information during
upsampling, mitigating the loss of spatial information caused by
pooling. The research in the Deeplab series primarily focuses on the
receptive field characteristics of convolutional networks, considering
the spatial features of the current, surrounding, and entire image.
Various improvement methods have been introduced, such as the
atrous pyramid pooling module [14], the encoder with fully
connected CRF [15, 16], the integration of contextual
information [17], and the dense convolutional layers [18]. These
methods enable the algorithm to extract contextual semantic
information more effectively by incorporating features obtained
from multi-scale image receptive fields, thus enhancing the
capability of semantic segmentation. Similarly, PSPNet [19]
adopts the spatial pyramid pooling module to perform pooling
on the feature maps, enhancing the semantic information of the
image context through scaled feature pooling, effectively expanding
the global receptive field and improving segmentation performance.

In recent years, attention mechanisms have gained significant
attention in semantic segmentation algorithms. They assign weights
to information in both spatial and channel dimensions to emphasize
their relevance to key information and improve network prediction
accuracy. DANet [20] utilizes both spatial attention and channel
attention mechanisms to evaluate the spatial and channel
relationships between features. EncNet [21] leverages the strong
correlation between scene context and the probability of category
existence to selectively enhance category-related feature weights
through weighted fusion. OCNet [22] employs clustering to
obtain contextual information based on object regions for each
pixel and proposes a context aggregation strategy. PSANet [23] can
adaptively learn attention weights and establish connections
between pixels in different positions using the PSA (Point-wise
Spatial Attention) module, overcoming the limitations of local
region-based methods. CCNet [24] emphasizes the significance of
long-distance dependencies in providing useful contextual
information and utilizes the cross-attention mechanism to extract

pixel features, enabling each pixel to capture long-distance
dependencies from all other pixels.

Building upon attention mechanism algorithms, researchers
have begun exploring new directions while improving accuracy.
HANet [25] focuses on training attention modules specifically for
street scenes to enhance segmentation performance in such contexts.
CRNet [26] introduces a mask optimization module that effectively
handles limited training samples and improves the accuracy of
k-shot learning through fine-tuning. Furthermore, as fully
supervised learning has reached its limitations, many semantic
segmentation algorithms based on weakly supervised
information, such as images, object frames, and point labels, are
emerging. To accelerate the algorithms and make them suitable for
mobile and embedded devices, researchers have proposed relatively
lightweight network architectures. LAANet [27], achieved a
balanced trade-off between segmentation accuracy, inference
speed, and model size for real-time semantic segmentation; ELU-
Net [28], a lightweight U-Net variant with deep skip connections,
demonstrates improved brain tumor segmentation using different
loss functions, and achieves effective results. However, none of the
aforementioned research findings specifically focus on image
semantic segmentation of electrical components on circuit
boards. Clearly, this is incomplete in terms of semantic
segmentation for circuit boards.

In this paper, we propose an improved Deeplabv3+ network to
address the challenges of accurate infrared image segmentation. By
replacing the original Xception [29] backbone with a lightweight
MobileNetV2, we improve the computational efficiency of
Deeplabv3+. We also incorporate the CBAM into our algorithm
to strengthen the extraction and fusion of features from both
spatial and channel dimensions, thereby enhancing segmentation
accuracy without substantially increasing computational cost.
Furthermore, we introduce a composite loss function to
overcome the difficulty of segmenting large background regions
in infrared circuit board images. We conduct extensive
experiments on our self-built infrared circuit board image
dataset. The results demonstrate that our proposed method
achieves state-of-the-art performance in terms of segmentation
accuracy and efficiency.

The remainder of this paper is organized as follows. In Section 2,
we briefly review the relative basic theory. In Section 3, we elaborate
the proposed method in detail, including the network architecture,
loss function, and implementation specifics. In Section 4, we
introduce the dataset, experimental setup, and results. Finally,
Section 5 concludes the paper.

2 Relate work

2.1 Deeplabv3+ algorithm

Deeplabv3+ is an advanced semantic segmentation algorithm
that utilizes a prominent encoder module and a streamlined decoder
module, as depicted in Figure 1.

The encoder module is primarily comprised of the backbone
network and the atrous spatial pyramid pooling (ASPP) module,
which work together to extract features from the input image. In
contrast, the decoder module upsamples the output feature map
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generated by the encoder module, and concatenates it with the
low-dimensional feature map. The final segmentation result is
obtained by restoring the size of the input image via bilinear
interpolation.

