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The cubic fuzzy graph structure is a tool for modeling problems, in which there are
two fuzzy values for each variable and the relationships between them that cannot
be expressed as a single fuzzy number. Inducing the same relationship among
different subjects has an important effect on the understanding of uncertain
problems. This is especially ambiguous and complicated whenwe are dealing with
two different fuzzy values. With the aim of explaining edge regular in relationships
among vertices, the current research has introduced this concept in the cubic
fuzzy graph structure and expressed some of its characteristics. The edge regular
and the total edge regularity are described in relation to several relationships. This
concept has been applied in some special types such as the complete cubic fuzzy
graph structure, and its results have been reviewed. Moreover, the vertex regular
and its relationship with the edge regularity have been discussed. This study
showed that the degree of vertices is effective in the edge adjustment process. In
the end, an application of the topic under discussion is presented.
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1 Introduction

In today’s world, a graph is a well-known mathematical model for a set whose members
are related in some way. Mathematicians are particularly interested in understanding how
many vertices and edges a graph can have before various substructures appear. They eagerly
look for a set of vertices that are all connected by edges of the same color after certain
coloring procedures. In social networks, edges that do not belong to any cluster or that
connect different clusters are important in detecting anomalies. In similar cases, especially in
weighted graphs, the idea of regularity of vertices and edges in a graph was gradually
proposed.

In dealing with some events, classical graphs showed that they are not able to accurately
describe and model uncertain problems. The theory of fuzzy set (FS) proposed by Zadeh [1]
tried to model human reasoning, and in this process, it used approximate information and
inaccurate data to make decisions under uncertain conditions. Actually, these systems
mathematically model the existing inaccuracy and provide a suitable tool for real problems.
With the introduction of the fuzzy graph (FG) based on fuzzy sets by Rosenfeld [2], a new
perspective in the field of weighted graphs was opened to researchers. Gradually, different
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types of FGs were proposed by researchers. Talebi [3] studied the
Cayley fuzzy graph. A generalization of fuzzy sets called the
intuitionistic fuzzy set (IFS) was explained by Atanassov [4].
Borzooei et al. [5] presented properties of the product on the
intuitionistic fuzzy graph (IFG). In 2011, Akram and Dudek [6]
proposed an interval of fuzzy numbers instead of a fuzzy number by
introducing the interval-valued fuzzy graph (IVFG). Concepts of the
interval-valued intuitionistic fuzzy graph (IVIFG) were introduced
by Talebi et al. [7, 8]. Rashmanlou et al. [9] explained some concepts
of the bipolar fuzzy graph. Some properties of the single-valued
neutrosophic graph were studied by Zeng et al. [10]. Certain
concepts of vague graphs were studied by Kosari et al. [11–13].
Akram et al. [14–16] investigated concepts of connectivity in the
m-polar fuzzy network model. The connectivity index in a directed
rough fuzzy graph was studied by Ahmad et al. [17]. An extension of
the fuzzy competition graph and its applications was presented by
Pramanik et al. [18].

In 2006, Sampathkumar [19] established a new concept of
graphs called the graph structure (GS) by generalizing signed or
colored graphs. Since uncertainty and ambiguity in many
phenomena often occur in the form of two or more separate
relationships, therefore, a large part of problems can be modeled
with the fuzzy graph structure (FGS). The idea of the FGS was first
presented by Dinesh [20]. This concept was later developed by
Ramakrishnan and Dinesh [21]. The progress of the FGS was further
completed by the introduction of the intuitionistic fuzzy graph
structure (IFGS) and m-polar FGS by Akram et al. [22, 23]. Kou
et al. [24] researched the vague graph structure. Some decision-
making based on the FGS was presented by Akram et al. [25, 26].

In general, in all types of FGs, most of the membership values of
vertices and edges are in the form of one or more fuzzy numbers or
one or more interval-valued fuzzy numbers. In fuzzy research
studies, it was found that it was not possible to assign a fuzzy
number to all graph vertices, especially when the membership value
cannot be expressed with a fuzzy number. Jun et al. [27] tried to use
two fuzzy values and interval fuzzy values in assigning the
membership of graph vertices. By introducing the cubic fuzzy set
(CFS), they were able to label the vertices of an FG with two fuzzy
and interval values by combining FS and IVFS.With the flexibility of
this concept, various problems arising from uncertainties can be
solved. June et al. [28] also combined the neutrosophic set with CFS
and presented a new set called neutrosophic CFS. Novel
neutrosophic cubic graph structures were introduced by Gulistan
et al. [29]. Muhiuddin et al. [30] studied graphs based on m-polar
cubic structures. New types of CFGs and their applications are
categorized in the studies of Rashid et al. [31]. Muhiuddin et al. [32]
presented a new definition of CFG. Rashmanlou et al. [33] explained
some of the concepts of the CFG.

The concept of the regular FG was first mentioned in the
research by Ghani and Radha [34]. Pal et al. [35, 36] introduced
the concept of the irregular and regular FGs. The irregularity
concept, total irregularity, and total degree in an FG were defined
by Gani and Lathi [37]. The degree and the total degree of an edge
were introduced by Radha and Kumaravel [38]. Cary [39] initiated
the idea of perfectly regular and perfectly edge regular FGs.
Karunambigai et al. [40] introduced the concept of edge regular
IFGs. Kumar et al. [41] investigated the regularity concept in CFGs.

