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Precision Time Protocol (PTP) is a time protocol based on the Master and Slave
exchanging messages with time stamps. In practical PTP systems, we have packet
loss, a phenomenon where some of the PTP messages get lost in the Network.
Packet loss may reduce the performance of the clock skew estimator from the
mean square error (MSE) perspective. Recently, the same authors presented
simulation results that show the clock skew performance of the three clock
skew estimators (the two-way delay (TWD) clock skew estimator and the one-way
delay (OWD) clock skew estimator for the Forward and Reverse paths) under the
packet loss case in the fractional Gaussian noise (fGn) environment with Hurst
exponent parameter (H) in the range of 0.5 ≤ H < 1, where indeed the clock skew
performance was degraded compared to the non-packet loss case. Please note
that for 0.5 <H < 1, the corresponding fGn is of long-range dependency (LRD). This
paper proposes an algorithm that estimates the missing timestamps in the packet
loss and fGn (0.5 ≤H < 1) case. We use those estimates to generate three modified
clock skew estimators (the two-way delay (TWD) modified clock skew estimator
and the one-way delay (OWD) modified clock skew estimator for the Forward and
Reverse paths) applicable to the packet loss, non-packet loss, and fGn (0.5 ≤H < 1)
case based on the same authors’ previously developed clock skew estimators.
Those modified clock skew estimators led, based on simulation results, to an
improved clock skew performance in the packet loss and fGn (0.5 ≤ H < 1) case
compared with the authors’ previously developed clock skew estimators and
those known from the literature (the ML-like (MLLE) and Kalman clock skew
estimators). With the MSE expression, the system designer can know how many
Sync periods are needed for the clock skew synchronization task to reach the
system’s requirements from the MSE perspective. But no MSE expression exists in
the literature for the packet loss case. In this paper, we derive closed-form
approximated expressions for the MSE upper bounds related to the modified
TWD andOWD clock skew estimators valid for the packet loss and fGn (0.5 ≤H < 1)
cases.
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1 Introduction

The PTP (IEEE1588v2) is based on the Master and Slave
architecture. The Master and Slave clocks exchange messages
with time stamps to achieve frequency synchronization (clock
skew) and time synchronization (offset) [1]. It should be pointed
out that in order to obtain time synchronization, frequency
synchronization must first be accomplished. In our previous
work [2]; [3], we presented three clock skew estimators
applicable for the PTP case for the fGn and generalized
fractional Gaussian noise (gfGn) cases (where 0.5 ≤ H < 1).
Please note that the gfGn case reduces to fGn when setting the “a”
parameter in the gfGn case to one. In addition, for H = 0.5 and
setting the “a” parameter to one (for the gfGn case), we obtain the
Gaussian case. In [2], we presented the TWD clock skew
estimator based on the Forward and Reverse paths, while in
[3], we presented the OWD clock skew estimator based on the
Forward or Reverse path.

The Forward and Reverse paths have fixed and random delays
that may cause clock skew performance degradation obtained by the
clock skew estimators. The fixed delay results from the unknown
number of components (switches and routers) that the message is
traveling through [4]; [5]; [6]. Note that we cannot ensure the same
number of components in the Forward and Reverse paths.
Therefore, it is reasonable to assume that there is an asymmetry
in the fixed delay between the Forward and Reverse paths. The
random delay, also known as the packet delay variation (PDV), is
mainly the result of the queuing delay [6]. The message waits in each
component until the output port is unblocked by other traffic in the
Network. The PDV has a major impact on the accuracy of the clock
skew estimation [7]. In the case of the PDV increase, we may have a
decrease in the clock skew estimator’s performance. The PDV is
characterized as fGn or gfGn processes where for 0.5 < H < 1, those
processes are of LRD, which is described in detail as traffic modeling
in computer communications in [8] and [9]. Please note that each
path (Forward or Reverse) has unique characteristics. Therefore, it is
reasonable to assume that there may also be an asymmetry in the
PDVs (variances or Hurst exponent parameters) between the
Forward and Reverse paths.

In the literature, we can find algorithms for the clock skew
estimators that assume symmetry in the fixed delay between the
Forward and Reverse paths [10], [11]. However, the symmetry
assumption may insert a constant error in the clock skew
estimation in cases where the symmetry assumption does not
hold, which occurs in a practical system. Other algorithms are
applicable in asymmetry paths, but we assume the PDV is a
Gaussian process [12], [13]. This assumption may insert an error
in the clock skew estimation in an fGn or gfGn system. For more
details on the different clock skew algorithms, with their
assumptions, please refer to the Table in [2]. The three clock
skew estimators we presented in [2] and [3] are applicable for
the symmetry or asymmetry paths (asymmetry in the fixed delays or
the PDVs) and fGn or gfGn environment. We also derived in [2] and
[3] three closed-form-approximated expressions for theMSE related
to our three clock skew estimators. The closed-form-approximated
expressions for the MSE help the system designer to know
approximately the total number of Sync periods the system needs
to get the required system’s performance from the MSE perspective.

The packet impairment is a phenomenon that occurs in a
practical system and reduces the clock skew performance (MSE),
as was shown for the first time in [14]. Packet impairments include
packet loss and packet duplication [14]. In the packet loss case, the
Slave has missing packets at some of the Sync periods due to the
background traffic or Cyber-attack. The missing packets were sent
by the Slave or by the Master but got lost in the Network. The
missing data (time stamps) from those lost packets may cause a
reduction in the clock skew estimation accuracy in the Slave. In the
packet duplication case, duplicate packets may cause a load in the
Network. Therefore, it may boost the PDV and reduce the clock
skew estimation performance. In [14], we have shown the efficiency
of our clock skew estimators [2], [3] in the packet loss case, but still,
the packet loss reduced the clock skew performance.

The contribution of this paper is as follows.

1) A time-stamp estimation algorithm that estimates the missing
time stamps needed for the clock skew synchronization task.

2) Three modified clock skew estimators that answer on the cases
with and without packet loss. Those modified clock skew
estimators are based on the TWD and OWD clock skew
estimators from [2] and [3], respectively, and use the time-
stamp estimation algorithm when the needed time stamps for the
clock skew estimation task are missing.

3) In this paper, we derive for the first time closed-form
approximated expressions for the MSE upper bounds related
to the modified TWD clock skew estimator andOWD clock skew
estimator for the Forward and Reverse paths, applicable for the
PTP case with or without packet loss. The closed-form
approximated expressions for the MSE upper-bounds are
applicable for the fGn case (with 0.5 ≤ H < 1) in the presence
of asymmetry in the fixed delays, asymmetry in the PDVs, or
even asymmetry in the Hurst exponent parameters between the
Forward and Reverse paths.

4) The approximated MSE upper bounds are practical tools for the
system designer to estimate the clock skew estimator’s
performance (MSE) in the presence of packet loss and also
help him to know approximately the total time until the clock
skew estimators achieve the system’s requirements. The
approximated MSE upper bounds are applicable when the
missing packets are randomly distributed or are in burst mode.

The MLLE clock skew estimator [12] is a TWD clock skew
estimator that maximizes the likelihood function obtained based on
a reduced subset of observations (the first and last timing stamps).
The subset between those time stamps removes the constant
parameters (the fixed delays and the offset) from both paths.
Therefore, the MLLE clock skew estimator may answer the
problem of the asymmetry fixed delays between the Forward and
Reverse paths for the clock skew estimation task. The Kalman clock
skew estimator [15] is an OWD clock skew estimator for the
Forward path, meaning it uses only the time stamps from the
Forward path. Therefore, the Kalman clock skew estimator
applies to asymmetrical scenarios between the fixed delay
parameters (for the Forward and Reverse paths). In this work,
the MLLE [12] and Kalman [15] clock skew estimators are a fair
comparison with the modified TWD and OWD clock skew
estimators for asymmetry fixed delays scenarios. Simulation

Frontiers in Physics frontiersin.org02

Avraham and Pinchas 10.3389/fphy.2023.1222735

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1222735


results will confirm that our new proposed modified clock skew
estimators achieve the best clock skew performance (MSE)
compared with the clock skew performance obtained with the
clock skew estimators proposed in [2] and [3], and with those
obtained from [12] and [15]. Simulation results also will confirm
that the approximated MSE upper bounds derived in this paper are
very close to the corresponding simulated clock skew performances
obtained with the modified clock skew estimators for the packet loss
scenario.