2.2 The backbone network

During the coding phase, Deeplabv3+ employs the optimized
and enhanced Xception as its backbone network to extract features.

Figure 2 displays the network structure of this optimized version,
which boasts several improvements over the original Xception
network.

Firstly, the middle flow is repeated multiple times, resulting in a
deeper network. Secondly, all instances of maximal pooling in the
original network are substituted with depth-wise separable
convolutions that have a step size of 2 and a convolution kernel
size of 3 × 3. This modification enables the network to take
advantage of the separable characteristics of convolutional
extraction at any resolution mapping.

FIGURE 1
Deeplabv3+ network structure.

FIGURE 2
Improved Xception network structure.
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2.3 Atrous spatial pyramid pooling

Atrous Spatial Pyramid Pooling (ASPP) is a crucial module
within the Deeplabv3+ architecture that facilitates multi-scale
feature extraction. It achieves this by applying atrous
convolutions at multiple dilation rates to a single input feature
map, generating several parallel branches with different receptive
field sizes. The ASPP module in Deeplabv3+ employs dilation rates
of 6, 12, 18, and 24, as depicted in the network structure.
Furthermore, there is a batch normalization layer for data
normalization after each operation. The feature maps generated
by each branch are concatenated, and a 1 × 1 convolution is used to
compress and integrate the features.

2.4 Depth-wise separable convolution

Deeplabv3+ employs Depth-wise Separable Convolution (DSC) as
the primary convolutional operation in the Xception encodermodule to

extract feature maps. The basic idea behind DSC is to decompose a
complete convolution into two separate operations: depth-wise
convolution and pointwise convolution, as shown in Figure 3.

During the Depth-wise convolution operation, each channel of the
input tensor is convolved with its corresponding channel of the filter
tensor. The resulting output channels are then combined in the point-
wise convolution operation, which applies a 1 × 1 convolution to the
Depth-wise output. This approach significantly reduces the number of
parameters in the algorithm and enhances computational efficiency.

3 Proposed algorithm

This paper proposes a novel algorithm for applying the
improved Deeplabv3+ to segment specific circuit board infrared
images. The proposed algorithm combines a Convolutional Block
Attention Module [30] (CBAM) with an improved trunk network
and composite loss function, as shown in Figure 4. To improve the
algorithm’s running speed and reduce complexity, the lightweight

FIGURE 3
Depth-wise Separable Convolution structure.

FIGURE 4
Improved Dense-Deeplabv3+ network structure.
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MobileNetV2 [31] is used to replace Xception in the original
network. The compound loss function, M loss, is utilized during
network training to reduce the dominant degree of background
regions. Additionally, the CBAM module is used for feature
weighting after extraction to further reduce interference in the
background area and improve the algorithm’s attention to the
components in the infrared image of the circuit board.

3.1 Improved Deeplabv3+ backbone
network

Compared to a high-resolution visible image with three channels,
an infrared image has a lower resolution and a single channel.
Additionally, due to the real-time detection requirements in circuit
board fault detection systems, the segmentation algorithm needs to
provide faster response times. To address this challenge, we adopted a
lightweight network, MobileNetV2, as a replacement for the Xception
backbone network.MobileNetV2 is based on deep convolutional neural
networks but can prevent overfitting and improve the running speed of
the algorithm. Compared to the traditional network, the new backbone
network has greatly reduced training parameters, with only 1/32 of the
original parameters, without sacrificing accuracy.

MobileNetV2 adopts a inverted residual architecture, as shown in
the Figure 4. The input data is first processed through a 1 × 1
convolution operation to increase the number of channels, which
allows the backbone network to extract more feature data. To
handle the increased amount of data resulting from the channel
expansion, the network uses hierarchical convolution for subsequent
processing. This approach reduces the number of training parameters
and speeds up the algorithm operation. The end of the backbone
network uses 1 × 1 convolution for downsampling, which ensures that
the input and output data have consistent dimensions. By applying the
MobileNetV2 backbone network with a reverse residual structure, the
network’s training parameters are reduced, which helps prevent

overfitting and ensures accuracy, while also ensuring real-time
performance in processing infrared images.

