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Quantitative phase microscopy (QPM) is a powerful tool for label-free and
noninvasive imaging of transparent specimens. In this paper, we propose a
novel QPM approach that utilizes deep learning to reconstruct accurately the
phase image of transparent specimens from a defocus bright-field image. A U-net
based model is used to learn the mapping relation from the defocus intensity
image to the phase distribution of a sample. Both the off-axis hologram and
defocused bright-field image are recorded in pair for thousands of virtual samples
generated by using a spatial light modulator. After the network is trained with the
above data set, the network can fast and accurately reconstruct the phase
information through a defocus bright-field intensity image. We envisage that
this method will be widely applied in life science and industrial detection.
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1 Introduction

Fluorescence microscopy (FM) is one of the approaches that image transparent samples
with high contrast and high specificity. However, fluorescence labeling inevitably causes
irreversible effects on samples, including phototoxicity and photobleaching, thereby
preventing FM for long-time imaging of live samples [1]. Being a label-free and
noninvasive imaging technique, quantitative phase microscopy (QPM) can visualize
transparent samples with high contrast and in a quantitative manner by recovering the
phase of the light after passing through a sample [2, 3]. In the past few decades, QPM has
developed rapidly in both structure design and algorithm optimization. The QPM
approaches can be classified into three types. The first type is wavefront-sensing, such as
Shack-Hartmann sensor [4, 5]. This type of QPM techniques have a simple structure and fast
wavefront measurement speed, while the spatial resolution is limited by the diameter of
micro-lenses. The second type is interferometric microscopy, which records interference
patterns between an object wave with a reference wave, has played an important role in many
fields due to its precedent phase accuracy [6–8]. However, the interferometric microscopic
approaches are susceptible to environmental disturbances. The third type is diffraction-
based QPM, such as transport-of-intensity equation (TIE) [9], Fourier ptychographic
microscopy (FPM) [10], and beam propagation based phase retrieval approach [11],
featuring simple structure and low cost. The quantitative phase image can be obtained
after recording multiple diffraction patterns under different constraints and processing the
data with a physical model. These methods are non-interferometric and are hence immune
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to environmental disturbances. Often, a sophisticated algorithm is
required to reconstruct the phase from the recorded diffraction
patterns, and the phase reconstruction is time consuming, which
takes from seconds to minutes.

In recent years, deep learning (DL) has been demonstrated as a
powerful tool for solving various inverse problems through training a
network with a large quantity of paired images. Once sufficient training
data are collected in an environment that reproduces real experimental
conditions, the trained model can not only solve the inverse problem,
but also exceed physics-model-based approaches on some issues (e.g.,
computing speed, parameter adaptivity, algorithm complexity, the
number of raw images required) [12]. The price for the above
merits is the laborious capture of massive datasets comprised of
thousands of raw-image/ground-truth pairs. Recently, Ulyanov et al.
designed a Deep Image Prior (DIP) framework that uses an untrained
network as a constraint to solve common inverse problems, considering
a well-designed network framework has an implicit bias in images [13].
The DIP has a preponderant advantage: it does not need pre-training
with a large amount of labeled data. DL has been applied in different
fields, including scattering image restoration [14], wavefront sensing
[15], super-resolution imaging [16–22], and image denoising [23].

Notably, deep learning has been introduced into DHM to address
phase recovery and aberration compensation problems [24–28]. To cite
a few, deep learning was used to retrieve complex-amplitude images
(including amplitude- and phase-images) from the holograms of inline
DHM [29] and off-axis DHM [30, 31], eliminating twin-image artifacts
and other phase errors. Ren et al. [32] utilized an end-to-end network to
refocus different types of samples from a defocused hologram. Li et al
proposed a deep learning assisted variational Hilbert quantitative phase
imaging approach, which can recover a high-accuracy artifacts-free
phase image from a low carrier frequency hologram [33]. In addition,
deep learning algorithms are well-suited for converting the images of
different modalities, for instance, a U-net based DL approach was used
to convert a DIC images to fluorescence images, with which the volume
of a cell can be measured in a label free manner [34]. In general, DL can
promote existing imaging approaches by extending their performance,
transiting the image among different modalities, reducing experimental
time and costs, etc.

