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The identification and positioning of flying projectiles is a critical issue that affects
the testing accuracy of equipment in ballistic testing technology. Traditional image
processing methods are difficult to accurately extract targets due to the
characteristics of small target size, fast speed, and strong fragmentation
interference of projectiles ejected from the muzzle. This paper proposes a
projectile recognition algorithm based on an improved YOLOX detection
model for the detection and recognition of flying projectiles. The fast and
accurate YOLOX model is used, and the network structure is improved by
adding attention mechanisms in the feature fusion module to enhance the
detection ability of small targets; the loss function is also improved to enhance
the model’s iterative optimization ability. Test results show that the improved
YOLOX model has significantly improved accuracy in projectile recognition
compared to the original network, reaching 84.82%, demonstrating the
feasibility of the proposed approach. The improved algorithm can be
effectively used for small target scenarios in range testing and significantly
improves the accuracy of recognition.
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1 Introduction

Ballistic testing technology is a critical method for evaluating ballistic weapon systems.
This typically involves conducting actual attack tests on ballistic weapons in a simulated
environment to assess their performance and effectiveness [1]. The performance parameters
of the flying projectiles in ballistic testing are important data supports for testing weapon
performance, evaluating strike effects, and improving weapon effectiveness. Accurate
identification of flying projectiles is a critical aspect of ballistic testing, as all parameters
of flying projectiles rely entirely on their accurate identification. However, moving targets
such as bullets fired from a gun barrel have the characteristics of small size, high speed, and
numerous fragments, whichmake them difficult to capture using conventional measurement
methods [2]. Consequently, this has become a major focus of research in current ballistic
testing technology.

Currently, common detection devices for flying targets include radar, light screens, and
CCD array cameras. Radar was the earliest detection method developed, which utilizes echo
signals to calculate spatial position of targets. R.Yang [3] utilized Kalman filtering to process
measurement data and predict ballistic trajectories and parameter identification of flying
targets. However, radar often suffers from low accuracy and inability to track small targets.
Light screens are widely used for target field measurements due to their simple setup, easy
mobility, low cost, and effective target detection performance. To address the issue of
measuring bullet velocity in target field environments, Z.Wu [4] and his team at Xi’an
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Technological University designed a velocity measurement system
based on light screens, which has been reliably validated in actual
target field environments. However, as testing environments become
increasingly complex, light screens are prone to misidentifying,
losing, and failing to obtain multi-dimensional information of
bullet targets and fragments, and require strict detection
conditions [5]. In recent years, with the rapid development of
camera manufacturing and image processing technologies, high-
speed cameras have made remarkable achievements in detecting
moving targets [6]. High-speed cameras have advantages such as
non-contact measurement, interchangeable lenses, and fast and
convenient setup, making them unique in ballistic testing [7–9].
However, the issue of target identification under strong firelight and
motion blur interference in target field environments has been a
persistent challenge for the development of high-speed camera
target field detection technology, and image-based bullet
identification algorithms have thus become a focus of research.

The target bullet detection and recognition technology based
on image data is a technique that uses image processing technology
to analyze and process the target images obtained by high-speed
cameras, frame by frame, in order to extract the target bullets from
the background. Traditional processing methods such as image
filtering, image enhancement, image segmentation, image
transformation, feature extraction, feature selection, and image
matching often use manual methods for feature design, such as
SIFT, HOG, SURF [10–12], which limits the applicability of the
algorithms. In addition, traditional algorithms are sensitive to
environmental factors and can only be applied to specific
scenes. As shown in Figure 1, in the target testing environment
with large illumination changes and interference, there may be
missed or false detections [13]. In addition, during the process of
capturing flying projectiles, high-speed cameras are usually placed
at a distance from the trajectory to ensure the accuracy of tracking
mirrors and the completeness of the field of view [14]. As shown in
Figure 2, in this case, the size of the small target projectile fired
from the gun barrel typically does not exceed 8 pixels. During

image filtering operations, target features are easily lost, resulting
in a reduced degree of differentiation from surrounding fragments.
Currently, there is no universally applicable image algorithm for
target detection in the target field environment, which greatly
limits the application of image-based target detection technology
in target field experiments.