3.2 Convolution block attention module

The Convolutional Block AttentionModule (CBAM) combines the
channel attention module and spatial attention module, as illustrated in
Figure 5. CBAM can identify important features and suppress
unnecessary ones by inferring attention mapping along the channel
and spatial dimensions of a given intermediate feature map.

The channel attention module treats each channel of the input
feature map as a feature detector for image classification. First,
spatial pooling of the feature map is performed using maximum
pooling and global average pooling, resulting in two channel
attention vectors. These vectors are then separately inputted into
a shared MLP network to generate two C × 1 × 1 attention vectors.
Finally, the corresponding positions of the two vectors are added
and activated with the sigmoid function to obtain the channel
attention vector of dimension C × 1 × 1, as shown in Eq. 1.

Mc � σ w2δ w1 Avgpool Fm( )( )( ) + w2δ w1 Maxpool Fm( )( )( )[ ], (1)

Here, Fm denotes the input intermediate feature map, Mc

represents the output feature map of the channel attention
module, Avgpool denotes global average pooling, Maxpool indicates
maximum pooling, δ is the Rectified Linear Unit activation function,
ω1 and ω2 represent shared weights in the MLP, and σ denotes the
Sigmoid activation function.

The channel attention mechanism module compresses the
spatial dimension of each feature map through average pooling
and maximum pooling, allowing the module to gather significant
clues for distinguishing features. In this stage, each channel of the
feature map is considered a feature detector, and the focus is on
identifying “what” component is present in the input infrared image.
On the other hand, spatial attention is different from the channel

FIGURE 5
Convolutional block attention module.
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attention mechanism as it aims to identify the location of features,
thus complementing channel attention. Initially, maximum pooling
and average pooling are applied to the features processed by the
channel attention module to obtain two feature maps of the same
dimension. The two feature maps are then concatenated and
convolved, and the Sigmoid function is used to activate the
feature map after convolution, resulting in the generation of a
spatial attention vector, as shown in Eq. 2.

Ms � σ Conv Concat Avgpool Fr( ),Maxpool Fr( )( )( )( ), (2)

Here, Fr represents the feature vector processed by the channel
attention module, Avgpool represents global average pooling
operation, Maxpool indicates the maximum pooling operation,
Concat indicates concatenation operation, Conv represents
convolution operation with kernel size of 7 × 7. σ denotes the
Sigmoid activation function. The use of spatial attention modules
allows the algorithm to focus on “where is” the components are on
the infrared image of the circuit board.

Therefore, the convolutional attentionmodule, which consists of
the aforementioned two modules, addresses the issues of feature
recognition and localization, respectively. Given the practical
application scenario of this paper, namely, the segmentation of
various electronic components in infrared images of circuit
boards, the background information is deemed irrelevant and can
be disregarded. The implementation of CBAM significantly
enhances the accuracy of the algorithm.

3.3 Optimization of loss function and
learning rate

In the DeepLab V3+ network, the loss function used in multi-
classification problems is cross-entropy, which is expressed as Eq. 3.

LCE � −∑
k

i�1
yi log pi( ), (3)

Here, k represents the number of samples, p represents the
algorithm output, and y represents the label. If the category is i, then
y equals 1; otherwise, it equals 0. The cross-entropy loss function
calculates the loss value pixel by pixel, which accumulates in the
process of network backpropagation. However, in the case of
infrared images of circuit boards, the area occupied by
components is relatively small compared to the area occupied by
background pixels in the region of interest. As a result, the cross-
entropy loss function tends to overemphasize the contribution of
background pixels, leading to the background region dominating the
training network and reducing the accuracy of chip region
recognition. To address this issue, this paper proposes a
compound loss function, M loss, shown in Eq. 4.

LM � αLCE + 1 − α( )LD, (4)
Among them, α is the proportional coefficient, and LD is the

loss function introduced in this paper, which is used to solve the
problem that the background area of infrared image of circuit
board is too large. As shown in Eq. 5, the value range of this loss
function is 0–1, and the larger the value, the stronger the prediction
ability.

LD � 1 − 2 X ∩ Y| |
X| | + Y| |, (5)

Here, X represents the algorithm’s output set, Y represents the
real set. Additionally, to avoid the traditional gradient descent
method from falling into a local optimal solution, the cosine
annealing learning rate is used in the experiment, enabling the
mutation of the learning rate to avoid local optima and find the
global optimal solution.