2 System description

The system proposed in this paper is based on the previous
system described in [2, 3 and 14]. Based on [4–6], we have for those
systems:

t1 j[ ] + dms + ω1 j[ ] � t2 j[ ] 1 + α( ) + Q (1)
t4 j[ ] − dsm − ω2 j[ ] � t3 j[ ] 1 + α( ) + Q (2)

whereQ is the offset between the Master and Slave clocks, and α is
the clock skew. The Forward and the Reverse fixed delays are
denoted as dms and dsm, respectively. The Forward and the
Reverse PDVs are denoted as ω1[j] and ω2[j], respectively,
where j is the j − th Sync period for j = 1, 2, 3, . . . , J. J is the
total number of Sync periods. The PTP time stamps are: t1[j],
t2[j], t3[j], and t4[j], where the time stamps t1[j] and t2[j] are
related to the Forward path. The Master sends at the j − th Sync
period a Syncmessage to the Slave at t1[j] and the Slave receives it
at t2[j] (please refer to Figure 1A recalled from [2]). The time
stamps t3[j] and t4[j] are related to the Reverse path, where at the
j − th Sync period, the Slave sends a Delay Req message to the
Master at t3[j] and the Master receives it at t4[j] (Figure 1A).

FIGURE 1
PTP message diagram.

Frontiers in Physics frontiersin.org03

Avraham and Pinchas 10.3389/fphy.2023.1222735

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1222735


Please note that according to Figure 1A, the Master sends to the
Slave the time stamps t1[j] and t4[j] by the Follow-up message
and the Delay Resp message, respectively. The Master sends the
Sync messages at a predefined rate named 1

Tsync
where Tsync is

defined as: Tsync = t1[j + 1] − t1[j].
In practical systems, a load in the Network or a Cyber-attack

may cause packet loss. The packet loss can occur in the Forward
and Reverse paths. When the packet loss occurs in the Forward
path, we may have three types of messages that may get lost: 1.)
The Sync message 2.) The Follow-up message 3.) The Delay

Resp message. It should be pointed out that when the Sync
message gets lost (meaning that the Slave has a missing time
stamp of t2[j]), the Slave cannot send back the Delay Req
message to the Master since it should send the Delay Req
message after the constant time (X) from t2[j] (please refer to
Figure 1A). In general, lost messages from the Forward path
cause missing messages in the Reverse path. In order to avoid the
case where lost messages in the Forward path cause missing
messages in the Reverse path, we define a new system described
in Figure 1B. For the first Sync period, the Slave must receive a

FIGURE 2
Clock skew performance comparison between themodified TWD clock skew estimator (6) with the TWD clock skew estimator (56), for the Gaussian
case and the packet loss case (in the Forward path). α=50ppm,Q=5 ms, Tsync=15.6 ms (64 packet/sec), dms=0.8 ms, dsm=1 ms, σω1 � 400μs, σω2 � 10μs.
PMF � 0.9, PMR � 0. The averaged results were obtained for 100 Monte-Carlo trials.

FIGURE 3
Clock skew performance comparison between the modified OWD clock skew estimator for the Reverse path (10) with the OWD clock skew
estimator for the Reverse path (58), for the Gaussian case and the packet loss case (in the Forward path). α =50ppm,Q =5 ms, Tsync =15.6 ms (64 packet/
sec), dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs. PMF � 0.9, PMR � 0. The averaged results were obtained for 100 Monte-Carlo trials.
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Syncmessage (t2[1]) to begin the synchronization process. After
the first Sync message has been received by the Slave, the Slave
sends the first Delay Reqmessage after a constant time of t3[1] =
t2[1] + X. Then, the Slave waits for a period of time t3[j − 1] +
Tsync in order to receive the Sync message at the time stamp t2[j]
from the Master in order to send the Master its Delay Req
message at the time stamp t3[j]. Note that from this stage, the
Slave has, according to our new proposed system (Figure 1B) two
options for sending out theDelay Reqmessage at the time stamp
t3[j].

1) If the Sync message at time stamp t2 [j] is received before the
end of the time t3[j − 1] + Tsync, then the Slave sends theDelay
Req message at time stamp t3[j] as usual after a constant time
from t2[j], namely, t3[j] = t2[j] + X.

2) If the Sync message at time stamp t2[j] is not received until
the end of this duration (t3[j − 1] + Tsync), then the Slave sends
the Delay Req message at time stamp t3[j] equivalent to
t3[j] = t3[j − 1] + Tsync.

If the Slave does not receive the Sync message at the time
stamp t2[j] or the Delay Resp message at the time stamp t4[j] or
even both of them, then those time stamps (t2[j], t4[j]) are going
to be estimated as will be shown in Section 3. Note, when the
missing messages are the Follow-up messages (containing t1[j]),
the missing time stamps of t1[j] can be obtained via the
knowledge that the difference between two consecutive Sync
time stamps is a constant time of Tsync. For example, if the
time stamps t1 [j] and t1[j + 1] are missing, we can write:
t1[j] = t1[j − 1] + Tsync and t1[j + 1] = t1[j − 1] + 2Tsync. In the

FIGURE 4
Clock skew performance comparison between the modified OWD clock skew estimator for the Forward path (9) with the OWD clock skew
estimator for the Forward path (57), for the Gaussian case and the packet loss case (in the Forward path). α =50ppm,Q =5 ms, Tsync =15.6 ms (64 packet/
sec), dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs. PMR � 0. (A) PMF � 0.9 (The percentage of missing Sync messages is approx 30%). (B) The
percentage of missing Sync messages is 60%. The averaged results were obtained for 100 Monte-Carlo trials.
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new system (described in Figure 1B), we also use two additional
conditions in the Slave in order to block too noisy packets.

1) if (t2[j] > t3[j − 1] + TsyncPd) delete t2[j].
2) if (t4[j] > t1[j] + Tsync) delete t4[j].

In our simulation, we set Pd = 1.5.
In the following section, we estimate t2[j] and t4[j] for the case

that they are missing at the Slave.

3 Estimating the missing time stamps

This section estimates the missing time stamps t2[j] and t4[j]. In
the following, we denote the estimated t2[j] as t̂2[j] and define it by:

t̂2 Si + L − 1[ ] � t2 Si − 1[ ] + L

Ki + 1
t2 Si + Ki[ ] − t2 Si − 1[ ]( ) (3)

where K is a vector with elements Ki, K = [K1, K2, K3, . . . , Ki, . . . ]
and where Ki indicates the length of a group of consecutive missing

FIGURE 5
Clock skew performance comparison between themodified TWD clock skew estimator (6) with the TWD clock skew estimator (56), for the fGn case
and the packet loss case (in the Forward path). α =50ppm, Q =5 ms, Tsync =15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs,
HF =0.7, HR =0.7. PMF � 0.9, PMR � 0. The averaged results were obtained for 100 Monte-Carlo trials.