Deep learning is an algorithm capable of independently learning
and extracting appropriate features from objects, with a trend of
gradually replacing traditional image processing and machine
learning algorithms [15–17]. Currently, target detection and
recognition algorithms based on deep learning can roughly be
divided into region proposal-based algorithms such as Fast-R-
CNN [18] and regression-based algorithms such as YOLO
[19,20] and SSD [21], as well as search-based algorithms such as
reinforcement learning [22] and AttentionNet [23]. With the
emergence of more powerful GPUs and the improvement in
computer processing speed for large data, target detection and
recognition technology based on deep learning will inevitably
become faster, more accurate, and gradually applied to various
industries.

Based on the advantages of deep learning, the target bullet
detection and recognition algorithm designed in this paper is
based on the YOLOX algorithm designed by S.Liu and Z.Ge’s
team [24], and further improves the network to improve the
accuracy of small target bullet detection. Deep convolutional
neural networks are employed in the algorithm to achieve
precise, reliable, and flexible recognition of target bullets [25].

2 Detection algorithm

2.1 Flight projectile detection and
recognition process

The improved YOLOX deep learning network-based bullet
recognition algorithm utilizes high-speed camera-captured

FIGURE 1
Main interference in the bullet image. (A) Shrapnel interference and (B) Flame interference.
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images of flying bullets. Initially, a significant number of flying
bullet images are collected from different scenarios in the target
field environment, and then labeled accordingly. The bullet
images are further processed through data augmentation and
matched with the corresponding labels. Next, the YOLOX deep
learning network is employed for training, and optimal network
weight parameters are selected through iterative procedures.
Finally, the trained network is tested on sample images to
evaluate its performance. The objective is to attain precise
identification of airborne projectiles within the input images.

2.2 Yolox detection algorithm

The YOLOX algorithm was proposed by S.Liu and Z.Ge’s team
in 2021. Compared to the previous YOLO network, YOLOX
achieves the best performance for the same task while
maintaining highly competitive inference speed. The YOLOX
object detection network is composed of four parts: the input
end of the model, the Darket53 backbone network, the feature
enhancement network Neck, and the model prediction end
Prediction.

FIGURE 2
Bullet target in test image.

FIGURE 3
Improved yolox network.
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2.2.1 Input end
The input end of the YOLOX network uses two data

augmentation methods, Mosaic and Mixup, and establishes a
Focus structure. Mosaic data augmentation is a strategy
introduced in the YOLOv4 network [26], which enhances the
background of an image by randomly scaling, cropping, and
arranging images. MixUp is an additional augmentation strategy
added on top of Mosaic, which effectively enhances images by fusing
two images together with a certain fusion coefficient, almost without
increasing computation [27]. The Focus structure selects every other
pixel in an image to obtain four independent feature layers, which
are then stacked to concentrate width and height information into
channel information. The concatenated feature layers increase from
three channels to twelve channels, expanding the channel count
fourfold.

2.2.2 Backbone
Backbone is the main structure of YOLOX. The main feature

extraction network used in YOLOX is CSPDarknet53.
CSPDarknet53 consists of 72 convolutional layers, each with a
size of 3 × 3 and a stride of 2, which can perform feature
extraction and progressive downsampling. The CSP module
can enhance the model’s learning ability while making the
model lightweight and reducing its memory consumption. The
module uses the SiLU activation function, which has no upper
bound and a lower bound, is smooth, and is non-monotonic. It
performs better than traditional ReLU activation functions on
deep models.

2.2.3 Neck
The Neck feature fusion structure in YOLOX is based on three

key components: Feature Pyramid Networks (FPN), Spatial Pyramid
Pooling (SPP), and Path Aggregation Networks (PAN). FPN
combines low-level features with high-level features to take
advantage of the high resolution of low-level features and the
rich semantic information of high-level features, resulting in
more accurate multi-scale feature prediction [28]. This approach
also enhances small object detection by predicting multi-scale
features independently. SPP addresses the issue of arbitrary input
sizes by pooling each feature map and connecting them to fully
connected layers, thereby increasing the network’s receptive field
[29]. Meanwhile, PANet applies downsampling after upsampling
and combines features from different levels to create a bottom-up
feature pyramid structure that complements FPN, resulting in the
retention of more shallow location features and further
improvement of the model’s overall feature extraction
capability [30].