In a bright-field microscopy, once a sample is imaged in a
defocused manner, the phase information is encrypted in the
intensity pattern via a diffraction process. The conventional
physics-modeled based approaches require recording of three

FIGURE 1
Work-flow of DLQPM network. (A) Network-training flow diagram. L, lens; M, mirror; MO, micro-objective; BS, beam splitter; SLM, spatial light
modulator. The orange and blue blocks are the data acquisition network training units. (B) Phase reconstruction of DLQPMusing the trained network. The
scale bar in (B) represents 0.2 mm.
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defocused intensity images at least to reconstruct the encrypted phase.
In this paper, we propose a deep-learning-based QPM approach that
predicts the phase image of a sample from a defocused bright-field
intensity image. For this purpose, a U-net is trained with the phase-
intensity image pairs, of which the phase images are obtained using an
off-axis DHM configuration and a phase-type spatial light modulator
(SLM) to generate a series of phase samples. The experimental results
show that the proposed DL-based approach can accurately obtain the
phase information from a single defocused bright-field intensity image
by using the trained network.

2 Method

2.1 Principle of DLQPM

The schematic diagram of the DLQPM system is shown in
Figure 1A. A 633 nm He-Ne laser was used as a coherent
illumination source for off-axis DHM and bright-field imaging
(once the reference wave is blocked). For DHM imaging, the
illumination beam is divided into two identical copies by a 1:
1 beam splitter, where one is used for the coherent bright-field
imaging (object wave), and the other one is used as the reference

wave. In the object wave arm, a magnification unit composed of a
microscopic objective (MO) and a tube lens (L2) is used to magnify a
sample. A phase-type SLM (HRSLM84R, Shanghai, UPOLabs,
China) is placed on the image plane of the sample to generate
pure phase objects for the network training. The SLM is further
imaged through a 4f system consisting of lens L3 and lens L4 to a
CCD camera. The object wave and the reference wave are
recombined by a beam splitter BS2, and the two interfere with
each other on the CCD plane. The CCD camera records the
generated off-axis hologram Iholo, from which both the amplitude
and phase images of the sample can be reconstructed by using a
standard reconstruction algorithm.

For DLQPM imaging, defocused bright-field intensity images of
pure phase samples are recorded by the same CCD camera in the
absence of the reference wave. The nonlinear relation between the
defocus intensity and the phase information [35] can be simply
expressed as

Id x, y( ) � Η φ x, y( )[ ] + ε x, y( ) (1)
Here, (x, y) are the lateral coordinates on the sample plane, Id (x,

y) is the defocus intensity image, φ (x, y) is the phase information of
the sample, ε(x, y) is the noise, and H{·} represents the nonlinear
operator that links the relation between Id (x, y) and φ (x, y). In

FIGURE 2
Verification of DLQPM for quantitative phase imaging. (A) The defocused bright-field intensity image of a numeral of 6. (B) Phase image
reconstructed by the off-axis DHM (ground-truth). (C) Phase image obtained by DLQPM. For the rand-pattern samples, the phase images were
reconstructed by DLQPM (D) and the off-axis DHM (E) when a series of random phase patterns were loaded to the SLM for testing. (F) Shows the
difference between the phase images in (D,E). The scale bar in (A) represents 0.2 mm.
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DLQPM, H{·} is expressed with a U-net (as is shown in Figure 1A,
right). Specifically, a U-net network [36], as shown in Figure 1B, was
used for applying the relationH{·} in DLQPM. The network consists
of two parts: the left part is encoder and the right part is decoder. The
encoder (feature extraction part) consists of five repetitions. Each
repetition consists of two 3 × 3 convolution layers followed by a
batch normalization, a ReLU function, a residual block in the
middle, and a 2 × 2 max pooling feature for down-sampling. The
number of feature channels doubles after each encoding module,
and the size of the feature map is halved. In contrast, the right part
(decoder) is the up-sampling part. Each decoding module consists of
a transpose convolution and two 3 × 3 convolutions, a batch
normalization, a ReLU, and a residual block between the two
convolutions. After being trained with throunds of Id-φ data
pairs data pairs, phase images φ (x, y) can be predicted from Id
(x, y) with the U-net, as is shown in Figure 1B. Despite there are
some existing DL-based phase retrieval approaches that can recover

the phase form one or multiple defocused intensity images [37], the
acquisition of the training data pairs by imaging hundreds of
different samples is exhausting. In this study, the training data
pairs are acquired by precisely positioning a SLM to the image plane
of the sample, so that the training data pairs can be generated
numerically and the virtual samples are equivalent or analogical to
microscopic samples.