FIGURE 6
Clock skew performance comparison between the modified OWD clock skew estimators for the Reverse path (10) with the OWD clock skew
estimator for the Reverse path (58), for the fGn case and the packet loss case (in the Forward path). α =50ppm,Q =5 ms, Tsync =15.6 ms (64 packet/sec),
dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs, HF =0.7, HR =0.7. PMF � 0.9, PMR � 0. The averaged results were obtained for 100 Monte-Carlo trials.
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time stamps of t2[j]. For example, when K = [2, 1], it means that K1 =
2; the first group has two consecutive missing time stamps. For the
second group, K2 = 1, meaning this group has only one missing time
stamp. S is a vector with elements Si, S = [S1, S2, S3, . . . , Si, . . . ] where
Si indicates the position of the first missing consecutive time stamp
of t2[j]. For example, when S = [10, 24], S1 = 10, the first group of the
consecutive missing time stamps starts at j = 10. The second group
starts at j = 24 since S2 = 24. The following variable L is defined as L =
1, 2, . . . Ki. The time stamp t2[Si − 1] denotes the time stamp of t2[j]
that comes before the missing time stamps. The time stamp t2[Si +

Ki] denotes the time stamp of t2[j] that comes after the missing time
stamps, and 1

Ki+1 (t2[Si +Ki] − t2[Si − 1]) denotes the average time
between those time stamps (we can average this factor since the
difference between two consecutive time stamps of Syncmessages is
Tsync). For example, when K = [2, 1, 3, 4] and S = [11, 21, 43, 52], we
have four groups of missing consecutive messages in different places
([Ki, Si]: [2, 11], [1, 21], [3, 43], [4, 52]). We have two missing time
stamps for the first group at j = 11 and j = 12. ForK1 = 2, we can write
that L = 1, 2. Please refer to Figure 1C where the reconstruction of
the first group can be written based on (3) as follows:

FIGURE 7
Clock skew performance comparison between themodified clock skew estimators ((6); (9); (10)) with the clock skew estimator fromChaloupka et al.
[15] denoted here as the Kalman Estimator, and the ML-like clock skew estimator (59) Noh et al. [12] denoted here as MLLE Estimator, for the fGn case and
the packet loss case (in the Forward path). α =50ppm,Q =5 ms, Tsync=15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs,HF=0.7,
HR =0.7. PMF � 0.9, PMR � 0. L =100, QKAL =0, δσ = δμ =1e −4, μ̂[1] � 0. The averaged results were obtained for 100 Monte-Carlo trials.

FIGURE 8
Clock skew performance comparison between the modified clock skew estimators ((6); (9); (10)) with the clock skew estimator from [15] denoted
here as the Kalman Estimator and theML-like clock skew estimator from [12] denoted here asMLLE Estimator, for the fGn case and the packet loss case (in
the Forward path). α =50ppm, Q =5 ms, Tsync =15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 10μs, σω2 � 10μs, HF =0.6, HR =0.6. PMF � 0.9,
PMR � 0. L =100, QKAL =0, δσ = δμ =1e −4, μ̂[1] � 0. The averaged results were obtained for 100 Monte-Carlo trials.
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t̂2 11[ ] � t2 10[ ] + 1
3

t2 13[ ] − t2 10[ ]( ), L � 1

and

t̂2 12[ ] � t2 10[ ] + 2
3

t2 13[ ] − t2 10[ ]( ), L � 2

The estimated missing time stamp of t4[j] is denoted as t̂4[j]. Unlike
(3) where the difference between two consecutive time stamps of

Sync messages is constant, the difference between two consecutive
time stamps ofDelay Reqmessages changes over time. Therefore, it
is necessary to apply also the time stamp of t3[j] in the estimation of
t4[j]. t̂4[j] is given by:

t̂4 ~Si + ~L − 1[ ] � t̂4 ~Si + ~L − 2[ ]
+ t4 ~Si + ~Ki[ ] − t4 ~Si − 1[ ]( )N ~Si, ~Ki, ~L( ) (4)

FIGURE 9
Performance comparison between the calculated expressions for the approximated MSE upper bounds ((13); (36); (48)) with the simulated clock
skew performance obtainedwith themodified clock skew estimators ((6); (9); (10)) for the Gaussian case and for the packet loss case (in the Forward path).
α =50ppm,Q =5 ms, Tsync =15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs, HF =0.5, HR =0.5. PMF � 0.9, PMR � 0, rF =0, rR =0.
The averaged results were obtained for 100 Monte-Carlo trials.

FIGURE 10
Performance comparison between the calculated expressions for the approximated MSE upper bounds ((13); (36); (48)) with the simulated clock
skew performance obtained with the modified clock skew estimators ((6); (9); (10)) for the fGn case and for the packet loss case (in the Forward path).
α =50ppm,Q =5 ms, Tsync =15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs, HF =0.5, HR =0.9. PMF � 0.9, PMR � 0, rF =0, rR =0.
The averaged results were obtained for 100 Monte-Carlo trials.
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where ~K is a vector with elements ~Ki, ~K � [ ~K1, ~K2, ~K3, . . . , ~Ki, . . .]
and where ~Ki indicates the length of a group of consecutive
missing packets of t4 [.] ~S is a vector with elements ~Si, ~S �
[~S1, ~S2, ~S3, . . . , ~Si, . . .] where ~Si indicates the position of the first
missing consecutive time stamp of t4 [.] In the following, the
variable ~L is defined as ~L � 1, 2, . ~Ki, where the function
N(~Si, ~Ki, ~L) is:

N ~Si, ~Ki, ~L( ) � t3 ~Si + ~L − 1[ ] − t3 ~Si + ~L − 2[ ]
t3 ~Si + ~Ki[ ] − t3 ~Si − 1[ ] (5)

Please note, the time stamp t4[~Si − 1] denotes the time stamp of t4 [j]
that comes before the missing time stamps; the time stamp t4[~Si +
~Ki] denotes the time stamp of t4 [j] that comes after the missing time
stamps. For example, when ~K � [1, 4, 3, 2] and ~S � [16, 33, 41, 62],

FIGURE 11
Performance comparison between the calculated expressions for the approximated MSE upper bounds ((13); (36); (48)) with the simulated clock
skew performance obtained with the modified clock skew estimators ((6); (9); (10)) for the fGn case and for the packet loss case (in the Forward and
Reverse paths). α =50ppm, Q =5 ms, Tsync =15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 200μs, σω2 � 200μs, HF =0.9, HR =0.5. PMF � 0.9,
PMR � 0.3, rF =0, rR =0. The averaged results were obtained for 100 Monte-Carlo trials.

FIGURE 12
Performance comparison between the calculated expressions for the approximated MSE upper bounds ((13); (36); (48)) with the simulated clock
skew performance obtained with the modified clock skew estimators ((6); (9); (10)) for the fGn case and the packet loss case (a long burst in the Forward
path). α =50ppm,Q =5 ms, Tsync =15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 200μs, σω2 � 200μs,HF =0.9, HR =0.5. PMF � 0.9, PMR � 0, rF =1,
rR =0. The averaged results were obtained for 100 Monte-Carlo trials.
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we have four groups of missing consecutive messages in different
places ([ ~Ki, ~Si]: [1, 16], [4, 33], [3, 41], [2, 62]). We have one
missing time stamp for the first group at j = 16. For ~K1 � 1 we
can write that ~L � 1, please refer to Figure 1D. The reconstruction of
the first group can be written based on (4) and (5) as follows:

t̂4 16[ ] � t4 15[ ] + t4 17[ ] − t4 15[ ]( ) t3 16[ ] − t3 15[ ]
t3 17[ ] − t3 15[ ], ~L � 1

4 The modified clock skew estimators
applicable for the packet loss/non-
packet loss case

In our previous works [2, 3 and 14], we presented three clock
skew estimators, one for the TWD case [2] and two for the OWD
case [3] (for the Forward and Reverse paths). Those clock skew
estimators will show a degradation in the clock skew performance

FIGURE 13
Performance comparison between the calculated expressions for the approximated MSE upper bounds ((13); (36); (48)) with the simulated clock
skew performance obtainedwith themodified clock skew estimators ((6); (9); (10)) for the fGn case and for the packet loss case (a sort burst in the Forward
path). α =50ppm,Q =5 ms, Tsync=15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 400μs, σω2 � 10μs,HF=0.9,HR =0.5. PMF � 0.9, PMR � 0, rF =0.5,
rR =0. The averaged results were obtained for 100 Monte-Carlo trials.

