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This paper proposes a dual-weighted polarization image fusion method based on
quality assessment and attention mechanisms to fuse the intensity image (S0) and
the degree of linear polarization (DoLP). S0 has high contrast and clear details, and
DoLP has an outstanding ability to characterize polarization properties, so the
fusion can achieve an effective complementation of superior information. We
decompose S0 and DoLP into base layers and detail layers. In the base layers, we
build a quality assessment unit combining information entropy, no-reference
image quality assessment, and local energy to ensure the fused image has high
contrast and clear and natural visual perception; in the detail layer, we first extract
depth features using the pre-trained VGG19, then construct an attention
enhancement unit combining space and channels, and finally effectively
improve the preservation of detail information and edge contours in the fused
image. The proposed method is able to perceive and retain polarization image
features sufficiently to obtain desirable fusion results. Comparing nine typical
fusion methods on two publicly available and own polarization datasets,
experimental results show that the proposed method outperforms other
comparative algorithms in both qualitative comparison and quantitative analysis.
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1 Introduction

Image fusion techniques aim to synthesize images by fusing complementary information
from multiple source images captured by different sensors [1]. In recent years, many fusion
methods have been proposed. According to [2], the classical fusion methods mainly include
multi-scale transform-based methods [3, 4], sparse representation-based methods [5, 6], and
neural network-based methods [7, 8]. Most of these methods mainly involve three key
operations, such as image transformation, activity level measurement, and fusion strategy
design. However, since these operations are mainly designed in a manual way, they may not
be suitable for different situations, thus limiting the accuracy of the fusion results.

Fusion methods for deep learning [9, 10] have been widely studied and applied, with
better fusion effects than traditional methods by virtue of their powerful feature extraction
capabilities. Some scholars have shown that the combination of CNN with various
traditional fusion methods not only has outstanding effects but can also effectively
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reduce the workload and save computational resources by taking
advantage of the migratory nature of CNN-encoded information.
For example, Li et al. [11] proposed a fusion algorithm using
ResNet50 and ZCA with a weighted average strategy to
reconstruct the fused images, which significantly improved the
fusion effect of the images. However, since they designed a
simple fusion strategy, it may lead to the problem of insufficient
information combination during the fusion process. Li et al. [12]
used a densely connected network combined with an attention
mechanism at the same time to enable the network to better
capture the structural information of the source image. However,
this method does not take into account the information differences
at different scales, so the fused image may suffer from the loss of
detailed information. Meanwhile, both methods are for the fusion
task of infrared images, and the fusion effect is not satisfactory when
applied directly to polarized images. At present, there are relatively
few studies on polarization image fusion. Wang et al. [13] combined
NSCT and CNN to propose a polarization image fusion network.
Although it has some enhancement effect, conventional strategies
such as weighted average and local energy are still used in the fusion
process, and there is no analysis of polarization images or a more
reasonable strategy design.

To solve the problems of the above methods, we propose a dual-
weighted polarization image fusion method based on quality
assessment and attention mechanisms. The S0 and DoLP images
are decomposed into base layers and detail layers, and different
strategies are constructed for fusion, respectively. Among them,
S0 can reflect the spectral information of the object and is mainly
used to describe the reflectance and transmittance; DoLP can reflect
the difference in polarization characteristics between different
material substances and provide information such as surface
shape, shadow, and roughness. The fusion of S0 and DoLP can
make up for the disadvantage that S0 cannot provide sufficient
information in certain scenes and thus improve the target
recognition ability in complex backgrounds. The implementation
process of our method mainly includes: in the base layer, a quality
assessment unit is constructed to achieve a balanced and reasonable
fusion effect. Through comprehensive assessment and calculation
of image quality, the best fusion relationship between the base
layers can be obtained, and then a clear and natural fusion base
layer can be obtained; in the detail layers, the depth features are
first extracted using the pre-trained VGG19, and then an
attention enhancement unit is constructed to enhance the
polarization image detail layers from different dimensions,
which can effectively combine global contextual information
and improve the structural features of the fused detail layer.
Using the fused base layer and the detail layer for reconstruction,
the obtained fused images have rich texture details with high
enough contrast and natural visual perception. The main
contributions to this paper are as follows.

1. Dual-weighted fusion method. We propose a dual-weighted
polarization image fusion method with strong perception and
retention of features of polarization images, which is more
suitable for the fusion task of polarization images.