4 Segmentation results and analysis

4.1 Build and optimize the dataset

The German InfraTec-R5300 infrared camera was used to capture
infrared images of a power module in a certain avionics system. The
size of the infrared image was 320 × 256, with a measurement
accuracy of ±1% and a temperature resolution of 0.015K or less.

Gp � 255 Tp − T min( )
T max − T min

, (6)

To facilitate subsequent data processing, the temperature
information was converted to grayscale using Eq. 6. Here, Gp

and Tp denote the grayscale and temperature values of
corresponding pixels, respectively. Tmin and Tmax represent the
minimum and maximum values of pixel temperature, respectively.
The grayscale image of the processed infrared image is presented in
Figure 6.

To augment the sample dataset, a GAN network generated
1,400 simulated images using 600 grayscale images of circuit
boards as training data. The simulated images were merged with
the original images to yield a total of 2,000 grayscale images of the
circuit board. The regions of interest of all images were labeled using
Labelme labeling software. To enhance the sample data, techniques
such as translation, rotation, mirror flipping, noise addition, contrast
adjustment, and Gaussian blur were randomly applied to generate a

FIGURE 6
The grayscale image corresponding to the infrared image of the
circuit board.
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total of 6,000 circuit board image data sets. These were then divided
into training, validation, and testing sets in a 3:1:1 ratio. To ensure the
reliability of the data, the test set did not include simulated images.

4.2 Evaluation metrics

Evaluation metrics are commonly used to assess the detection
performance of a semantic segmentation algorithm. Some widely
used metrics include pixel accuracy (PA), mean pixel accuracy
(MPA), and mean intersection over union (MIoU).

PA calculates the ratio of the number of correctly classified
pixels to the total number of pixels.

PA � ∑k
i�0pii

∑k
i�0∑

k
j�0pij

, (7)

MPA calculates the proportion of correctly classified pixels for
each class and then averages across all classes.

MPA � 1
k + 1

∑
k

i�0

pii

∑k
j�0pij

, (8)

MIoU is a standard metric for segmentation problems that
calculates the ratio of the intersection and union of two sets.

mIoU � 1
k + 1

∑
k

i�0

pii

∑k
j�0pij +∑k

j�0Pji − pii

, (9)

ere, k represents the number of categories, pii represents the number
of pixels correctly classified, and pij represents the number of pixels
belonging to the i − th category but classified into the j − th category.

4.3 Experimental conditions and algorithm
training

The segmentation algorithm in this paper was trained using
Google Collab under the Python framework, with a Tesla T4 GPU,

16 GB of graphics memory, and 12 GB of RAM. The algorithm was
initialized with a learning rate of 0.01, and the SGD optimizer in the
PyTorch framework was used to adaptively optimize and update the
algorithm parameters. The momentum and weight attenuation
terms were set to 0.9 and 0.0005, respectively. Furthermore, the
algorithm employed the cosine annealing learning rate change
strategy during training.

The experimental data used in this paper was established in
Section 4.1 of the paper, comprising of 3,600 images for the training
set, 1,200 images for the validation set, and 1,200 images for the test
set. To expedite the network training process, the training phase
loaded pre-trained MobileNetV2 weights and kept the backbone
network parameters frozen during the first 50 epochs. Subsequently,
during the last 50 epochs, the backbone network parameters were
unfrozen to fine-tune the algorithm.

Figure 7 shows the loss value curve for both the training and
validation sets. The x-axis represents the number of training
iterations, while the y-axis represents the corresponding
algorithm loss value. The improved algorithm presented in this
paper achieves lower training and validation loss values in fewer
iterations, and the loss value continues to decrease throughout the
training process until convergence. After approximately
80 iterations, the training loss reaches a relatively small value,
indicating that the algorithm has not overfitted and has achieved
an optimal training performance.

4.4 Segmentation experimental results

The paper utilizes infrared image data of a circuit board to train
and evaluate the performance of several algorithms, including
PSPNet, HRNet [32], DeepLab V3+, MDeepLab V3+, GAN-
SUNet, and the algorithm proposed in the paper. The
segmentation performance of each algorithm on the circuit
board’s infrared image dataset is verified, and the results are
presented in Figure 8.