FIGURE 14
Performance comparison between the calculated expressions for the approximated MSE upper bounds ((13); (36); (48)) with the simulated clock
skew performance obtained with the modified clock skew estimators ((6); (9); (10)) for the fGn case and the packet loss case (burst in the Forward and
Reverse paths). α =50ppm, Q =5 ms, Tsync =15.6 ms (64 packet/sec), dms =0.8 ms, dsm =1 ms, σω1 � 200μs, σω2 � 200μs, HF =0.9, HR =0.5. PMF � 0.9,
PMR � 0.3, rF =0.25, rR =0.25. The averaged results were obtained for 100Monte-Carlo trials.
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when packet loss occurs. A reduction in the clock skew
performance is also shown in other clock skew estimators,
such as with the MLLE clock skew estimator [12] or with the
Kalman clock skew estimator [15]. In order to make them work
efficiently in the packet loss environment, we modify the three
clock skew estimators [2], [3] in such a way that they will also
work efficiently for the packet loss case.

4.1 Theorem 1

The TWD clock skew estimator from [2] is in the following
modified to answer also for the packet loss case and is given by:

α̂ � 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T̂2,j i( ) +

T̂4,j i( )
T3,j i( )

⎛⎝ ⎞⎠ − 1 (6)

where α̂ is the estimated clock skew and for l = 1, 3 we may express
Tl,j(i) as:

Tl,j i( ) � tl j + i[ ] − tl j[ ] (7)
and T̂~l,j(i) is given for ~l � 2, 4 by:

T̂~l,j i( ) � t̂~l j + i[ ] − t̂~l j[ ] (8)

If during a Sync period, the time stamps t2[j] or t4[j] or both of them
are missing, we estimate them (t̂~l[j]) based on (3) or (4), otherwise
no estimation is needed and in this case, we have t̂~l[j] � t~l[j]. The
OWD clock skew estimators for the Forward and Reverse paths
from [3] are modified to answer also for the packet loss case and can
be written as:

α̂F � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T̂2,j i( )

⎛⎝ ⎞⎠ − 1 (9)

and

α̂R � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T̂4,j i( )
T3,j i( )( ) − 1 (10)

where α̂F and α̂R are the estimated clock skews for the Forward and
Reverse paths, respectively.

4.1.1 Proof of Theorem 1
The proof is given in the appendix.

5 The MSE upper bound for the
modified clock skew estimators

By having on hand the MSE expressions, the system designer
can know the total number of Sync periods needed to answer the
system’s performance requirement from the MSE point of view.
Thus, it could be helpful to have closed-form approximated
expressions for the MSE related to the proposed clock skew
estimators (6), (9) and (10) under the packet loss case. In [2]
and [3], we assumed to have all the PTP packets to derive the
closed-form approximated expressions for the MSE. However, in
the packet loss case, we have to estimate the missing time stamps
according to (3) and (4). Therefore, it is not easy to derive the

closed-form approximated expressions for the MSE related to the
proposed modified clock skew estimators. In the following, we
derive the upper bounds for the closed-form approximated
expressions for the MSE related to the modified TWD clock
skew estimator and OWD clock skew estimators for the Forward
and Reverse paths ((6); (9); (10)) for the packet loss case. The
approximated MSE upper bounds are applicable for the fGn case
with packet loss and in the presence of asymmetry in the fixed
delays, asymmetry in the PDVs, or even asymmetry in the Hurst
exponent parameters between the Forward and Reverse paths.

5.1 Assumptions

In the following, we assume that the PTP system operates in an
fGn environment (including the Gaussian case); the PDV is a
zero-mean process with the Hurst exponent parameter (H) in the
range of 0.5 ≤ H < 1. The PDV variance for j = i is:

E ωn i( )ωn j( )[ ] � σ2ωn
(11)

When i ≠ j, the PDV variance is given by [16] and [17]:

E ωn i( )ωn j( )[ ] � σ2ωn

2
i − j
∣∣∣∣ ∣∣∣∣a − 1
∣∣∣∣ ∣∣∣∣2Hp − 2 i − j

∣∣∣∣ ∣∣∣∣a( )2Hp + i − j
∣∣∣∣ ∣∣∣∣a + 1( )2Hp[ ]

(12)

where for n = 1, 2 and p = F, R, respectively. HF and HR are the
Hurst exponent parameters for the Forward and Reverse paths,
respectively. Note that the a parameter is related to the gfGn case.
In this work, we set a = 1 for the gfGn case (thus considering only
the fGn case).

5.2 Theorem 1

The approximated MSE upper bound expression for the
modified TWD clock skew estimator (6) with packet loss is:

E e2[ ] ≈ GTWD

2 J − 1( )Tsyn( )2 1 + 1
~P

( ) σ2
ω1

2 − J − 2( )2HF + 2 J − 1( )2HF − J( )2HF( )(
+ σ2

ω2
2 − J − 2( )2HR + 2 J − 1( )2HR − J( )2HR( ))

+ 1 − GTWD( )
J J − 1( )Tsyn( )2 σ2ω1

+ σ2ω2
( ) 1 + 1

P
( )C J,HF( ) +D J,HF( )( )

(13)
~P is given by:

~P � σ2ω1
+ σ2ω2

( )
6σ4ω1

J − 1( )2T2
syn (14)

where P, A, B, C, and D are given by [2]:

P � A

B

σ2ω1
+ σ2ω2

σ4ω1

( )T2
syn (15)

A � 2∑J−1
i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16)
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B � 12∑J−1
i�1

J − i

i4
+ 6∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k
m�j+i
m�j−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j−k

1

ik( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

C � ∑J−1
i�1

J − i

i2
2 − fGH* i, Hp, a( )( )

+∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
(1 + 1

2
(fG

H
* i − k,Hp, a( )

−fGH* i, Hp, a( ) − fGH* k,Hp, a( )))
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik
(1 − 1

2
(fGH* i, Hp, a( )

−fGH* k,Hp, a( ) + fGH* i + k,Hp, a( ))) (18)

D � ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
2ik

fGH* j −m,Hp, a( ) − fGH* j + i −m,Hp, a( )(

−fGH* j −m − k,Hp, a( ) + fGH* j + i −m − k,Hp, a( ))
(19)

And the function fGH* (.) is given by [2]:

fGH* x,Hp, a( ) � ‖xa| − 1|2Hp − 2 |xa|( )2Hp + |xa| + 1( )2Hp[ ] (20)

where p = F, R.
Please note that in [2] HF = HR = H since we assumed that

both paths have the same Hurst exponent parameters. We also
have σ2ω2

� σ2ω2
~S, where ~S is a compensation factor that

compensates for the asymmetry between the Hurst exponent
parameters for the Forward and Reverse paths. ~S is given by:

~S � C J,HR( ) 1 + 1
P( ) +D J,HR( )

C J,HF( ) 1 + 1
P( ) +D J,HF( ) (21)

And GTWD is a weight function for the approximated MSE upper
bound related to the TWD case (6) and is defined by:

if PMF ≠ 0 andPMR ≠ 0

GTWD � 2

J 1 − PMF

3
− PMR( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠max RF, RR( )

else if PMF ≠ 0

GTWD � 2

J 1 − PMF

3
( )RF

else if PMR ≠ 0

GTWD � 2
J 1 − PMR( )RR

else
GTWD � 0

(22)

where PMF and PMR are denoted as the packet loss percentage in
the Forward and Reverse paths, respectively (0≤PMF, PMR < 1),

and max(., .) is the maximum function. The parameters RF and
RR are correction parameters that are applied in the case where
the missing packets appear as short bursts instead of being
randomly distributed over time. The correction parameters RF

and RR are set by the user and are defined as:

RF � r + rF
J

4
PMF

3
( ) (23)

And

RR � r + rR
JPMR

4
( ) (24)

where r is a positive parameter. In our simulations, we set r = 2. If
we set a higher value for r, we will get a higher approximated
upper bound for the MSE, and on the contrary, if we set a lower
value for r, the approximated upper bound for the MSE will be
lower. The system designer sets the variables rF and rR in the
range of 0 ≤ rF, rR ≤ 1. When the system designer assumes that
the packet loss is randomly distributed over time, he sets rF = 0 or
rR = 0. However, if the system designer assumes that all the
missing packets at the Forward or Reverse paths appear at one
burst, he sets rF = 1 or rR = 1. Note that the system designer has to
set the parameters: PMF, PMR, rF, and rR, in order to apply the
approximated upper bound for the MSE related to the TWD
clock skew estimator (6). Those parameters (PMF, PMR, rF, rR) do
not necessarily represent the actual statistics of the ratio of the
packet loss for the Forward and Reverse paths but are intended
to help the system designer to get approximately the maximum
number of Sync periods needed to obtain the system’s
requirement.