As a combination of FGS and CFG, the cubic fuzzy graph
structure (CFGS) is considered a more developed CFG model.
Maximal product concepts in CFGS were reviewed by Rao et al.
[42]. Some concepts of connectivity in CFGS were described by Shi
et al. [43]. It is important to study the regularity in CFGS that
supports multiple relationships. The necessity of examining the
regularity in a CFGS is because in most cases, we face more than
one relationship among objects for modeling. Li et al. [44]
investigated the concept of vertex regularity in a CFGS.

This paper investigates the edge regularity in a CFGS. We
examined some related features by defining the edge degree and
total edge degree. In the following, by introducing the order and size
in the CFGS, some related results were investigated. Moreover, a
study on the edge regular in the complete CFGS is carried out.
Vertex regularity and its relationship with an edge regular were
discussed. At the end, an application of a CFGS in the field of goods
and passenger transportation was presented.

2 Preliminaries

At the beginning of the discussion, we have to go over some basic
definitions to enter the main concepts.

A graph in the form of G = (V, E) is a set of vertices V
surrounded by a set of relations E. A graph structure (GS) X =
(V, E1, E2, . . ., Ek) is introduced from the set V with a set of mutual
relationship of E1, E2, . . ., Ek on V that every Ei is non-reflective and
symmetric for 1 ≤ i ≤ k [19].

A fuzzy graph (FG) on V is a pair G = (ς, ϑ), where ς is a fuzzy
subset (FS) of V and ϑ is a fuzzy relation on ς, so that ϑ(x, y) ≤ ς(x) ∧
ς(y) and ∀x, y ∈ V.

A cubic fuzzy set (CFS) of A on V is considered

A � 〈 μ z( ), ] z( )[ ], η z( )〉 | z ∈ V{ },

where [μ(z), ](z)] is an interval-valued fuzzy number and η(z) is a
fuzzy number as the membership value of z, so that μ, ], η: V →
[0, 1] [29].

Definition 2.1. [21] Consider Z = (V, E1, E2, . . ., Ek) as a GS. Then,
Z � (ς,ψ1,ψ2, . . . ,ψk) is known as the FGS if ς, ψ1, ψ2, . . ., ψk are FSs
on V, E1, E2, . . ., Ek, respectively, so that

ψi ab( )≤ ς a( ) ∧ ς b( ), ∀a, b ∈ V, 1≤ i≤ k.

Definition 2.2. [32] The pair G � (A,B) is named a cubic fuzzy
graph (CFG) on V if A � {〈[α(z), β(z)], γ(z)〉 | z ∈ V} is a CFS on
V, and B � {〈[α(wz), β(wz)], γ(wz)〉 | wz ∈ E} is a CFS on V × V
so that for all wz ∈ E,

αB wz( )≤ αA w( ) ∧ αA z( ),
βB wz( )≤ βA w( ) ∧ βA z( ),
γB wz( )≤ γA w( ) ∧ γA z( ).

Definition 2.3. [42] Consider G* � (V, E1, E2, . . . , Ek) as a GS.
Then, G � (A,B1,B2, . . . ,Bk) is known as a CFGS on G* if A �
{〈[α(z), β(z)], γ(z)〉 | z ∈ V} is a CFS on V, and Bi �
{〈[αBi(wz), βBi

(wz)], γBi
(wz)〉 | wz ∈ Ei} is a CFS on Ei so that
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αBi wz( ) ≤ αA w( ) ∧ αA z( ),
βBi

wz( ) ≤ βA w( ) ∧ βA z( ),
γBi

wz( ) ≤ γA w( ) ∧ γA z( ), ∀ wz ∈ Ei and 1≤ i≤ k.

Definition 2.4. [42] A CFGS G � (A,B1,B2, . . . ,Bk) is named a
complete CFGS if

αBi wz( ) � αA w( ) ∧ αA z( ),
βBi

wz( ) � βA w( ) ∧ βA z( ),
γBi

wz( ) � γA w( ) ∧ γA z( ), ∀ w, z ∈ V and 1≤ i≤ k.

Example 2.5. The CFGS of G � (A,B1,B2,B3) drawn in Figure 1 is
a complete CFGS.

A � 〈z1, 0.7, 0.9[ ], 1〉, 〈z2, 0.5, 0.6[ ], 0.6〉,{
〈z3, 0.6, 0.8[ ], 1〉, 〈z4, 0.4, 0.5[ ], 0.6〉},

B1 � 〈z1z2, 0.5, 0.6[ ], 0.6〉, 〈z3z4, 0.4, 0.5[ ], 0.6〉{ },
B2 � 〈z1z4, 0.4, 0.5[ ], 0.6〉, 〈z2z3, 0.5, 0.6[ ], 0.6〉{ },
B3 � 〈z1z3, 0.6, 0.8[ ], 1〉, 〈z2z4, 0.4, 0.5[ ], 0.6〉{ }.

Definition 2.6. [44] Consider G � (A,B1,B2, . . . ,Bk) to be a
CFGS. The Bi-degree of vertex z is considered to be
DBi(z) � 〈[Dαi(z),Dβi(z)],Dγi(z)〉, and it is defined as follows:

Dαi z( ) � ∑
wz∈Ei,z≠w

αBi wz( ),
Dβi z( ) � ∑

wz∈Ei,z≠w
βBi

wz( ),
Dγi z( ) � ∑

wz∈Ei,z≠w
γBi

wz( ).