2.2.4 Prediction
Prediction mainly consists of Decoupled-Head, Anchor-Free,

Label Assignment, and Loss Calculation, which implement the
classification and regression functions of the model. Decoupled
Head, also known as Decoupled Head Network, is used to
compensate for the insufficient expressive power of the original
detection head. Decoupled Head separates regression and decoupled
classification into two parts. Firstly, the class output is used to judge
the predicted scores of the learning targets’ categories. Then, the
obj_output and reg_output are used to predict and judge the

position and coordinate information of the target boxes. Finally,
the three outputs are fused to obtain feature information. The
Anchor-Free structure connects the predicted boxes with the
annotated boxes and introduces the size information of the
downsampled feature maps to generate anchor boxes containing
both the predicted box and target box information. Compared to the
previously commonly used Anchor-based structure, this method
greatly reduces the required number of parameters. Label
Assignment is used to select positive samples from anchor boxes
for network iteration. The core of the filtering method adopted by
YOLOX is SimOTA. First, the anchor boxes are screened to extract
the position IoU matrix [31], and then the LOSS function is
calculated for the selected candidate detection boxes and ground
truth. The cost function is calculated by weighted summation of the
obtained loss functions, as shown in Eq. 1.

Cij � Lclsloss
ij + γ × Lregloss

ij (1)

In the equation, Cij represents the total loss for a specific
bounding box (i, j). Lclslossij denotes the classification loss,
measuring the difference between predicted and true class
labels.Lreglossij represents the regression loss, evaluating the
disparity between predicted and actual bounding box positions.
The parameter γ adjusts the contribution of the regression loss to the
total loss. After obtaining the IoU matrix (between ground truth
boxes and candidate boxes), the top 10 candidate boxes are sorted
and their IoU values are summed, rounded down, and used as the
specific value k to assign candidate boxes to the target box. Then, the
top k candidate boxes are selected based on the cost matrix, and
duplicate candidate boxes are removed to obtain the positive
samples for the ground truth boxes, which facilitates rapid label
assignment.

After label assignment, the correspondence between the ground
truth boxes and the predicted positive sample boxes can be obtained.
YOLOX calculates the loss value between the ground truth boxes
and the positive sample boxes using the traditional IoU method.

2.3 YOLOX algorithm improvement principle

The traditional YOLO network exhibits some limitations in
detecting small objects. These limitations primarily arise from the
grid-based approach, which imposes spatial resolution constraints
and hinders accurate detection of small objects due to insufficient
spatial precision within grid cells. Additionally, small objects often
require contextual information from their surrounding
environment for precise detection. However, traditional YOLO
networks focus only on local features within each grid cell,
disregarding the background information that can aid in
detecting small objects in complex scenes. Small objects are also
more susceptible to occlusion and background interference, and
YOLO’s single-stage detection method may struggle to effectively
handle these challenges, resulting in decreased accuracy for partially
occluded or low-contrast small objects against the background.

This paper proposes using the CBAM attention mechanism and
CIoU loss function to enhance the performance of YOLO networks
in detecting small objects. The channel attention module in CBAM
emphasizes important feature channels to capture key features of
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small objects, improving detection accuracy. The spatial attention
module reduces background interference by focusing on regions
where small objects are located. Multi-scale fusion in CBAM
combines features from different scales, aiding precise
localization and classification of small objects. CIoU extends the
IOU metric by considering geometric properties, providing a more
accurate representation of bounding box similarity. The unmatched
object penalty in YOLO reduces false positives by encouraging
smaller bounding boxes when no object is present, improving
detection performance for small targets. The improved network
structure is shown in Figure 3.

2.3.1 CBAM attention mechanism
In this paper, we use the CBAM [32] attention mechanism to

improve the traditional YOLOX network. CBAM stands for
Convolutional Block Attention Module, which is a type of
attention mechanism designed for use in convolutional neural
networks. Its purpose is to automatically identify key features in
the feature map and enhance the importance of these features while
reducing the impact of non-key features.