5.2.1 Proof of Theorem 1
In order to derive the approximated upper bound related to

the TWD clock skew estimator (6), we apply two different
cases. The first is case A when the Slave has no missing packets,
as shown in [2] and [3]. The second is case B when all the
packets are lost except those related to the first and last Sync
periods, as will be shown in the following. The approximated
MSE upper bound will be the summation of case A and case B
with different weights. Let us recall from [2] the general
expression for the approximated MSE related to the TWD
clock skew estimator:

E e2[ ]≈ 1
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ E Ω2,j i( )Ω2,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦
(25)

where Ωn,j(i) is:

Ωn,j i( ) � ωn j + i[ ] − ωn j[ ] (26)
For case B, we have only the first and the last Sync periods, where
based on (26)Ωn,1 (J − 1) = ωn [J] − ωn [1]. In (25) as we have shown
in [2], we have J(J−1)

2 cases for the expression Ωn,j(i) for J Sync
periods. However, in case B, we have only one case. Therefore, (25)
can be written for case B as:
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E e2[ ] ≈ 1
2Tsyn

( )2
E Ω1,1 J − 1( )Ω1,1 J − 1( )[ ]

J − 1( )2 + E Ω2,1 J − 1( )Ω2,1 J − 1( )[ ]
J − 1( )2[

+ 1

T2
syn

E Ω2
1,1 J − 1( )Ω2

1,1 J − 1( )[ ]
J − 1( )4

⎤⎦
(27)

By substituting (26) into (27) we may write:

E e2[ ] ≈
1

2 J − 1( )Tsyn
( )2⎡⎣E[ω2

1 J[ ]] + E ω2
1 1[ ][ ] − 2E ω1 1[ ]ω1 J[ ][ ]⎤⎦

+ E ω2
2 J[ ][ ] + E ω2

2 1[ ][ ] − 2E ω2 1[ ]ω2 J[ ][ ]

+ E ω4
1 J[ ][ ] + E ω4

1 1[ ][ ] + 6E ω2
1 1[ ]ω2

1 J[ ][ ]
J − 1( )Tsyn( )2 − 4E ω1 1[ ]ω3

1 J[ ][ ] + 4E ω3
1 1[ ]ω1 J[ ][ ]

J − 1( )Tsyn( )2 ⎤⎥⎥⎥⎥⎦
(28)

By setting E[ω1[1]ω3
1[J]] and E[ω3

1[1]ω1[J]] to zero, the expression
in (28) can be written as:

E e2[ ] ≈ 1
2 J − 1( )Tsyn

( )2⎡⎣ E ω2
1 J[ ][ ] + E ω2

1 1[ ][ ] − 2E ω1 1[ ]ω1 J[ ][ ]( )
+ E ω2

2 J[ ][ ] + E ω2
2 1[ ][ ] − 2E ω2 1[ ]ω2 J[ ][ ]( )

+ E ω4
1 J[ ][ ] + E ω4

1 1[ ][ ] + 6E ω2
1 1[ ]ω2

1 J[ ][ ]
J − 1( )Tsyn( )2⎛⎝ ⎞⎠⎤⎦ (29)

Based on the assumption made in (11) we may write (29) for the
Gaussian case (H = 0.5) as:

E e2[ ] ≈ 1
2 J − 1( )Tsyn

( )2

2σ2ω1
+ 2σ2ω2

+ 1

J − 1( )Tsyn( )2 6σ4ω1
+ 6σ2

ω1
σ2ω1

( )⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
(30)

After rearranging (30), we have for the Gaussian case (H = 0.5):

E e2[ ] ≈ 1
2 J − 1( )Tsyn

( )2

2 σ2ω1
+ σ2ω2

( ) 1 + 1
~P

( )[ ] (31)

where ~P is defined in (14).For the fGn case (0.5 ≤ H < 1), based on
the assumptions made in (11) and (12), we may write the two first
parts in the square brackets in (29) as:

E ω2
n J[ ][ ] + E ω2

n 1[ ][ ] − 2E ωn 1[ ]ωn J[ ][ ]
� 2σ2ωn

− σ2ωn
J − 2( )2Hp − 2 J − 1( )2Hp + J( )2Hp( ) (32)

The third part in the square brackets in (29) is quite challenging for
the fGn case. In [2], we had a similar difficulty with a different
expression. Thus, we will apply here the same technique as was used
in [2] to calculate the challenging part here. Therefore, by using the
same technique applied in [2], we multiply the sum of the first two
parts in the square brackets in (29) with the factor (1 + 1

~P
). Please

note that ~P (14) is obtained by dividing the sum of the first two parts
in the square brackets in (30) by the third part in the square brackets
in (30) for the Gaussian case. Therefore, in case B, the general
expression for the approximated MSE related to the TWD clock
skew estimator for the fGn case can be written as:

E e2[ ] ≈ 1
2 J − 1( )Tsyn

( )2

1 + 1
~P

( ) σ2
ω1

2 − J − 2( )2HF + 2 J − 1( )2HF − J( )2HF( )[
+ σ2

ω2
2 − J − 2( )2HR + 2 J − 1( )2HR − J( )2HR( )]

(33)

For case A, let us recall from [2] the general expression for the
approximated MSE related to the TWD clock skew estimator for the
fGn case:

E e2[ ] ≈ σ2ω1
+ σ2ω2

( )
J J − 1( )Tsyn( )2 1 + 1

P
( )C +D( ) (34)

In [2], we assumed that we have the same Hurst exponent
parameter for the Forward and Reverse paths (HF = HR), but
in this work, we also consider the case where HR ≠HF. Therefore,
we have to apply the compensation factor in (21). In this case, we
set the Hurst exponent parameter for the Forward path (HF) for C
(18) and D (19), and we also multiply the PDV variance of the
Reverse path with the compensation factor (σ2ω2

� σ2ω2
~S).

Therefore, we can write (34) as:

E e2[ ] ≈ σ2ω1
+ σ2ω2

( )
J J − 1( )Tsyn( )2 1 + 1

P
( )C J,HF( ) +D J,HF( )( ) (35)

Up to now, we have the two general expressions for the
approximated MSE related to the TWD clock skew estimator for
two cases, case A given by (35), and the second case B as shown in
(33). In order to derive the approximated MSE upper bound, we
have to define the weight function that sums those two general
expressions for the approximatedMSE. The weight function (GTWD)
is applied for case B, where for case A we apply (1 − GTWD). The
weight functionGTWD depends on the two parameters PMF and PMR.
Thus, we have four options for the setting GTWD:

Option 1:When we have all the PTP packets (PMF � PMR � 0),
we set GTWD = 0. In this case, we have only the general expressions
for the approximated MSE related to the TWD clock skew estimator
for case A.