2. Quality assessment-based fusion strategy. We construct a
quality assessment unit consisting of information entropy,
no-reference image quality assessment, and local energy. The

optimal fusion weight is obtained by assessing the information
quality of the base layers, which is used to ensure the high
contrast and natural visual perception of the fused image.

3. Attention enhancement-based fusion strategy. We construct
an attention enhancement unit consisting of space and
channels to enhance the global features of the detail layers
in two dimensions, which can effectively improve the detail
information and texture contours to obtain a fused image that
fully combines intensity information and polarization
characteristics.

The rest of this paper is organized as follows. Section 2 briefly
reviews the research related to image fusion methods based on
multiscale transforms and attention mechanisms. In Section 3, the
details of our proposed method are described. Section 4 conducts
experiments on the public dataset and our polarization dataset, and
the experimental results are analyzed. The paper is summarized in
Section 5.

2 Related work

2.1 Multiscale transform for image fusion

The fusion method based on multiscale transformation has the
advantages of simplicity, efficiency, and outstanding effect
compared with other methods, so it is most widely studied and
applied. The main implementation process is to first decompose the
source image into several different scales, then fuse the images of
different scales according to specific fusion rules, then perform the
corresponding multi-scale inverse transform, and finally obtain the
fused image. Usually, many methods divide the image into high-
frequency and low-frequency parts, or basis and detail parts. Among
them, the low-frequency part and the basis part represent the energy
distribution of the image, and the commonly used fusion rules
include average value, local energy maximum, etc.; the high-
frequency part and the detail part represent the edge and
detailing features of the image, and the fusion rules include
absolute value maximum, adaptive weighting, etc. Since the
fusion strategy has a great influence on the fusion effect, it is
important and one of the most challenging studies to design a
more reasonable strategy to improve the fusion effect.

Fusion methods based on multiscale transformations have been
widely studied in recent years. Wang et al. [13] proposed a fusion
algorithm for polarized images. Noise removal and pre-fusion
processing are performed first, and then the polarization and
intensity images obtained by pre-fusion are decomposed by
NSCT, and then the fusion strategies for high and low
frequencies are developed separately, and finally the target fusion
image is obtained by inverse transformation. Zhu et al. [14]
proposed a fusion method based on image cartoon-texture
decomposition and sparse representation. After decomposing the
source image into cartoon and texture parts, the proposed spatial
morphological structure preservation method and the sparse
representation-based method are used for fusion, respectively.
Zhu et al. [15] proposed a multimodal medical image fusion
method. The high-pass and low-pass subbands were fused using
phase congruency-based and local Laplace energy-based rules,
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respectively, and the effectiveness of the proposed method was
verified experimentally. Li et al. [16] proposed a fusion
framework that decomposes the source image into a base part
and a detail part. Among them, the base part uses a weighted
average fusion strategy, and the detail part uses a maximum
selection strategy to fuse the extracted multilayer depth features.
Finally, the fused base and detail parts are combined to obtain a clear
and natural fused image; Liu et al. [17] proposed an infrared
polarization image fusion method. A multi-decomposition latent
low-rank representation is used to decompose the source image into
low-rank and significant parts, and different strategies are used to
process the weight map, and finally the fused image is reconstructed.
Hu et al. [18] proposed an improved hybrid multiscale fusion
algorithm. The image is first decomposed into low-frequency and
high-frequency parts using the support value transform, and then
the prominent edges are further extracted from these support value
images using the shearlet transform of NSST. Zou et al. [19]
proposed a visible and near-infrared image fusion method based
on a multiscale gradient guided edge-smoothing model and local
gradient weighting, which has obvious advantages in maintaining
edge details and color naturalness.

It can be found that the fusion rule of existing methods rarely
analyzes the images, and most of them still use manually designed
rules that do not consider the differences between images. To solve
these problems, we assess the image quality and combine the
attention mechanism to design two novel fusion strategies and
apply them to different layers of polarization images. Among
them, the quality assessment unit is applied to the base layers,
which can obtain the best fusion weight based on the image quality,
and the attention enhancement unit is applied to the detail layers,
which can enhance the detail features by combining global
contextual information.