Definition 2.7. [44] Consider G � (A,B1,B2, . . . ,Bk) to be a
CFGS. The total Bi-degree of vertex z is denoted by
TDBi(z) � 〈[TDαi(z),TDβi(z)],TDγi(z)〉, where

TDαi z( ) � ∑
wz∈Ei,z≠w

αBi wz( ) + αA z( ),
TDβi z( ) � ∑

wz∈Ei,z≠w
βBi

wz( ) + βA z( ),
TDγi z( ) � ∑

wz∈Ei,z≠w
γBi

wz( ) + γA z( ).

Table 1 shows some abbreviations in this article.

3 The edge regularity in cubic fuzzy
graph structures

In this section, we introduce the edge regularity in a CFGS and
examine some of its properties.

Definition 3.1. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. The Bi-edge
degree of wz in G is denoted by DBi(wz) �
〈[Dαi(wz),Dβi(wz)],Dγi(wz)〉 and defined as

Dαi wz( ) � Dαi w( ) +Dαi z( ) − 2αBi wz( ),
Dβi wz( ) � Dβi w( ) +Dβi z( ) − 2βBi

wz( ),
Dγi wz( ) � Dγi w( ) +Dγi z( ) − 2γBi

wz( ).

This definition is equivalent to

Dαi wz( ) � ∑
t≠z

αBi wt( ) +∑
t≠w

αBi zt( ),
Dβi wz( ) � ∑

t≠z
βBi

wt( ) + ∑
t≠w

βBi
zt( ),

Dγi wz( ) � ∑
t≠z

γBi
wt( ) + ∑

t≠w
γBi

zt( ).

Example 3.2. Consider CFGS G � (A,B1,B2), which is shown in
Figure 2, where

A � 〈z1, 0.7, 0.8[ ], 0.9〉, 〈z2, 0.5, 0.7[ ], 0.8〉, 〈z3, 0.4, 0.5[ ], 0.6〉,{
〈z4, 0.6, 0.7[ ], 0.9, 〉, 〈z5, 0.3, 0.4[ ], 0.5, 〉,
〈z6, 0.8, 0.9[ ], 0.7, 〉,

B1 � 〈z1z2, 0.3, 0.4[ ], 0.5〉, 〈z3z4, 0.4, 0.5[ ], 0.6〉,{
〈z3z6, 0.3, 0.4[ ], 0.5〉},

B2 � 〈z1z3, 0.1, 0.2[ ], 0.3〉, 〈z2z4, 0.5, 0.6[ ], 0.7〉,{
〈z3z5, 0.2, 0.3[ ], 0.4〉}.

The B2-edge degree z1z3 in G is calculated as follows:

FIGURE 1
Complete CFGS, G � (A,B1 ,B2 ,B3).

TABLE 1 Some abbreviations.

Notation Meaning

FS Fuzzy set

FG Fuzzy graph

GS Graph structure

FGS Fuzzy graph structure

CFS Cubic fuzzy set

CFG Cubic fuzzy graph

CFV Cubic fuzzy value

CFGS Cubic fuzzy graph structure
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Dα2 z1z3( ) � Dα2 z1( ) +Dα2 z3( ) − 2αB2 z1z3( ) � 0.1 + 0.3 − 2 0.1( ) � 0.2,
Dβ2 z1z3( ) � Dβ2 z1( ) +Dβ2 z3( ) − 2βB2

z1z3( ) � 0.2 + 0.5 − 2 0.2( ) � 0.3,
Dγ2 z1z3( ) � Dγ2 z1( ) +Dγ2 z3( ) − 2γB2

z1z3( ) � 0.3 + 0.7 − 2 0.3( ) � 0.4.

Therefore, DB2(z1z3) � 〈[0.2, 0.3], 0.4〉.
Remark 3.3. For any CFGS of G � (A,B1,B2, . . . ,Bk), the
following relationship for degrees of vertices of G is held:

∑
n

j�1
Dαi zj( ) � 2 ∑

n−1

j�1,l>j
αBi zjzl( ),

∑
n

j�1
Dβi zj( ) � 2 ∑

n−1

j�1,l>j
βBi

zjzl( ),

∑
n

j�1
Dγi zj( ) � 2 ∑

n−1

j�1,l>j
γBi

zjzl( ), ∀ 1≤ i≤ k and 1≤ l≤ n.

Definition 3.4. Let G � (A,B1,B2, . . . ,Bk) be a CFGS. The total
degree of Bi-edge wz is determined as
TDBi(wz) � 〈[TDαi(wz),TDβi(wz)],TDγi(wz)〉, where

TDαi wz( ) � Dαi wz( ) + αBi wz( ) � Dαi w( ) +Dαi z( ) − αBi wz( ),
TDβi wz( ) � Dβi wz( ) + βBi

wz( ) � Dβi w( ) +Dβi z( ) − βBi
wz( ),

TDγi wz( ) � Dγi wz( ) + γBi
wz( ) � Dγi w( ) +Dγi z( ) − γBi

wz( ).

This is equivalent to

TDαi wz( ) � ∑
t≠z

αBi wt( ) + ∑
t≠w

αBi zt( ) + αBi wz( ),
TDβi wz( ) � ∑

t≠z
βBi

wt( ) + ∑
t≠w

βBi
zt( ) + βBi

wz( ),
TDγi wz( ) � ∑

t≠z
γBi

wt( ) + ∑
t≠w

γBi
zt( ) + γBi

wz( ).