2.2 Network training for DLQPM

The U-net can be trained with a set of Id-φ data pairs (see
Figure 1A), for which φ can be obtained using off-axis DHM and a
numerical focusing procedure, and Id (x, y) is recorded by blocking
the reference wave. To generate the training data pairs, the images
from the MNIST dataset (Modified National Institute of Standards
and Technology database [38]) were loaded onto the SLM (1,280 ×

FIGURE 3
Effect of defocusing distance on the phase reconstruction of DLQPM. (A) Intensity images recorded at different defocusing distances varying from
0 to 6 cm. (B) The phase images recovered by the trained network model. (C) The error maps between the network output phase images and the phase
images reconstructed by the off-axis DHM (D). (E) Phase error versus defocusing distance for the test image in (D). (F) SSIM curve versus the defocusing
distance. In (F), the circles represent the SSIM values for ten randomly-selected testing data, while the solid rectangles represent the averaged SSIM
of the ten testing data. The curves in (E,F) are four-order polynomial fits. The scale bar in (A) represents 0.2 mm.
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1,024 pixels, pixel size: 18 × 18 μm) one by one. The defocus bright-
field intensity images Id (x, y) and off-axis holograms Ih (x, y) were
captured by a CCD (960 × 1,280 pixels, pixel size: 3.75 × 3.75 μm),
respectively. The in-focus phase images φ (x, y) are calculated by the
traditional DHM recovery algorithm [6] and digitally propagated to
the image plane using an angular spectrum based algorithm [39].
Then the acquired Id (x, y) and φ (x, y) are cropped with a size of
256 × 256 pixels, where the phase images are used as the Ground
truth input of the neural network. For implementing the network
model, Pytorch framework based on Python 3.6.1 is used. The
network training and testing are performed on a PC with Intel
Core processor i7-9700CPU, using NVIDIA GeForce
GTX2060 GPU.

3 Results and discussions

3.1 Phase accuracy verification of the
proposed neural network

At first, handwritten numerals were loaded to the SLM, as virtual
samples, to test the DLQPM network, following a similar protocol
depicted in Ref. [31]. A total of 3,656 images of numerals were
utilized in the experiment, of which 3,500 images were used as the
training set and 156 images as the test set. Both the off-axis
holograms and defocused intensity images were recorded for
each sample. Figure 2A shows the defocused bright-field intensity
image of the numeral 6, from which the phase image can be
reconstructed by using the trained network, as shown in
Figure 2B. It can be seen that the reconstructed phase is similar
to the ground-truth phase image reconstructed by the off-axis DHM

(Figure 2C). To evaluate the accuracy of the network on phase
imaging quantitively, we used the structural similarity index
measure (SSIM) as an evaluation indicator. The SSIM value
between the neural network output image and the Ground Truth
is 0.965, further verifying the feasibility and accuracy of our method.
Then, a series of random phase patterns generated by SLMwere used
to further test the DLQPM reconstruction. Figures 2D, E show the
reconstructed phase images by DLQPM and the off-axis DHM.
Further, the images in Figure 2F show the difference between the
phase images reconstructed by the two approaches. The phase
difference (error) features a standard deviation of 0.15 rad for the
samples with a peak-to-valley (P-V) value around 1.5 rad, which
means that the trained network can reconstruct a phase image with
high phase accuracy. The error may be caused by the speckle noise of
the coherent illumination and the phase fluctuation induced by
environmental disturbances during DHM imaging. It can be
concluded from the above experiments that our neural network
can accurately recover the phase information of a sample from a
bright-field defocus intensity image.