2.2 Attention mechanism for image fusion

The attention mechanism is consistent with the human visual
system and has been widely studied because it can better perceive
and extract image features [20, 21]. The purpose of fusion is to
combine the superior information from different images, and
more weight needs to be given to salient parts during the fusion
process, such as features like detailed textures and edge contours.
The ability to maintain the integrity of the salient target regions
using attention mechanisms can effectively improve the quality
of fused images.

In recent years, many attention-based or saliency-based
fusion methods have been proposed. Wang et al. [22]
proposed a two-branch network based on an attention
mechanism in the fusion block while using an attention model
with large perceptual fields in the decoder to effectively improve
the quality of fused images. Li et al. [23] proposed a generative
adversarial based on multiscale feature migration and a deep
attention mechanism for the fusion of infrared and visible images
and achieved excellent fusion results. Liu et al. [24] designed a
two-stage enhancement framework based on attention
mechanisms and a feature-linking model with the advantage
of being able to suppress noise effectively. Zhang et al. [25]
proposed an iterative visual saliency map to retain more details of

the infrared image and calculate the weight map based on the
designed multiscale bootstrap filter and saliency map, which in
turn guides the texture fusion. Cao et al. [26] proposed a fusion
network based on multi-scale and attention mechanisms, and the
advantages of the proposed method were verified by experiments
on two datasets. Wang et al. [27] proposed a multimodal image
fusion framework that was designed mainly using multiscale
gradient residual blocks and a pyramid split attention module.

At present, there is no polarization image fusion method that
extracts features using pre-trained CNNs in a multi-scale layer
while combining an attention mechanism. Specifically, we
combine a deep learning framework with an attention
mechanism. A pre-trained VGG19 is used to extract the depth
features of the detail layers, while an attention enhancement unit
consisting of space and channels is constructed to enhance the
global features of the detail layers in two dimensions, which is used
to improve the detail information and texture contours of the fused
images.

3 Proposed method

Our method consists of three parts, and the framework is shown
in Figure 1.

(1) Decomposition: the method of literature [16] is used to
decompose S0 and DoLP into base layers and detail layers.

(2) Fusion: for the base layers, the fused base layer is obtained by
weighting calculation using the quality assessment unit; for the
detail layers, the fused detail layer is obtained by using the
attention enhancement unit.

(3) Reconstruction: the fusion polarization images are
reconstructed using the fused base layers and the detail
layers, which can be formulated as in Eq. 1.

F x, y( ) � Fb x, y( ) + Fd x, y( ) (1)
where Fb(x, y) and Fd(x, y) denote the fused base layer and the
detail layer, respectively; and F(x, y) denotes the fused image.

3.1 QAU for base layer fusion

In the fusion process of the base layers, it is necessary to consider
how to reasonably retain the advantageous information of different
source images. Therefore, we designed a quality assessment unit
(QAU) consisting of information entropy (EN) [28], no-reference
image quality assessment (NR-IQA) [29], and local energy (LE) [30].
The QAU is shown in Figure 2.

Among them, EN [31] can both reflect the amount of information
in the image and serve as an evaluation index of the fused image, as
shown in Eq. 2. In general, the more information the image contains,
the larger the EN value. Since DoLP has more noise compared to S0,
the EN value of DoLP will be higher. Therefore, it is not accurate
enough if only EN is used to evaluate the image quality. Image quality
assessment (IQA) can evaluate the quality of the information contained
in the source image, but since high-quality original images are more
difficult to obtain, we use the no-reference model (NR) instead of the
full-reference model. Image quality is judged by the NR-IQA
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simulation of the visual system, which measures the degree of
distortion caused by block effects, noise, compression, etc., in each
semantic region of the base layers. Since S0 consists of specular and
diffuse reflections, which represent the sum of the intensities of two
orthogonal polarization directions, NR-IQA will calculate a higher
value. Also, because DoLP has a larger microscopic surface difference,
NR-IQAwill judge it as a low-quality image. If only NR-IQA is used to
assess image quality, the balance of information relationships cannot be
accurately calculated. Therefore, we combine NR-IQA with EN to be
able to estimate the weight relationship of the source image substrate
more reasonably and retain more information. In addition, since LE
can reflect the degree of uniformity of image gray distribution, it is used
as an adjustment factor to ensure that the fused base layer has a natural
visual perception. The formulas are described as Eq. 3, Eq. 4,
respectively.