Example 3.5. Consider CFGS G � (A,B1,B2), as shown in
Figure 2. The total degree of B2-edge z1z3 in G can be
computed as follows:

TDα2 z1z3( ) � Dα2 z1( ) +Dα2 z3( ) − αB2 z1z3( ) � 0.1 + 0.3 − 0.1 � 0.3,
TDβ2 z1z3( ) � Dβ2 z1( ) +Dβ2 z3( ) − βB2

z1z3( ) � 0.2 + 0.5 − 0.2 � 0.5,
TDγ2 z1z3( ) � Dγ2 z1( ) +Dγ2 z3( ) − γB2

z1z3( ) � 0.3 + 0.7 − 0.3 � 0.7.

Therefore, TDB2(z1z3) � 〈[0.3, 0.5], 0.7〉.

Definition 3.6. Consider G � (A,B1,B2, . . . ,Bk) as a CFGS. If all
edges have the same Bi-edge degree 〈[a, b], c〉, then, G is said to be the
〈[a, b], c〉- Bi-edge regular. Moreover, If all edges have the same total
Bi-edge degree 〈[a, b], c〉, then, G is said to be the 〈[a, b], c〉-total
Bi-edge regular.

Definition 3.7. Consider G � (A,B1,B2, . . . ,Bk) as a CFGS. The
minimum Bi-edge degree of G is shown as
δBi(G) � 〈[δαi(G), δβi(G)], δγi(G)〉, where

δαi G( ) � ∧ Dαi wz( ), wz ∈ Bi{ },
δβi G( ) � ∧ Dβi wz( ), wz ∈ Bi{ },
δγi G( ) � ∧ Dγi wz( ), wz ∈ Bi{ }.

Furthermore, the minimum total Bi-edge degree of G is shown
as δtBi

(G) � 〈[δtαi(G), δtβi(G)], δtγi(G)〉, where

δtαi G( ) � ∧ TDαi wz( ), wz ∈ Bi{ },
δtβi G( ) � ∧ TDβi wz( ), wz ∈ Bi{ },
δtγi G( ) � ∧ TDγi wz( ), wz ∈ Bi{ }.

FIGURE 2
A CFGS G � (A,B1 ,B2).
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Definition 3.8. Consider G � (A,B1,B2, . . . ,Bk) as a CFGS. The
maximum Bi-edge degree of G is shown as
ΔBi(G) � 〈[Δαi(G),Δβi(G)],Δγi(G)〉, where

Δαi G( ) � ∨ Dαi wz( ), wz ∈ Bi{ },
Δβi G( ) � ∨ Dβi wz( ), wz ∈ Bi{ },
Δγi G( ) � ∨ Dγi wz( ), wz ∈ Bi{ }.

Furthermore, the maximum total Bi-edge degree of G is shown
as Δt

Bi
(G) � 〈[Δt

αi
(G),Δt

βi
(G)],Δt

γi
(G)〉, where

Δt
αi

G( ) � ∨ TDαi wz( ), wz ∈ Bi{ },
Δt
βi

G( ) � ∨ TDβi wz( ), wz ∈ Bi{ },
Δt
γi

G( ) � ∨ TDγi wz( ), wz ∈ Bi{ }.

Remark 3.9. A CFGS G � (A,B1,B2, . . . ,Bk) is called the 〈[a, b],
c〉-Bi-edge regular if

δBi G( ) � ΔBi G( ) � 〈 a, b[ ], c〉.
Moreover, G is called the 〈[a, b], c〉-total Bi-edge regular if

δtBi
G( ) � Δt

Bi
G( ) � 〈 a, b[ ], c〉.

Example 3.10. Consider CFGS G � (A,B1,B2), as shown in
Figure 3, where

A � 〈z1, 0.7, 0.9[ ], 1〉, 〈z2, 0.5, 0.6[ ], 0.6〉, 〈z3, 0.6, 0.8[ ], 1〉,{
〈z4, 0.4, 0.5[ ], 0.6〉},

B1 � 〈z1z2, 0.2, 0.3[ ], 0.4〉, 〈z3z4, 0.2, 0.3[ ], 0.4〉{ },
B2 � 〈z1z4, 0.3, 0.4[ ], 0.5〉, 〈z1z3, 0.1, 0.2[ ], 0.3〉,{

〈z2z3, 0.4, 0.5[ ], 0.6〉}.
The total degree of B1-edges is equal to 〈[0.2, 0.3], 0.4〉.

Therefore, G is a 〈[0.2, 0.3], 0.4〉-total B1-edge regular. As it is seen

δtB1
G( ) � Δt

B1
G( ) � 〈 0.2, 0.3[ ], 0.4〉.

Theorem 3.11. Consider G � (A,B1,B2, . . . ,Bk) as a CFGS which
is both an Bi-edge regular and a total Bi-edge regular, then αBi, βBi

,
and γBi

are constant.

Proof. Suppose that G � (A,B1,B2, . . . ,Bk) be the 〈[a, b], c〉-
Bi-edge regular and the 〈[a′, b′], c′〉-total Bi-edge regular. Then, for
all wz ∈ Bi

DBi wz( ) � 〈 Dαi wz( ),Dβi wz( )[ ],Dγi wz( )〉 � 〈 a, b[ ], c〉,
TDBi wz( ) � 〈 TDαi wz( ),TDβi wz( )[ ],TDγi wz( )〉 � 〈 a′, b′[ ], c′〉.