3.2 Effect of defocusing distance on the
imaging performance of DLQPM

As mentioned before, the proposed neural network can predict a
phase image from a defocused bright-field intensity image,
considering the fact that the defocused image carries the phase
information of the sample. It is important to investigate the effect of
the defocusing distance on the phase prediction performance of the
proposed neural network. We still used the SLM-generated random
phase patterns as training-testing data, but we used a series of

FIGURE 4
Quantitative phase imaging of blood cells by the proposed DLQPM. (A)Hologramof the human red blood cells by the off-axis DHM. (B,C) 3D and 2D
displays of the phase distribution reconstructed by the off-axis DHM. (D) The defocused bright-field intensity image with a defocusing distance d =
120 μm. (E) 3D and (F) 2D Neural network output phase image. The scale bar in (A) represents 20 μm.
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defocus distances varying from 0 cm–6 cm during Id-Ih recording.
For each defocusing distance, we recorded 3,621 pairs of data, of
which 3,500 used as the training data set and the rest as the testing
data set. Each raw data pair were augmented to 6 pairs for neural
network training through flipping and reversing operations. Figures
3A, B show the defocused intensity images and the recovered phase
images at different defocus positions, respectively. Figure 3C shows
the phase error maps between the phase image reconstructed by the
network and the ground-true phase image (Figure 3D) obtained by
the off-axis DHM. Further, Figure 3E implies the averaged phase
error of the 121 tested data decrease with the defocusing distance.
This is due to the fact that the influence of the phase information on
the intensity image increases as the defocusing distance increases.
Further, we randomly selected ten testing data and calculated the
structural similarity index measure (SSIM) of the network outputs
with respect to their ground-truth phase images. The circles in
Figure 3F present the SSIMs calculated for the individual test data,
and the red solid-boxes show the averaged SSIM at different
defocusing distances. The results show that the quality of the
network output increases with the defocusing distance before it
becomes saturated at a defocusing distance of 3.5 cm, meaning that
the proposed method can recover appropriate phase information
once the defocusing distance is larger than 3.5 cm.

3.3 Imaging of blood cells by DLQPM

To further verify the feasibility of the DLQPM for imaging
biological sample, human red blood cells (RBCs) were used as the
sample. 17,200 image pairs of the Id-Ih data pairs were taken, where
15,000 and 2,200 pairs were used for the training and the testing,
respectively. Figure 4A shows the captured hologram Ih of the RBCs
by the off-axis DHM. Figures 4B, C show the three-dimensional and
two-dimensional distribution of the RBCs, reconstructed from the
off-axis hologram. Figure 4D shows the captured defocus bright-
filed intensity of RBCs, from which the three-dimensional and two-
dimensional phase distribution of RBCs were reconstructed by using
the proposed DLQPM, as shown in Figures 4E, F, respectively. The
comparison between Figures 4C, F tells that the proposed method
can accurately reconstruct the phase of the RBCs. It is worth noting
that the DLQPM image has lower speckle noise and artifacts than
that obtained by the off-axis DHM. This is due to the fact
that the interference between the object wave and the reference
wave is avoided, which will induce additional speckle noises and
artifacts.

4 Conclusion

In this paper, we proposed a novel deep learning based QPM
phase reconstruction approach (entitled DLQPM), which can
reconstruct a phase image from a defocused bright-field intensity
image (Id) using a U-net. In the implementation, the network should
be trained beforehands, for which the data pairs were obtained by
inserting a SLM into an off-axis DHM. Therefore, sufficient training
data are collected in an environment that reproduces the actual
experimental conditions. Compared to the conventional physics-
modeled based approaches, which need to record at least three

defocused intensity images to reconstruct the phase, the proposed
DL-based approach can accurately obtain the phase information
from a single defocused bright-field intensity image.

We quantitatively analyzed the effect of defocusing distance on
the phase recovery performance of DLQPM, and the results show
that the phase reconstruction quality increase with the defocusing
distance and it become saturated after a defocusing distance of 3 cm.
Notably, the proposed method can also be used for the bright-field
microscope equipped with partially coherent illumination or
incoherent illumination, and in this case the training data pairs
can be obtained with single beam phase retrieval approaches. We
envisage that this method will be useful for life science research and
industrial detection.
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