EN � −∑
L−1

l�0
Pllog2Pl (2)

Ek x, y( ) � ∑
M−1( )/2

m�− M−1( )/2
∑

N−1( )/2

n�− N−1( )/2
w m, n( ) × Dk x +m, y + n( )[ ]2 (3)

Hk x, y( ) � Ek x, y( )
∑n

k�1Ek x, y( )
(4)

where L is the number of gray levels, which is set to 256, and Pl

denotes the probability of each level. n � 2, denotes S0 and DoLP,
respectively; M × N and w(m, n) are the window area and
coefficients, respectively; (x, y) denotes the pixel centroid; and
Dk(x, y) denotes the coefficient value of the source image at that
point.

Therefore, by combining the above three quality assessment
methods, the optimal weight map can be obtained, which is defined
asMk(x, y). Where EN(·) represents the calculation of information
entropy, NR-IQA(·) is the image quality assessment without
reference, and Hk(·) is the adjustment factor obtained from LE.
The formula is as follows.

FIGURE 1
The framework of the proposed method. IbS0(x, y) and IbDoLP(x, y) denote the S0 and DoLP base layers, respectively, while IdS0(x, y) and IdDoLP(x, y)
denote the detail layers. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S et al.,
licensed under CC BY-NC 4.0 [33].

FIGURE 2
The procedure of the fusion strategy for base layers. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal
plane arrays by Qiu S et al., licensed under CC BY-NC 4.0 [33].
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Mk x, y( ) � Hk Ibk x, y( )( ) · EN Ibk x, y( )( ) +NR-IQA Ibk x, y( )( )( ) (5)

The base layers of S0 and DoLP are input to QAU to obtain the
corresponding weight maps, and the weighting is calculated to
obtain the fused base layer with the following equation.

Fb x, y( ) � ∑n

k�1Mk x, y( ) · Ibk x, y( ) (6)

3.2 AEU for detail layer fusion

As shown in Figure 3, the detail layer fusion process consists
of three main parts: feature extraction, weight calculation, and
reconstruction. First, we extract the detail layer depth features
of S0 and DoLP using the pre-trained VGG19. Second, the
weight map is obtained using the attention enhancement
unit. And then, the weight map is scaled to the source image
size. Among them, the reasons for using the pre-trained
VGG19 are analysed in Section 4.3.2. The weight map is
obtained from the activation level map by calculating the
soft-max operator, defined as Eq. 7.

Wi
k x, y( ) � Ci

k x, y( )
∑n

k�1C
i
k x, y( )

(7)

Finally, the weighting calculation is performed to obtain the
fused detail layer, which can be formulated as in Eq. 8.

Fd x, y( ) � ∑n

k�1W
i
k x, y( ) · Idk x, y( ) (8)

where i ∈ 1, 2, 3, 4{ }, represent relu−1−1, relu−2−1, relu−3−1 and
relu−4−1, respectively.

As shown in Figure 4, the attention enhancement unit (AEU)
consists of spatial attention (SA) and channel attention (CA), which
aim to enhance the semantic targets and texture contours in the detail
layers of the source image. The AEU can extract the feature
distributions in the source image that complement each other and
can generate different weights for spatial and channel features, while

the global information of the source image can be enhanced, which in
turn improves the feature representation of the fused image. Among
them, the SA focuses more on information such as high-frequency
regions, which can enhance the details of the fused image, while the
CA focuses on different channel features with completely different
weighting information.

The SA consists of L1-norm and soft-max, and the formula is
formulated as follows.

αik x, y( ) � Fi
k x, y( )










1

∑n
k�1 Fi

k x, y( )











(9)

ϕi
k x, y( ) � αik x, y( ) × Fi

k x, y( ) (10)
where Fi

k(x, y) denotes the feature vector and ‖ · ‖1 denotes the
L1 parametric calculation.

The CA consists of a global average pooling operator (P(·)) and
soft-max, and the formula is as follows.

ηik x, y( ) � P Fi
k x, y( )( ) (11)

βik x, y( ) � ηik x, y( )
∑n

k�1η
i
k x, y( )

(12)

ψi
k x, y( ) � βik x, y( ) × Fi

k x, y( ) (13)
The detail layer depth features of S0 and DoLP are fed into SA

and CA, and the corresponding weight maps are obtained and then
summed, as defined in the following equation.