Option 2:When we have packet loss only in the Forward path
(PMF ≠ 0 and PMR � 0). In this case, we have approximately J(1 −
PMF/3) time stamps (of t2 [j] or t4 [j]) in the Forward path, and in
case B we have two Sync periods. The parameter RF increases the
ratio between those numbers and gives more weight to the
approximated MSE of case B. Therefore, if we set a higher
value for RF, we will get a higher approximated upper bound
for the MSE. In this case, we can set GTWD � 2

J(1−PMF/3)RF.
Option 3: When we have packet loss only in the Reverse path

(PMF � 0 and PMR ≠ 0). In this case, in the Reverse path, we have
approximately J(1 − PMR) time stamps (of t4 [j]), and in case B, we
have two Sync periods. The parameter RR increases the ratio between
those numbers and gives more weight to the approximated MSE of
case B. Therefore, if we set a higher value for RR, we will get a higher
approximated upper bound for the MSE. In this case, we can set
GTWD � 2

J(1−PMR)RR.
Option 4:When we have packet loss in both paths (PMF ≠ 0 and

PMR ≠ 0). In this case, we may have approximately J(1 − PMF/3 −
PMR) time stamps (of t2 [j] or t4 [j]). Note that we assume that the
missing time stamps in the Forward path are at a different Sync
period than those in the Reverse path. Therefore, we set GTWD �

2
J(1−PMF/3−PMR)max(RF, RR).

By using the weight function (22) together with (33) and (35), we
can get the MSE upper bound in (13), and this completes our proof.
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5.3 Theorem 2

The approximated MSE upper bound expression for the
modified OWD clock skew estimator for the Forward path (9)
with packet loss is:

E e2F[ ] ≈ GOWDF

J − 1( )Tsyn( )2 1 + 1
~PF

( ) σ2ω1
2 − J − 2( )2HF + 2 J − 1( )2HF − J( )2HF( )( )

+ 4σ2ω1
1 − GOWDF( )

J J − 1( )Tsyn( )2 1 + 1
PF

( )C J,HF( ) +D J,HF( )( )
(36)

where ~PF is:

~PF � J − 1( )2T2
syn

6σ2ω1

(37)

And PF is given by [3] as:

PF � A

B

T2
syn

σ2ω1

( ) (38)

whereGOWDF is the weight function in the approximatedMSE upper
bound expression related to the OWD for the Forward path case (9)
and is defined as:

if PMF ≠ 0

GOWDF �
2

J 1 − PMF

3
( )RF

else
GOWDF � 0

(39)

5.4 Proof of Theorem 2

In order to derive the approximatedMSE upper bound related to
the OWD clock skew estimator for the Forward path (9), we also
apply here case A and case B. The MSE upper bound is the
summation of these two cases with different weights.

Let us recall from [3] the general expression for the
approximated MSE related to the OWD clock skew estimator for
the Forward path:

E e2F[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦ (40)

For case B, as we explained earlier, we have only the first and the last
Sync periods. Thus, based on (26)Ω1,1 (J − 1) = ω1[J] − ω1[1]. In (40)
as we have shown in [3], we have (J(J−1)

2 cases for the expression
Ω1,j(i) for J Sync periods. However, in case B, we have only one case.
Therefore, (40) can be written for case B as:

E e2F[ ] ≈ 1
Tsyn

( )2
E Ω1,1 J − 1( )Ω1,1 J − 1( )[ ]

J − 1( )2 + 1

T2
syn

E Ω2
1,1 J − 1( )Ω2

1,1 J − 1( )[ ]
J − 1( )4

⎡⎣ ⎤⎦
(41)

By substituting (26) (Ω1,1(J − 1) =ω1[J] −ω1[1]) into (41) and setting
E[ω1[1]ω3

1[J]] and E[ω3
1[1]ω1[J]] to zero, we may write:

E e2F[ ] ≈ 1
J − 1( )Tsyn

( )2⎡⎣ E ω2
1 J[ ][ ] + E ω2

1 1[ ][ ] − 2E ω1 1[ ]ω1 J[ ][ ]( )
+ E ω4

1 J[ ][ ] + E ω4
1 1[ ][ ] + 6E ω2

1 1[ ]ω2
1 J[ ][ ]

J − 1( )Tsyn( )2⎛⎝ ⎞⎠⎤⎥⎥⎥⎥⎦
(42)

Based on (42) and the assumption made in (11), the general
expression for the approximated MSE related to the OWD clock
skew estimator for the Forward path applicable to the Gaussian case
(H = 0.5) for case B is:

E e2F[ ] ≈ 1
J − 1( )Tsyn

( )2

2σ2ω1
+ 1

J − 1( )Tsyn( )2 6σ4ω1
+ 6σ2ω1

σ2ω1
( )⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

(43)
After rearranging (43), we have for the Gaussian case (H = 0.5):

E e2F[ ] ≈ 1
J − 1( )Tsyn

( )2

2 σ2ω1
( ) 1 + 1

~PF

( )[ ] (44)

Where ~PF is defined in (37).For the fGn case, the first part in the square
brackets in (42) can be written according to (32), for n = 1 and p = F.
The general expression for the approximated MSE related to case B for
the OWD clock skew estimator for the fGn case can be obtained by
using (11) and multiplying the first part in the square brackets in (42)
with the factor (1 + 1

~PF
). Please note that the factor ~PF (37) is obtained

by dividing the first part in the square brackets in (43) by the second
part in the square brackets in (43) for the Gaussian case. Thus, based on
(44), for case B, the general expression for the approximated MSE
related to the OWD clock skew estimators for the Forward path
applicable to the fGn case (0.5 ≤ H < 1) is:

E e2F[ ] ≈ 1
J − 1( )Tsyn

( )2

1 + 1
~PF

( )
σ2ω1

2 − J − 2( )2HF + 2 J − 1( )2HF − J( )2HF( )[ ] (45)

For case A, let us recall from [3] the general expression for the
approximated MSE related to the OWD clock skew estimator for the
Forward path applicable to the fGn case:

E e2F[ ] ≈ 4σ2ω1
( )

J J − 1( )Tsyn( )2 1 + 1
PF

( )C +D( ) (46)

In this case, we apply only the Forward path, and there is no
asymmetry issue between the paths, unlike the TWD clock skew
estimator. In (46), we set (18) and (19) for C and D, respectively,
with the Hurst exponent parameter related to the Forward path
(HF). Therefore, (46) can be written as:

E e2F[ ] ≈ 4σ2ω1
( )

J J − 1( )Tsyn( )2 1 + 1
PF

( )C J,HF( ) +D J,HF( )( ) (47)

Up to now, we have the two general expressions for the
approximated MSE related to the OWD clock skew estimator for
the Forward path, for case A (47) and for case B (45). In order to
derive the approximated MSE upper bound, we have to define the
weight function that sums those two general expressions for the
approximated MSE. The weight function GOWDF is applied for case
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B, whereas for case A we apply (1 − GOWDF). The weight function
GOWDF depends on the parameter PMF. Thus, we have two options
for setting the function GOWDF:

Option 1: When we have all the PTP packets in the Forward
path (PMF � 0), we set GOWDF � 0. In this case, we have only the
general expressions for the approximated MSE related to the OWD
clock skew estimator for the Forward path for case A.

Option 2: When we have packet loss in the Forward path
(PMF ≠ 0). In this case, in the Forward path, we have
approximately J(1 − PMF/3) time stamps (of t2[j] or t4[j]), and in
case B we have two Sync periods. The parameter RF increases the ratio
between those numbers and gives more weight to the approximated
MSE of case B. Therefore, if we set a higher value for RF, we will get a
higher approximated upper bound for the MSE. In this case, we can set
GOWDF � 2

J(1−PMF/3)RF.
By using the weight function (39) together with (45) and (47), we

can get the approximated MSE upper bound in (36), and this
completes our proof.

5.5 Theorem 3

The approximated MSE upper bound expression for the
modified OWD clock skew estimator for the Reverse path (10)
with packet loss is:

E e2R[ ] ≈ GOWDR

J − 1( )Tsyn( )2 σ2ω2
2 − J − 2( )2HR + 2 J − 1( )2HR − J( )2HR( )( )

+ 4σ2ω2
1 − GOWDR( )

J J − 1( )Tsyn( )2 C J,HR( ) +D J,HR( )( ) (48)

where GOWDR is the weight function for the approximated MSE
upper bound related to the OWD for the Reverse path case (10) and
is defined as the weight function for the approximated MSE upper
bound related to the TWD case (6) (GOWDR � GTWD).