Thus, by definition

TDαi wz( ) � Dαi wz( ) + αBi wz( ),
TDβi wz( ) � Dβi wz( ) + βBi

wz( ),
TDγi wz( ) � Dγi wz( ) + γBi

wz( ).
Therefore,

αBi wz( ) � a′ − a, βBi
wz( ) � b′ − b,

γBi
wz( ) � c′ − c, for all wz ∈ Bi.

Hence, αBi, βBi
, and γBi

are constant.

Remark 3.12. The total Bi-edge regular does not imply the Bi-edge
regularity for a CFGS and vice versa.

Example 3.13. Consider the CFGS G � (A,B1,B2), as shown in
Figure 3. G is a total Bi-edge regular, but it is not a Bi-edge regular.

Theorem 3.14. Consider G � (A,B1,B2, . . . ,Bk) as a CFGS. Then,
αBi, βBi

, and γBi
are constant functions on Bi if and only if the

following are equivalent:

(i) G is a Bi-edge regular.
(ii) G is a total Bi-edge regular.

Proof. Suppose G � (A,B1,B2, . . . ,Bk) is a CFGS and αBi, βBi
, and

γBi
are constant functions on Bi, i.e.,

αBi wz( ) � k, βBi
wz( ) � m,

γBi
wz( ) � n, for some k,m, n ∈ 0, 1[ ] and all wz ∈ Bi.

(i) 0 (ii) Consider G as a 〈[a, b], c〉-Bi-edge regular. Then, for
all wz ∈ Bi

DBi wz( ) � 〈 Dαi wz( ),Dβi wz( )[ ],Dγi wz( )〉 � 〈 a, b[ ], c〉.

On the other hand, we have

TDαi wz( ) � Dαi wz( ) + αBi wz( ) � a + k,
TDβi wz( ) � Dβi wz( ) + βBi

wz( ) � b +m,
TDγi wz( ) � Dγi wz( ) + γBi

wz( ) � c + n.

Thus, G is a 〈[a + k, b + m], c + n〉-total Bi-edge regular.(ii) 0
(i) Consider G as a 〈[a′, b′], c′〉-total Bi-edge regular, a′, b′, c′ ∈ [0,
1]. Then,

TDBi wz( ) � 〈 TDαi wz( ),TDβi wz( )[ ],
TDγi wz( )〉 � 〈 a′, b′[ ], c′〉.

FIGURE 3
〈[0.2, 0.3], 0.4〉-total B1-edge regular CFGS, G � (A,B1 ,B2).
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Therefore,

Dαi wz( ) � TDαi wz( ) − αBi wz( ) � a′ − k,
Dβi wz( ) � TDβi wz( ) − βBi

wz( ) � b′ −m,
Dγi wz( ) � TDγi wz( ) − γBi

wz( ) � c′ − n.

Then, G is a 〈[a′ − k, b′ − m], c′ − n〉-Bi-edge regular.
Conversely, suppose that (i) 5 (ii). We prove that αBi , βBi

, and
γBi

are constant functions. Suppose αBi not to be a constant function.
Then, there exists xy, wz ∈ Bi so that αBi(xy) ≠ αBi(wz). Since G is
a 〈[a, b], c〉-Bi-edge regular, then αBi(xy) � αBi(wz) � a. On the
other hand, by definition

TDαi xy( ) � Dαi xy( ) + αBi xy( ),
TDαi wz( ) � Dαi wz( ) + αBi wz( ).

Since αBi(xy) ≠ αBi(wz), then, TDαi(xy) ≠ TDαi(wz).
Therefore, G is not a total Bi-edge regular. Now, suppose that G
be a total Bi-edge regular. Then, TDαi(xy) � TDαi(wz). It follows
that Dαi(xy) −Dαi(wz) � αBi(xy) − αBi(wz) ≠ 0. Therefore,
Dαi(xy) ≠ Dαi(wz). Then, G is not a Bi-edge regular. This result
is in contradiction with the assumption. Therefore, αBi is a constant
function. In the same way, it is proved that βBi

and γBi
are also

constant functions.

Theorem 3.15. Consider G � (A,B1,B2, . . . ,Bk) to be a complete
CFGS, and αA, βA, and γA are constant functions. Then, G is a
Bi-edge regular.

Proof. Let G � (A,B1,B2, . . . ,Bk) be a complete CFGS. Then, for
all w, z ∈ V and 1 ≤ i ≤ k, we have

αBi wz( ) � αA w( ) ∧ αA z( ),
βBi

wz( ) � βA w( ) ∧ βA z( ),
γBi

wz( ) � γA w( ) ∧ γA z( ).

Suppose that αA(z) � a, βA(z) � b and γA(z) � c, ∀z ∈ V.
Therefore, αBi(wz) � a, βBi

(wz) � b, and γBi
(wz) � c, ∀wz ∈ Ei,

and 1 ≤ i ≤ k. Since G is a complete CFGS, then, every vertex in G is
connected to n − 1 vertices byBi-edges having the samemembership
values. Thus, the degree of each vertex z ∈ V can be written as
DBi(z) � 〈[(n − 1)a, (n − 1)b], (n − 1)c〉. Then,
Dαi wz( ) � Dαi w( ) +Dαi z( ) − 2αBi wz( ) � n − 1( )a + n − 1( )a − 2a

� 2 n − 2( )a,
Dβi wz( ) � Dβi w( ) +Dβi z( ) − 2βBi

wz( ) � n − 1( )b + n − 1( )b − 2b
� 2 n − 2( )b,

Dγi wz( ) � Dγi w( ) +Dγi z( ) − 2γBi
wz( ) � n − 1( )c + n − 1( )c − 2c

� 2 n − 2( )c,
for all wz ∈ Ei. Then, G is a Bi-edge regular CFGS.