Ci
k x, y( ) � SA Fi

k x, y( )( ) + CA Fi
k x, y( )( ) (14)

4 Results and analysis

4.1 Experiment settings

We compare nine algorithms on two publicly available [32, 33]
datasets and our own. Among them, the public datasets are from the
University of Tokyo and King Abdullah University of Science and
Technology, respectively, and both contain 40 sets of polarization

FIGURE 3
The procedure of the fusion strategy for detail layers.
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images. The experimental device is an Intel (R) Core (TM) i7-6700
CPUwith 16 GB of RAM. The comparison algorithms include Dual-
tree Complex Wavelet (DTCWT) [34], Curvelet Transform (CVT)
[35], Wavelet [36], Laplacian Pyramid (LP) [37], Ration of Low-Pass
Pyramid (RP) [38], Gradient Transfer Fusion (GTF) [39], WLS [40],
ResFuse [11], and VGG-ML [16].

The evaluation metrics include information entropy (EN),
spatial frequency (SF), standard deviation (SD), average gradient
(AG), sum of difference correlation (SCD), and mutual
information (MI). Among them, EN can reflect the
information content of the fused image, SF reflects the rate of
change of image grayscale, and both have a role in measuring

FIGURE 4
The framework of the AEU. αik and βik are obtained from SA and CA, respectively, while ϕik and ψi

k denote the enhanced features, k � S0,DoLP.

FIGURE 5
Qualitative fusion result of scene 1 on the public dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E) WAVELET; (F) LP; (G) RP; (H) GTF; (I) WLS; (J)
ResFuse; (K) VGG-ML; (L) Proposed. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S
et al., licensed under CC BY-NC 4.0 [33].
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image quality with SD; AG can reflect the sharpness of the image;
SCD can measure the information correlation between the fused
image and the source image; and MI indicates the degree of
correlation between images. Therefore, we use these metrics to
comprehensively evaluate the fused image quality of different
algorithms, and then verify the advantages of the proposed
method.

4.2 Experimental results of the fusion
algorithm

4.2.1 Results on the public dataset
The fusion results are shown in Figures 5, 6, where the key areas

are marked using red boxes and enlarged. DTCWT and CVT are
enhanced, but the texture details are less clear. Wavelet retains more
balanced information, but the characterization effect for details is
not sufficient. LP can retain the information from the source image,
but the details are not clear enough. The fusion effect of RP is more
outstanding, but there is a serious distortion problem, and the
overall quality of the fused image is not ideal. The contrast of
GTF is improved, but the focus is on retaining the information of S0,
and the fused image is distorted and blurred. WLS has a fusion effect

closer to the feature distribution of DoLP but retains little
information from S0, and the overall contrast of the fused image
is low. The fusion effect of both ResFuse and VGG-ML is relatively
clear and natural, but the effect of these two algorithms on texture
detail and overall contrast enhancement is still lacking. The
comparison shows that our method can better balance the
information of the source image, i.e., while retaining the high
contrast and clear details of S0, it can also fully combine the
polarization characteristics of DoLP.

The average calculation of the dataset images using the six
metrics mentioned above and the experimental results are shown
in Table 1. Our method achieves the best values in five metrics, EN,
SF, SD, AG, and SCD, and the index values of SF and AG are
improved by 12.963% and 40.152%, respectively, compared to the
maximum values in the comparison algorithm. The best values of
EN indicate that the fusion results of our method can obtain more
information; the best values of SF and SD indicate that the fused
images have higher quality; the metric values of AG are improved
substantially, which represents a clearer, more detailed texture; and
the best value of SCD can indicate the better fusion performance of
the proposed network. In addition, the maximum value of MI in the
metrics is obtained by VGG-ML. Although the MI value of our
method is not optimal, the target fused image needs to have both

FIGURE 6
Qualitative fusion result of scene 2 on the public dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E) WAVELET; (F) LP; (G) RP; (H) GTF; (I) WLS; (J)
ResFuse; (K) VGG-ML; (L) Proposed. Adapted from Linear polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S
et al., licensed under CC BY-NC 4.0 [33].
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high contrast and texture, while other algorithms do not have these
features at the same time. In a comprehensive comparison, our
method can highlight the edge contours of the target more effectively
and is more advantageous in enhancing the image contrast and
details.