5.6 Proof of Theorem 3

In order to derive the approximatedMSE upper bound related to
the modified OWD clock skew estimator for the Reverse path (10),
we apply also here case A and case B. The approximated MSE upper
bound is the summation of these two cases with different weights.

Let us recall from [3] the general expression for the approximated
MSE related to the OWD clock skew estimator for the Reverse path:

E e2R[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦
(49)

For case B, as we explained earlier, we have only the first and the last
Sync periods. Thus, based on (26)Ω2,1 (J − 1) = ω2[J] − ω2[1]. In (49)
as we have shown in [3], we have (J(J−1)

2 cases for the expression
Ω2,j(i) for J Sync periods. However, in case B, we have only one case.
Therefore, (49) can be written for case B as:

E e2R[ ] ≈ 1
Tsyn

( )2
E Ω2,1 J − 1( )Ω2,1 J − 1( )[ ]

J − 1( )2[ ] (50)

By substituting (26) into (50), we may write:

E e2R[ ] ≈ 1
J − 1( )Tsyn

( )2

E ω2
2 J[ ][ ] + E ω2

2 1[ ][ ] − 2E ω2 1[ ]ω2 J[ ][ ][ ]
(51)

Based on (51) and the assumption made in (11), the general
expression for the approximated MSE related to the modified
OWD clock skew estimator for the Reverse path applicable to the
Gaussian case (H = 0.5) in case B is:

E e2R[ ] ≈ 2σ2ω2

J − 1( )Tsyn( )2 (52)

For the fGn case (0.5 ≤H < 1), according to (32) for n = 2 and p = R,
and based on (52), the general expression for the approximated MSE
related to the OWD clock skew estimators for the Reverse path
applicable to case B is:

E e2R[ ] ≈ 1
J − 1( )Tsyn

( )2

σ2ω2
2 − J − 2( )2HR + 2 J − 1( )2HR − J( )2HR( )[ ] (53)

For case A, let as recall from [3] the general expression for the
approximated MSE related to the OWD clock skew estimator for the
Reverse path applicable to the fGn case (0.5 ≤ H < 1):

E e2R[ ] ≈ 4σ2ω2
( )

J J − 1( )Tsyn( )2 C +D( ) (54)

In this case, we apply only the Reverse path, and there is no
asymmetry issue between the paths, unlike in the case where the
MSE related to the TWD clock skew estimator is considered. In (54),
we set (18) and (19) for C and D, respectively, with the Hurst
exponent parameter related to the Reverse path (HR). Therefore,
(54) can be written as:

E e2R[ ] ≈ 4σ2ω2
( )

J J − 1( )Tsyn( )2 C J,HR( ) +D J,HR( )( ) (55)

Up to now, we have the two general expressions for the
approximated MSE related to the OWD clock skew
estimator for the Reverse path, for case A (55) and for case
B (53). In order to derive the approximated MSE upper bound,
we have to define the weight function that sums those two
general expressions for the approximated MSE. The weight
function GOWDR is applied for case B, where for case A we apply
(1 − GOWDR). The weight function GOWDR is the same as the
GTWD weight function since the OWD clock skew estimator for
the Reverse path depends on both paths (Forward and
Reverse). The Slave sends the Delay Req message at t3[j] in
the Reverse path and receives the Delay Resp message with the
time stamp t4[j] in the Forward path.

By using the weight function (22) together with (53) and (55), we
can get the approximated MSE upper bound in (48), and this
completes our proof.
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6 Simulation results

This section tests the performance of the modified TWD and
OWD clock skew estimators ((6), (9), (10)) compared to the
TWD and OWD clock skew estimators from [2]; [3] under the
packet loss case to demonstrate the effectiveness of the three
modified clock skew estimators ((6), (9), (10)) in packet loss
scenarios. Let us recall the three clock skew estimators from [2],
[3]. The TWD clock skew estimator from [2] is:

α̂O � 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T2,j i( ) +

T4,j i( )
T2,j i( )( ) − 1 (56)

The OWD clock skew estimator for the Forward and Reverse path
from [3] are:

α̂FO � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T2,j i( )( ) − 1 (57)

And

α̂RO � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T4,j i( )
T2,j i( )( ) − 1 (58)

In addition, we compared the performance of the modified TWD
and OWD clock skew estimators ((6), (9), (10)) also with the
literature clock skew estimators (ML-like (MLLE) [12] and
Kalman [15]). According to [12] we have:

β̂ � T2,1 J − 1( )2 + T3,1 J − 1( )2
T1,1 J − 1( )T2,1 J − 1( ) + T3,1 J − 1( )T4,1 J − 1( ) − 1 (59)

where

β̂ � 1
α̂M + 1

− 1 (60)

T~n,j(i) � t~n[j + i] − t~n[j] for ~n � 1, 2, 3, 4 and where α̂M is the clock
skew estimator.According to [15] the Kalman measurement
equation is:

T1,j L( ) − T2,j L( ) � T2,j L( )α +Ω1,j L( ) (61)
where L is the sliding window’s length as defined in [15].

The Kalman state equation is:

α̂K j + 1[ ] � α̂K j[ ] + u j[ ]. (62)
where α̂K is the clock skew estimator, and the variance of u [j] is
QKAL. The estimate of the noise measurement variance is R̂ and
given by [15]:

R̂ j[ ] � 1 − δσ( )R̂ j − 1[ ] + δσ x j[ ] − μ̂ j[ ]( )2 (63)
where

μ̂ j[ ] � 1 − δμ( )μ̂ j − 1[ ] + δμx j[ ]; x j[ ] � T1,j L( ) − T2,j L( )
(64)

δμ and δσ are smoothing factors which are between zero
and one.

Finally, we test the approximated MSE upper bounds ((13), (36),
(48)) related to the modified clock skew estimators ((6), (9), (10)) in
the packet loss case for different scenarios.

6.1 The modified TWD and OWD clock skew
estimators’ performances

At first, we show various simulation results in order to show the
efficiency of the modified TWD and OWD clock skew estimators ((6);
(9); (10)) compared to the TWD andOWD clock skew estimators from
[2], [3] ((56); (57); (58)) under the packet loss case. In Figures 2–6, we
have the clock skew performance comparison between the modified
clock skew estimators ((6); (9); (10)) with the clock skew estimators
given in (56)-(58) for three scenarios: 1) PTP system without packet
loss. 2) The TWD and OWD clock skew estimators derived in [2, 3 and
14] ((56); (57); (58)) with packet loss in the Forward path. 3) The
modified TWD and OWD clock skew estimators ((6); (9); (10)) with
packet loss in the Forward path. The packet loss percentage in the
Forward path in Figures 2–6 is 90%, PMF � 0.9 (except for Figure 4B).
Note that for PMF � 0.9, on average, we have 30% missing messages
randomly distributed for each Forward message (Sync message,
Follow-up message, and Delay Resp message). Figures 2–4 show
the clock skew performance comparison between the modified
TWD and OWD clock skew estimators ((6); (9); (10)) with the
TWD and OWD clock skew estimators from [2, 3 and 14] ((56);
(57); (58)) for the Gaussian case, while Figures 5, 6 are for the fGn case
whereH> 0.5. According to Figures 2–6, themodified TWDandOWD
clock skew ((6); (9); (10)) performances are better compared with the
TWD and OWD clock skew performances obtained via (56), (57), and
(58) for the packet loss case and are very close to the TWD and OWD
clock skew performances obtained via (56); (57),; (58) for the non-
packet loss case. Please note that in Figure 4A, we have the case with
PMF � 0.9. In this case, the performance of the modified clock skew
estimator (9) and the clock skew estimator (57) under packet loss are
very close since we have 30% missing Sync messages. As we explained
earlier, in case of packet loss in the Forward path, only the missing Sync
messages may decrease the performance of the OWD clock skew
estimator for the Forward path. In Figure 4B, the percentage of
missing Sync messages was set to 60%. According to Figure 4B, the
modified clock skew estimator (9) has a better clock skew performance
compared to the OWD clock skew estimator for the Forward path (57);
Figure 7; Figure 8 show the clock skew performance comparison of the
modified TWDandOWDclock skew estimators ((6); (9); (10)) with the
literature-known clock skew estimators (MLLE estimator [12] and
Kalman estimator [15]). According to Figures 7, 8, the modified
TWD and OWD clock skew estimators ((6); (9); (10)) have better
clock skew performances from the MSE point of view compared with
the literature-known clock skew estimators [12] and [15].