In the segmentation image, the red, green, and olive sections
correspond to chips, capacitors, and diodes, respectively. It is
observed that for capacitors and integrated chips that are widely
spaced, all algorithms except PSPNet can effectively determine the
spatial position and partial contour of components amidst the
complex circuit board background and generate reasonable
segmentation results. However, when the distance between
components is small and the thermal radiation of diodes is weak,
HRNet, DeepLab V3+, and MDeepLab V3+ produce segmentation
results with varying degrees of region merging, and the edge
segmentation of components is not well-defined.

In contrast, GAN-SUNet and the algorithm proposed in this paper
demonstrate accurate segmentation of the diode region with minimal
false segmentation in the edge pixels of the components. This shows a
superior segmentation performance, with reduced instances of both
false and missing segmentation, resulting in segmentation results that
closely resemble the original labeled image.

The running time and detection accuracy of each algorithm are
described in Table 1, in addition to the visual perception. It is
important to note that the detection accuracy mentioned refers to
the accuracy of detecting interested components only after removing
the influence of the background. The evaluation results of each

FIGURE 7
Train and validation loss.
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algorithm align with the visual perception observations. PSPNet’s
segmentation performance is significantly lower than the other
algorithms. While HRNet’s segmentation index is comparable to
other algorithms, its running speed is noticeably slower. The
running speed of DeepLab v3+ and GAN-SUNet, which both use
VGG16 as their main backbone network, is slower than that of
MDeepLab v3+ which uses MobileNetV2 as its main backbone
network, as well as the proposed algorithm algorithm. Under the
same lightweight MobileNetV2 backbone network, the proposed
algorithm algorithm with CBAM module and optimization loss
function improves segmentation accuracy by 1.88% compared to
MDeepLab v3+ while maintaining a similar running speed. The
proposed algorithm’s running time for processing the same image is
40 ms, which is only 54% of GAN-SUNet’s running time. Therefore,
the proposed algorithm’s running speed is significantly faster while
maintaining a similar segmentation accuracy.

Referring to the evaluation index in Table 1 and the intuitive
visual perception of the segmentation results in Figure 8, the proposed
algorithm based on the characteristics of infrared images exhibits
faster running speed and better segmentation performance than the
original network. Although there may still be erroneous segmentation
of edge pixels in the edge part of some components, there will be no
adhesion of components in the division area, which is a significant
improvement. Therefore, this paper concludes that the use of the
MobileNetV2 network, which is more suitable for infrared images, the
introduction of the CBAM, and the optimization of the training loss
function and learning rate of the network all contribute positively to
improving the segmentation performance of the network. These
improvements can effectively enhance the accuracy and speed of
image segmentation of interested components in the infrared images
of the circuit board.

4.5 Ablation experiment

To provide a scientific explanation for the performance advantage of
the proposed algorithm, an ablation experiment was conducted in
comparison to the original DeepLab V3+. Table 2 presents the
segmentation performance data for the algorithm in the ablation
experiment. The “with_Mbn” column indicates that the backbone
network is replaced by MobileNetV2; “OLF&LR” represents the
optimized loss function and learning rate added to the algorithm, and
“CBAM” indicates the addition of the CBAM module to the algorithm.

Comparing algorithm 1 and 2, it can be seen that using
MobileNetV2 as the backbone network instead of Xception
increases the running speed and segmentation accuracy of the
algorithm by 190% and 3.61%, respectively, indicating that the
new backbone network is better suited for feature extraction
from infrared images. Comparing algorithm 2 and 3, it can be
seen that further optimization of the loss function and learning rate
increases the segmentation accuracy of the algorithm by 1.26%,
without decreasing the running speed due to the optimization of the
loss function. Finally, comparing algorithm 3 and 4, it can be seen
that the addition of the CBAM module can simultaneously extract
and combine important features in space and channel, promoting
the training intensity of the algorithm’s positive weight while
suppressing unnecessary features.

Although the addition of the CBAM module leads to a slight
decrease in computing speed, the segmentation accuracy of the
algorithm is improved again. Therefore, this paper believes that the
limited loss of speed decrease is worthwhile. Figure 9 also supports
this point visually. Specifically, when CBAM is turned off, the
segmentation results show noticeable changes, including smaller
edge distance between the two green areas representing capacitance,

FIGURE 8
Results of the proposed segmentation over existing algorithm.
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increased edge missegmentation of the yellow segment representing
the diode, and uneven edges.