4.2.2 Results on our dataset
We use a focal plane polarization camera with a Sony

IMX250MZR CMOS to photograph the campus scene and
construct our dataset. Partial images and fusion results are
shown in Figure 7. Our dataset mainly includes buildings,
trees, etc. In outdoor scenes, which is quite different from the
public dataset.

Two scenes in our polarization dataset are selected and
compared with the above nine algorithms. As shown in Figures
8, 9, our method has a more obvious enhancement effect for both
man-made and natural objects. The green and red boxes in Figure 8
show the fusion effect on the near and far views of the building, and
our method has sharper details and higher contrast than the other
methods. The green and red boxes in Figure 9 show the fusion effect
on natural plants, and our method also has a more natural and visual
perception.

As shown in Figure 10 fused images were selected in our dataset,
and line graphs were drawn using the metrics mentioned above. The
abscissa of Figures 10A–F represents the image sequence, and the
ordinate represents the specific value of each metric. It can be found

TABLE 1 Quantitative comparisons of the six metrics, i.e., EN, SF, SD, AG, SCD, and MI, on the public dataset. The best results are highlighted in bold.

Methods EN SF SD AG SCD MI

DTCWT 5.93668 4.05239 9.67117 2.50937 1.05129 3.32856

CVT 6.03409 4.05189 9.69706 2.56217 1.05134 3.00594

WAVELET 5.60282 2.48074 9.50487 1.49367 1.05394 4.25609

LP 5.96029 3.13571 8.73245 2.05446 0.74964 2.98191

RP 6.19134 6.65251 8.74362 2.78993 0.68997 2.42422

GTF 5.75619 2.85640 10.76809 1.75516 0.80165 4.06385

WLS 5.74227 4.24776 8.63091 2.68236 0.85460 3.56277

ResFuse 6.01416 2.59245 9.59885 1.57764 1.04945 3.70814

VGG-ML 5.64989 2.64256 9.53368 1.61344 1.06090 4.29472

Proposed 6.55868 7.51489 11.06179 3.91015 1.17152 3.84981

FIGURE 7
Our polarization dataset and fusion results. Row 1 contains five S0 images, Row 2 contains five DoLP images, and Row 3 contains five fused images
obtained by the proposed method.
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that our method achieves the best values for EN, SF, SD, and AG,
thus verifying the outstanding advantages of our proposed method
over other algorithms.

4.3 Ablation experiments

4.3.1 Ablation experiment of the QAU
Different fusion strategies are applied to the base layers without

the use of an attention enhancement unit. First, the two commonly
used strategies are compared; then, the fusion effect of the local
energy weighting strategy is verified; and finally, EN and NR-IQA
are added for experiments. Specifically, it includes: E1: average
weighting strategy; E2: absolute maximum selection strategy; E3:
local energy weighting strategy; and E4: QAU.

Qualitative comparisons are shown in Figure 11, where the
focus areas are marked and enlarged using green and red boxes.
The fusion effect of the average weighting strategy is more
balanced, but the retention effect of details is not sufficient.
The fused image obtained by using the absolute maximum
selection strategy can retain the features of S0 better, but the
information retention effect of DoLP is not ideal and does not
balance the source image information reasonably. The fused
images obtained by the local energy weighting strategy have
more details, but the effect is still not outstanding. The fused

images obtained by using the QAU can more fully reflect the
different advantageous features of S0 and DoLP, while the overall
effect is more natural.

As shown in Table 2, the maximum value of EN is obtained by
the local energy weighting strategy, and the optimal value of SCD
is obtained by the average weighting strategy. Although our
method does not achieve optimal values for these two metrics,
it achieves maximum values for SF, SD, AG, and MI. These
metrics can objectively reflect the polarization image fusion effect
and then verify the advantages of QAU compared with other
fusion rules.

4.3.2 Ablation experiment of the VGG19
Experiments were conducted using ResNet50, ResNet101,

ResNet152, VGG16, and VGG19 pre-trained on the MSCOCO
dataset [41], respectively, while keeping other conditions
constant, and quantitative metrics were calculated.

The experimental results are shown in Table 3. The VGG series
networks have better fusion results than the residual series networks
in our method, and VGG19 has higher metric values than VGG16 in
all metrics. Among them, VGG19 achieves the highest metric values
in EN, SF, SD, and AG, while SCD and MI have the best metric
values in ResNet50. Therefore, after comparing the metric values, we
selected VGG19 as the feature extraction network for the detail
layers.