Theorem 3.16. Consider G � (A,B1,B2, . . . ,Bk) to be a complete
CFGS, and αA, βA, and γA are constant functions. Then, G is a total
Bi-edge regular.

Proof. The proof is the same as the previous theorem, except that

TDαi wz( ) � Dαi w( ) +Dαi z( ) − αBi wz( ) � n − 1( )a + n − 1( )a − a
� 2n − 3( )a,

TDβi wz( ) � Dβi w( ) +Dβi z( ) − βBi
wz( ) � n − 1( )b + n − 1( )b − b

� 2n − 3( )b,
TDγi wz( ) � Dγi w( ) +Dγi z( ) − γBi

wz( ) � n − 1( )c + n − 1( )c − c
� 2n − 3( )c,

for all wz ∈ Ei and 1 ≤ i ≤ k. Therefore, G is a total Bi-edge
regular CFGS.

Example 3.17. Consider the complete CFGS of G � (A,B1,B2,B3),
as shown in Figure 4, where

αA z( ) � 0.5, βA z( ) � 0.6 and γA z( ) � 0.7, for all z ∈ V,
B1 � 〈z1z2, 0.5, 0.6[ ], 0.7〉, 〈z3z4, 0.5, 0.6[ ], 0.7〉{ },
B2 � 〈z1z4, 0.5, 0.6[ ], 0.7〉, 〈z2z3, 0.5, 0.6[ ], 0.7〉{ },
B3 � 〈z1z3, 0.5, 0.6[ ], 0.7〉, 〈z2z4, 0.5, 0.6[ ], 0.7〉{ }.

Definition 3.18. Consider G � (A,B1,B2, . . . ,Bk) a CFGS. Then,
G is called the perfect Bi-edge regular if G is a Bi-edge regular and also
is a total Bi-edge regular.

Example 3.19. The CFGS G � (A,B1,B2,B3) shown in Figure 4 is
a Bi-edge regular and also is a total Bi-edge regular, so it is a perfect
Bi-edge regular CFGS.

Theorem 3.20. If G � (A,B1,B2, . . . ,Bk) is a perfect Bi-edge
regular CFGS, then, αBi, βBi

, and γBi
are constant functions, for

i = 1, 2, . . ., k.

Proof. Suppose that G be a perfect Bi-edge regular CFGS. In such a
case, G must be a Bi-edge regular CFGS and a total Bi-edge regular
CFGS, i.e., for all wz ∈ Ei,

DBi wz( ) � 〈 Dαi wz( ),Dβi wz( )[ ],Dγi wz( )〉 � 〈 a, b[ ], c〉,
TDBi wz( ) � 〈 TDαi wz( ),TDβi wz( )[ ],TDγi wz( )〉 � 〈 a′, b′[ ], c′〉.

According to the definition of the total Bi-edge degree,

TDαi wz( ) � Dαi wz( ) + αBi wz( )0a′ � a + αBi wz( ),
TDβi wz( ) � Dβi wz( ) + βBi

wz( )0b′ � b + βBi
wz( ),

TDγi wz( ) � Dγi wz( ) + γBi
wz( )0c′ + c + γBi

wz( ).

FIGURE 4
Bi-edge regular complete CFGS, G � (A,B1 ,B2 ,B3).
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Therefore,

αBi wz( ) � a′ − a,
αBi wz( ) � b′ − b,
αBi wz( ) � c′ − c.

Hence, αBi, βBi
, and γBi

are constant functions.

Definition 3.21. The order of a CFGS G � (A,B1,B2, . . . ,Bk) is
determined as P(G) � 〈[Pα(G),Pβ(G)],Pγ(G)〉, where

Pα G( ) � ∑
z∈V

αA z( ),
Pβ G( ) � ∑

z∈V
βA z( ),

Pγ G( ) � ∑
z∈V

γA z( ).

The Bi-size of a CFGS G � (A,B1,B2, . . . ,Bk) is defined as
QBi(G) � 〈[Qαi(G),Qβi(G)],Qγi(G)〉, where

Qαi G( ) � ∑
wz∈Ei

αBi wz( ),
Qβi G( ) � ∑

wz∈Ei

βBi
wz( ),

Qγi G( ) � ∑
wz∈Ei

γBi
wz( ).

The size of a CFGS G � (A,B1,B2, . . . ,Bk) is defined as
Q(G) � 〈[Qα(G),Qβ(G)],Qγ(G)〉, where

Qα G( ) � ∑
k

i�1
∑

wz∈Ei

αBi wz( ),

Qβ G( ) � ∑
k

i�1
∑

wz∈Ei

βBi
wz( ),

Qγ G( ) � ∑
k

i�1
∑

wz∈Ei

γBi
wz( ).

Theorem 3.22. If G � (A,B1,B2, . . . ,Bk) is a perfect Bi-edge
regular CFGS, then

Pα G( )≥ ∑
z∈V

max
w≠z

αBi wz( ){ },

Pβ G( )≥ ∑
z∈V

max
w≠z

βBi
wz( ){ },

Pγ G( )≥ ∑
z∈V

max
w≠z

γBi
wz( ){ }.