4.6 Generalization experiment

To evaluate the generalization ability of the proposed algorithm
and demonstrate its applicability, we utilize an unseen dataset to

assess its performance. It is important to note that this dataset is
entirely new and acquired independently after the completion of
model training. Furthermore, this dataset was obtained while the
circuit board was operating under new parameters. Subsequently,
the proposed algorithm is employed to segment the infrared images,
and the results are presented in Figure 10.

On the new dataset, the proposed algorithm maintains its
strengths by precisely segmenting each region of interest for
individual components. The segmented regions exhibit clear
boundaries, with no erroneous adhesion between components
of comparable spatial proximities. Upon evaluation, the MIoU
remains at a high of 90.12%, despite a marginal decrease relative to
the original training set. The algorithm is still capable of
maximizing the discriminative features of infrared images under
the constraint of small sample sizes, achieving a high segmentation
accuracy and effectively partitioning the infrared image of the
circuit board to determine the spatial positions of its constituents.
These results suggest the algorithm possesses a degree of
generalization capability.

TABLE 1 Segmentation performance of different algorithms on infrared images.

Algorithm Category IoU (%) PA (%) MIoU (%) MPA (%) FPS

PSPNet Capacitor 63.08 78.99 70.31 82.37 21.3

Diode 60.29 75.64

Chip 60.65 76.36

Background 97.20 98.48

HRNet Capacitor 81.78 90.08 86.31 92.37 5.6

Diode 81.49 88.55

Chip 83.07 91.42

Background 98.88 99.44

DeepLab v3+ Capacitor 79.95 91.54 84.85 93.05 13.33

Diode 80.14 91.23

Chip 80.66 90.27

Background 98.66 99.18

MDeepLab V3+ Capacitor 83.96 91.66 88.46 94.13 25.53

Diode 84.73 92.02

Chip 86.15 93.32

Background 99.01 99.53

GAN-SUNet Capacitor 86.98 92.54 90.36 94.69 13.6

Diode 87.42 92.79

Chip 87.83 93.85

Background 99.19 99.61

Proposed method Capacitor 86.85 93.40 90.34 95.26 25.19

Diode 87.43 93.92

Chip 87.91 94.17

Background 99.18 99.56

TABLE 2 Comparison table of ablation experiment results.

Algorithm Mbn OLF&LR CBAM MIoU (%) FPS

1 84.85 13.33

2 √ 88.46 25.53

3 √ √ 89.72 25.55

4 √ √ √ 90.34 25.19
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5 Conclusion

In this paper, we present an improved region of interest
component segmentation algorithm based on Deeplabv3+, aiming
to address the challenges posed by the limited data set size, large
background pixel area, and small area of interested components in
infrared images of circuit boards. The proposed algorithm leverages
the infrared image data to support fault diagnosis of the circuit board
by constructing a training and verification data set.

Firstly, to expand the dataset and minimize overfitting, a GAN
network and image enhancement technology are utilized. Secondly,

to better adapt to infrared images, MobileNetV2 is adopted as the
backbone network of the algorithm, which accelerates training and
diagnosis and enables future real-time deployment. Furthermore,
the composite loss function and cosine annealing learning rate are
employed to avoid local optimal solutions and minimize the impact
of background pixels on segmentation accuracy. Finally, the CBAM
is integrated into the algorithm to focus on component regions of
interest, reduce the effect of background, and improve segmentation
performance.

The experimental results demonstrate that the proposed
algorithm can accurately and efficiently segment the component

FIGURE 9
Impact of CBAM on proposed segmentation results.

FIGURE 10
The segmentation of proposed algorithm on unseen data.
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regions of interest in the infrared images of circuit boards.
Specifically, the segmentation time for a single circuit board on
the test set is only 40 ms, with MIoU and MPA reaching 90.34% and
95.26%, respectively. These results show that the algorithm achieves
a high level of segmentation accuracy while significantly improving
the running speed.

By incorporating the proposed algorithm into the circuit board
fault diagnosis system, the segmentation of the regions of interest
can be quickly completed, thereby providing crucial technical
support for subsequent fault diagnosis research. Overall, the
algorithm can be easily adapted to accommodate the expansion
of infrared image datasets of self-built circuit boards and can be
effectively utilized for practical applications, primarily owing to the
improved network architecture and optimization approach.
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