FIGURE 8
Qualitative fusion result of scene 1 on our dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E)WAVELET; (F) LP; (G) RP; (H) GTF; (I)WLS; (J) ResFuse;
(K) VGG-ML; (L) Proposed.
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FIGURE 9
Qualitative fusion result of scene 2 on our dataset. (A) S0; (B) DoLP; (C) DTCWT; (D) CVT; (E)WAVELET; (F) LP; (G) RP; (H) GTF; (I)WLS; (J) ResFuse;
(K) VGG-ML; (L) Proposed.

FIGURE 10
Quantitative comparison of six metrics in our dataset. (A) EN; (B) SF; (C) SD; (D) AG; (E) SCD; (F) MI.
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4.3.3 Ablation experiment of the AEU
To verify the effectiveness of the AEU, the following

experiments were conducted separately. First, without AEU; then,
CA is added; finally, both CA and SA are used, i.e., the proposed
method. Qualitative comparisons are shown in Figure 12, and some

areas are marked and enlarged using green and red boxes for better
observation of the experimental effect.

When without AEU, the detail information of the fused
image is not prominent; when only CA is used, the texture
detail and overall contrast are somewhat improved, indicating

FIGURE 11
Qualitative fusion result of the QAU ablation experiment. (A) S0; (B) DoLP; (C) E1; (D) E2; (E) E3; (F) E4. Adapted from Linear polarization
demosaicking for monochrome and colour polarization focal plane arrays by Qiu S et al., licensed under CC BY-NC 4.0 [33].

TABLE 2 Quantitative comparison of the QAU ablation experiment. The best results are highlighted in bold.

Methods EN SF SD AG SCD MI

E1 5.63052 2.50456 9.51918 1.54976 1.05928 4.27311

E2 5.69372 2.86766 10.71943 1.76710 0.85805 4.28513

E3 5.83124 2.69043 9.63691 1.64626 0.94455 4.21881

E4 5.82460 2.89027 10.90021 1.78798 1.03466 4.29613

TABLE 3 Quantitative comparison of fusion results from different CNNs. The best results are highlighted in bold.

Methods EN SF SD AG SCD MI

ResNet50 6.15019 6.30726 11.05501 3.81852 1.20510 3.57606

ResNet101 6.14998 6.31661 11.05548 3.82214 1.20248 3.57515

ResNet152 6.15012 6.31411 11.05543 3.82139 1.20322 3.57527

VGG16 6.15518 6.49264 11.06048 3.89827 1.17482 3.55340

VGG19 6.15587 6.51489 11.06179 3.91016 1.17752 3.55981

FIGURE 12
Qualitative fusion result of the AEU ablation experiment. (A) S0; (B)DoLP; (C)without the AEU; (D)without the CA; (E) Proposed. Adapted from Linear
polarization demosaicking for monochrome and colour polarization focal plane arrays by Qiu S et al., licensed under CC BY-NC 4.0 [33].
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that the network can combine more information from
S0 and DoLP at this time; and for the fusion result of using
both CA and SA, it has a clearer texture and a more natural
visual effect.

The quantitative comparison is shown in Figure 13.
Compared with the fused images without AEU and with SA
removed, our method has significant improvements in multiple
metrics, which shows that AEU is beneficial to obtain higher-
quality fused images.

5 Conclusion

This paper presents a dual-weighted polarization image
fusion method that fuses S0 and DoLP to obtain a fused
image of the target with high contrast and clear details at the
same time. The source images are decomposed into base layers
and detail layers, and the corresponding fusion strategies are
designed based on quality assessment and attention
mechanisms, respectively. A quality assessment unit is
constructed for the fusion process of the base layers to ensure
the high contrast of the fused image; a pre-trained VGG19 is
used to extract the depth features of the detail layers, and a
combined spatial and channel attention enhancement unit is
constructed to achieve fuller preservation of scene information
and texture contours to ensure the clear details and global
information of the fused image. Experimental results on both
public and our datasets show that the proposed method has
more obvious enhancement effects in terms of contrast and
detail texture for both small scene targets and complex outdoor
environments, with better subjective visual perception and
higher objective evaluation metrics compared to other
algorithms. In future research work, we will explore how to
reduce the complexity of the model while maintaining high

fusion performance and combine the angle of polarization
(AoP) to achieve better fusion results.
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