Proof. According to the definition of CFGS,

αBi wz( ) ≤ αA w( ) ∧ αA z( ),
βBi

wz( ) ≤ βA w( ) ∧ βA z( ),
γBi

wz( ) ≤ γA w( ) ∧ γA z( ), for all wz ∈ Ei and 1≤ i≤ k.

Thus, we have

αA z( )≥ max
w≠z

αBi wz( ){ },

βA z( )≥ max
w≠z

βBi
wz( ){ },

γA z( )≥ max
w≠z

γBi
wz( ){ }.

Therefore,

Pα G( ) � ∑
zinV

αA z( )≥ ∑
z∈V

max
w≠z

αBi wz( ){ },

Pβ G( ) � ∑
zinV

βA z( )≥ ∑
z∈V

max
w≠z

βBi
wz( ){ },

Pγ G( ) � ∑
zinV

γA z( )≥ ∑
z∈V

max
w≠z

γBi
wz( ){ }.

Theorem 3.23. If G � (A,B1,B2, . . . ,Bk) is a 〈[ai, bi], ci〉-Bi-edge
regular CFGS, for 1 ≤ i ≤ k, then

Qα G( ) � ∑
k

i�1
|Ei|ai,

Qβ G( ) � ∑
k

i�1
|Ei|bi,

Qγ G( ) � ∑
k

i�1
|Ei|ci.

Proof. The proof is obvious.
In the following theorem, we examine the relationship between a

Bi-vertex regular and a Bi-edge regular in CFGS.

Theorem3.24. Consider G � (A,B1,B2, . . . ,Bk) to be a CFGS and
αBi, βBi

, and γBi
are constant functions, for i = 1, 2, . . ., k. If G is a

Bi-vertex regular, then, G is a perfect Bi-edge regular.

Proof. Suppose that G be a 〈[a, b], c〉-Bi-vertex regular CFGS so
that αBi, βBi

, and γBi
are constant functions. Let αBi(wz) � k,

βBi
(wz) � m, and γBi

(wz) � n for 1 ≤ i ≤ k. Then,

DBi z( ) � 〈 Dαi z( ),Dβi z( )[ ],Dγi z( )〉 � 〈 a, b[ ], c〉, for all z ∈ V.

On the other hand, for all wz ∈ Ei,

Dαi wz( ) � Dαi w( ) +Dαi z( ) − 2αBi wz( ) � a + a − 2k � 2 a − k( ),
Dβi wz( ) � Dβi w( ) +Dβi z( ) − 2βBi

wz( ) � b + b − 2m � 2 b −m( ),
Dγi wz( ) � Dγi w( ) +Dγi z( ) − 2γBi

wz( ) � c + c − 2n � 2 c − n( ).

Moreover, by the definition of total Bi-edge degree,

TDαi wz( ) � Dαi w( ) +Dαi z( ) − αBi wz( ) � a + a − k � 2a − k,
TDβi wz( ) � Dβi w( ) +Dβi z( ) − βBi

wz( ) � b + b −m � 2b −m,
TDγi wz( ) � Dγi w( ) +Dγi z( ) − γBi

wz( ) � c + c − n � 2c − n.

Then, G is a perfect Bi-edge regular.

Theorem 3.25. Consider G � (A,B1,B2, . . . ,Bk) to be a Bi-vertex
regular CFGS. If G is a Bi-edge regular, then, αBi, βBi

, and γBi
are

constant functions.

Proof. Suppose that G be a 〈[k, m], n〉-Bi-edge regular CFGS. So,
Dαi(wz) � k, Dβi(wz) � m, and Dγi(wz) � n, for 1 ≤ i ≤ k.
According to the definition of Bi-edge degree, for all wz ∈ Ei,

Dαi wz( ) � Dαi w( ) +Dαi z( ) − 2αBi wz( )0k � 2a

−2αBi wz( )0αBi wz( ) � 2a − k

2
,

Dβi wz( ) � Dβi w( ) +Dβi z( ) − 2βBi
wz( )0m � 2b

−2βBi
wz( )0βBi

wz( ) � 2b −m

2
,

Dγi wz( ) � Dγi w( ) +Dγi z( ) − 2γBi
wz( )0n � 2c

−2γBi
wz( )0γBi

wz( ) � 2c − n

2
.
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Therefore, αBi, βBi
, and γBi

are constant functions.

4 Application

The transportation sector has its own importance in the
economy of every country, which is well felt with the expansion
of economic activities, the increase in national production, and the
need to develop and improve transportation networks.
Transportation in today’s human life is responsible for the safe,
fast, economic movement of cargo, passengers, or information
according to the environmental model. Transportation is one of
the inevitable necessities of every human society, which causes the
dynamics of economic and social development. The transportation
component can and should be presented as a tool to achieve
sustainable development. The transportation network importance
in the social, economic, and even political and military structure of
today’s societies is so urgent that experts consider it the foundation
of sustainable development of any society. The transportation

system is a set of devices, facilities, routes, rules, and regulations
that are used to move people and goods.

All kinds of daily transportation methods are progressing, and
their safety and comfort are improving. As you know, there are three
methods of transportation including land, air, and sea, and the land-
based transportation is divided into two branches of rail and road.
Usually, most people use road transport to travel or move their cargo
because it is both more economical and safer, but it takes more time
than other methods.

Air-based transportation is a fast approach to move cargo and
passengers that can make transfers in less than a few hours.
However, the air-based transportation is less secure than other
types of transportation methods and costs more. In the sea-based
transportation that we often deal with ships and vessels, the security
is well provided and the costs are reasonable, but the speed of the
arrival of passengers or goods is very long. Usually, most people use
the land and air to transfer cargo or travel.