6.2 The approximated MSE upper bounds

In the following, we test the expressions for the approximated
MSE upper bounds ((13); (36); (48)) for various scenarios: 1)
Gaussian (H = 0.5) and fGn (H > 0.5) cases. 2) Asymmetry in
the PDVs or asymmetry in the Hurst exponent parameters between
the Forward and Reverse paths. 3) Randomly distributed missing
time stamps or bursts of missing time stamps.Figure 9 and Figure 10
show the performance obtained with the closed-form approximated
expressions for the MSE upper bounds ((13), (36), (48)) compared
with the simulated performance (MSE) obtained with the modified
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TWD and OWD clock skew estimators ((6); (9); (10)) with packet
loss of 90% in the Forward path. According to Figures 9, 10 the
approximated MSE upper bounds ((13); (36); (48)) are very close to
the corresponding simulated clock skew performances obtained
with (6), (9), and (10). Figure 11 shows the approximated MSE
upper bounds ((13); (36); (48)) compared with the simulated
performance (MSE) obtained with the modified TWD and OWD
clock skew estimators ((6); (9); (10)) for the packet loss case in both
paths and asymmetry in the Hurst exponent parameter between the
Forward and Reverse path. According to Figure 11, the
approximated MSE upper bounds ((13); (36); (48)) are very close
to the corresponding simulated clock skew performances obtained
with (6), (9) and (10). Until now, we simulated packet loss that was
randomly distributed. Next, we tested the performance obtained
with the approximated expressions for the upper bounds in case we
have a burst of missing messages. Figures 12–14 show the
performances of the approximate MSE upper bounds ((13); (36);
(48)) compared with the simulated performance (MSE) obtained
with the modified TWD and OWD clock skew estimators ((6); (9);
(10)) with different lengths of burst for the packet loss case.
Figure 12 shows a packet loss burst with the length of 150 Sync
periods in the Forward path. In this case, we set rF = 1 and rR = 0.
Figure 13 shows a packet loss burst with a length of 75 Sync periods
in the Forward path. In this case, we set rF = 0.5 and rR = 0. In
Figure 14, we have a packet loss burst with a length of 75 Sync
periods in both paths. In this case, we set rF = 0.25 and rR = 0.25 since
there is an overlap in the Sync periods of the packet loss burst
between the Forward and Reverse paths. According to Figures
12–14, the approximated MSE upper bounds are very close to
the corresponding simulated clock skew performances obtained
with (6), (9), and (10) before the burst of packet loss begins and
after it ends. During the burst mode, the clock skew estimator cannot
be updated and thus the clock skew performance (MSE) does not
decrease.

7 Conclusion

In this paper, we have derived three modified clock skew
estimators (based on the TWD and OWD clock skew estimators
from our previous works) applicable in the fGn environment that
also answer on the packet loss scenario. These modified clock skew
estimators obtain almost the same clock skew performance (MSE)
for the packet loss case as those obtained without packet loss. The
MSE expression is an essential tool for the system designer in order
to estimate the number of Sync periods needed until the clock skew
estimator achieves the system’s requirements. In this paper, we

derived closed-form approximated expressions for the MSE upper
bounds related to the modified TWD and OWD clock skew
estimators for the Forward and Reverse paths in the packet loss
case. Those closed-form approximated expressions for the MSE
upper bounds are suitable for the fGn environment and applicable
also if asymmetry in the fixed delays exists or asymmetry in the
PDVs is observed or even if asymmetry in the Hurst exponent
parameters exists between the Forward and Reverse paths. In
addition, those approximated upper bounds are also applicable
for cases where the missing time stamps are not randomly
distributed over time but come in burst mode. Simulation results
confirm that the approximated MSE upper bounds are very tight to
the corresponding simulated clock skew performances obtained
with our modified clock skew estimators in this work. In the
future, we would like to benchmark the modified clock skew
estimators against the MLLE and Kalman ones on real-life data
sets instead of only simulated ones.
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Appendix A

In the following, we present the proof of Theorem 1 from
Section 4.

Based on (1) and (2) we can write:

T1,j i( ) + �Ω1,j i( ) � 1 + αj,i( )T̂2,j i( ) (A1)
And

T̂4,j i( ) − �Ω2,j i( ) � 1 + αj,i( )T3,j i( ) (A2)

where �Ωn,j(i) for n = 1, 2 is the subtraction of two unknown PDV
variables from different Sync periods and is defined as:

�Ωn,j i( ) � �ωn j + i[ ] − �ωn j[ ] (A3)
Please note that unlike in [2] and [3], we cover here also the case
where packets may get lost and those missing time stamps are
estimated in this work based on (3) and (4). Thus, when T~l,j(i)
can be derived via the received time stamps (without the need
for any estimation), we may write: T̂~l,j(i) � T~l,j(i), �ωn[j + 1] �
ωn[j + 1] and �ωn[j] � ωn[j], where ωn [j] and �ωn[j] are the
unknown PDV variables related to the received time stamps
and the estimated time stamps, respectively. Otherwise, we
apply the estimated time stamps t̂~l[j] or t̂~l[j + i] to derive
T̂~l,j(i), and use �ωn[j] in our calculations. Based on Eqs. A1,
A2 we can write:

α
i,j

� 1
2

T1,j i( )
T̂2,j i( ) +

T4,j i( )
T̂3,j i( )

⎛⎝ ⎞⎠ +
�Ω1,j i( )
T2,j i( ) −

�Ω2,j i( )
T3,j i( )( )⎛⎝ ⎞⎠ − 1 (A4)

From [2] we have:

α � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

αj,i (A5)

By putting Eq. A4 into Eq. A5, we may write:

α � 1
J J − 1( ) ∑J−1

i�1
∑J−i
j�1

T1,j i( )
T̂2,j i( ) +

T̂4,j i( )
T3,j i( )

⎛⎝ ⎞⎠ − 1 +∑J−1
i�1

∑J−i
j�1

�Ω1,j i( )
T̂2,j i( ) −

�Ω2,j i( )
T3,j i( )

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
� α̂ + 1

J J − 1( ) ∑
J−1

i�1
∑J−i
j�1

�Ω1,j i( )
T̂2,j i( ) −

�Ω2,j i( )
T3,j i( )

⎛⎝ ⎞⎠ � α̂ + e

(A6)

where e is its error.
Based on Eqs. A1, A2, and [3], we can write the modified OWD

clock skew estimators for the Forward and Reverse paths. The
modified OWD clock skew estimator for the Forward path is:

αF � 2
J J − 1( ) ∑J−1

i�1
∑J−i
j�1

T1,j i( )
T̂2,j i( )

⎛⎝ ⎞⎠ − 1 +∑J−1
i�1

∑J−i
j�1

�Ω1,j i( )
T̂2,j i( )

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
� α̂F + 2

J J − 1( ) ∑
J−1

i�1
∑J−i
j�1

�Ω1,j i( )
T̂2,j i( )

⎛⎝ ⎞⎠ � α̂F + eF

(A7)

And the modified OWD clock skew estimator for the Reverse
path is:

αR � 2
J J − 1( ) ∑J−1

i�1
∑J−i
j�1

T̂4,j i( )
T3,j i( )( ) − 1 −∑J−1

i�1
∑J−i
j�1

�Ω2,j i( )
T3,j i( )( )⎛⎝ ⎞⎠

� α̂R − 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

�Ω2,j i( )
T3,j i( )( ) � α̂R − eR

(A8)

where eF and eR are the errors of the modified OWD clock skew
estimators for the Forward and Reverse paths, respectively. This
completes our proof.
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