According to the data by Iran’s Statistics Center in 2018, more than
70% of the gross domestic product (GDP) was produced in the

TABLE 2 GDP and human development indexes of each province.

Province GDP Human development index

Tehran (z1) 22.1 0.818

Khuzestan (z2) 14.8 0.786

Isfahan (z3) 5.8 0.815

Bushehr (z4) 6 0.796

Khorasan Razavi (z5) 4.9 0.765

Fars (z6) 4.7 0.792

East Azerbaijan (z7) 3.5 0.770

Mazandaran (z8) 3.3 0.807

Alborz (z9) 2.8 0.818

Kerman (z10) 3.1 0.763

TABLE 3 CFVs of provinces.

Province CFV

z1 〈[0.22, 0.23], 0.81〉

z2 〈[0.14, 0.15], 0.78〉

z3 〈[0.05, 0.06], 0.81〉

z4 〈[0.06, 0.07], 0.79〉

z5 〈[0.04, 0.05], 0.76〉

z6 〈[0.04, 0.05], 0.79〉

z7 〈[0.03, 0.04], 0.77〉

z8 〈[0.03, 0.04], 0.80〉

z9 〈[0.02, 0.03], 0.81〉

z10 〈[0.03, 0.04], 0.76〉

TABLE 4 CFVs attributed to the B1 relation.

Relationship among provinces CFV

z1 − z9 〈[0.02, 0.03], 0.81〉

z8 − z9 〈[0.02, 0.03], 0.80〉

z5 − z8 〈[0.03, 0.04], 0.76〉

z1 − z3 〈[0.05, 0.06], 0.81〉

z3 − z5 〈[0.04, 0.05], 0.76〉

z3 − z6 〈[0.04, 0.05], 0.79〉

z3 − z10 〈[0.03, 0.04], 0.76〉

z3 − z4 〈[0.05, 0.06], 0.79〉

z2 − z4 〈[0.06, 0.07], 0.78〉

z4 − z6 〈[0.04, 0.05], 0.79〉

z6 − z10 〈[0.03, 0.04], 0.76〉

TABLE 5 CFVs attributed to the B2 relation.

Relationship among provinces CFV

z1 − z5 〈[0.04, 0.05], 0.76〉

z1 − z2 〈[0.14, 0.15], 0.78〉

z7 − z9 〈[0.02, 0.03], 0.77〉

TABLE 6 CFVs attributed to the B3 relation.

Relationship among provinces CFV

z5 − z7 〈[0.03, 0.04], 0.76〉

z5 − z10 〈[0.03, 0.04], 0.76〉

z1 − z4 〈[0.06, 0.07], 0.79〉
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provinces of Tehran, Khuzestan, Isfahan, Bushehr, Khorasan Razavi,
Fars, East Azerbaijan,Mazandaran, Alborz, and Kerman. The GDP and
human development indexes are two factors that can determine the
power of provinces in terms of capacity to accept goods and passengers.
Table 2 shows the percentage of GDP and human development indexes
in the mentioned provinces.

Table 3 shows the cubic fuzzy values (CFVs) of the mentioned
provinces, which are expressed in the GDP with an interval-valued
fuzzy number and the human development index with a fuzzy number.

Considering the provinces as the vertices of a graph, we define
the relationships between the vertices as follows:B1 � provinces
that often exchange goods and passengers by road.B2 � provinces
that often exchange goods and passengers by rail.B3 � provinces
that often exchange goods and passengers by air.

The CFVs of the connection between provinces corresponding
to B1, B2, and B3 are calculated in Tables 4–6. Since there are usually
different routes among provinces, in this study, the route that has the
most exchange of passengers and goods is considered. With this
assumption, it is clear that these paths are all strong.

Now, we can explain the situation of passenger and goods
transportation among the mentioned provinces by a CFGS, as
shown in Figure 5.

In Figure 5, by removing the z1z4 edge, we will have a B3-edge
regular CFGS. As can be seen, most of the transportation routes of
goods and passengers are by road. In general, the elements of
security, price, and speed are mostly different among the
transportation methods. It is usually suggested to use the land-
based transportation method, which consists of rail and road,
because they are more economical and safer. It is better to use
air for travel or quick transfer of goods, and the sea route for security
and access to impossible places.

5 Conclusion

The cubic fuzzy graph structure (CFGS) is an opportunity to
model problems that have two values of the fuzzy and interval
membership in uncertain issues and have a variety of relationships

FIGURE 5
CFGS G � (A,B1 ,B2 ,B3).
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among them. The lack of research on the concepts of edge regularity
in graphs led us to investigate the edge regularity in the CFGS and to
study some of its properties. In this context, a comparative study
between edge regular and total edge regularity in a CFGS with
necessary and sufficient conditions is provided. All the results are
expressed in the form of a cubic fuzzy number in order to provide
the possibility of comparison to different degrees. The results show
that there is a direct relationship between the regularity of the edges
and the membership value of the vertices. The observations indicate
a direct relationship between the edge membership functions and
edge regularity. The obtained results show that the constancy of the
membership functions of the edge results in the edge regularity of
the CFGS and vice versa. Meanwhile, some properties are not always
true. In the presented application, it was found that aBi-edge regular
CFGS was obtained by removing some Bi-edges. In our future work,
we will further categorize product operations in CFGS.
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