Compared with the original network, this network pays more
attention to the relevant features of small objects, which can avoid
missing detection. Due to the characteristics of low resolution and less
visual information, it is more difficult to identify small objects
compared with large objects. Therefore, the CBAM module is
added to the Dark3 module of the shallow network, and attention
weights are inferred from both spatial and channel dimensions, and
finally multiplied by the 80 × 80 ratio feature map, which further
enhances the feature response of small objects. The structure of the
CBAM module is shown in Figure 4.

The CBAM achieves this goal by using two independent attention
modules: the channel attention module (CAM) to evaluate the
correlation between channels, and the spatial attention module
(SAM) to evaluate the correlation between positions.

The CAM evaluates the importance of each channel in the
feature map using a fully connected layer and sigmoid activation
function, generating a weight coefficient that represents the relative
importance of each channel. The SAM evaluates the importance of
each position in the feature map using a convolutional layer and
softmax function, generating a position weight coefficient. Finally,
the outputs of the CAM and SAM are combined and used as weight

coefficients to weight the feature map. The resulting adjusted feature
map has enhanced weight coefficients for key features and reduced
influence for non-key features. The structure of the CAM module is
shown in Figure 5.

As shown in Figure 5, the CAM module first performs
maximum pooling and average pooling in the spatial domain of
the input feature map F of size H× W× C, obtaining two 1 × 1× C
channel information vectors, which are then input to a Multi-Layer
Perceptron (MLP) and summed separately. Finally, the sigmoid
activation function is applied to obtain a weight coefficient Mc,
which is multiplied by the original feature map to obtain the channel
attention feature mapF0, as shown in Eqs 2, 3.

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ) (2)
F′ � Mc F( ) ⊗ F (3)

In the equation, F is the input feature map, AvgPool represents
the average pooling operation, MaxPool represents the maximum
pooling operation, MLP represents the multilayer perceptron, σ is
the sigmoid activation function, Mc(F) is the channel attention
weight coefficient, is the channel attention feature map.

In the CBAM module, the feature map F is processed by the
CAMmodule to obtain the channel attention feature map F′, which
is then input into the SAM module.

The SAMmodule is mainly used to calculate the spatial importance
of the feature map, thereby improving the network’s perception ability
in the spatial dimension. The SAM module includes two sub-modules:
channel mixed pooling and channel fully connected, as shown in the
specific structural diagram below: From Figure 6, it can be seen that the
feature maps first undergo max-pooling and average-pooling
operations in the channel domain in the SAM module, resulting in
two H× W× 1 spatial information maps and the preliminary channel
attention maps. The channel fully connected sub-module is a separate
fully connected layer, and its output is a weight vector of the same size as
the number of channels. This vector is activated by the sigmoid function
to ensure that the weight of each channel is a value between 0 and 1,
representing the importance of that channel in the spatial dimension.
These weights form the spatial attention map. After a 7 ×
7 convolutional layer and sigmoid activation function, the weight
coefficients MS are obtained. Multiplying the weight coefficients MS

with the input feature maps produces the final mixed-domain attention
feature maps, as shown in Eqs 4, 5.

FIGURE 4
Structure of the CBAM module.
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Ms F′( ) � σ f7×7 AvgPool F′( );MaxPool F′( )[ ]( )( ) (4)
F′′ � Ms F′( ) ⊗ F′ (5)

In the above equation, F′ is the channel attention feature map,
AvgPool is the average pooling operation, MaxPool is the max
pooling operation, f7×7 is the 7 × 7 convolutional operation, MS(F′)
represents the spatial attention weight coefficients, and F″ is the final
mixed-domain attention feature map.

In summary, the SAM module enhances the network’s spatial
perception ability by performing spatial attention calculations on the
feature maps. This improves the network’s ability to perceive spatial
information, and therefore improves its performance on various visual
tasks.

CBAM attention mechanism can be easily inserted into existing
convolutional neural networks to improve their performance. It can
be applied to various computer vision tasks such as image
classification, object detection, and semantic segmentation.

The advantages of the CBAM attention mechanism are that it
can automatically learn key features and effectively reduce
unnecessary features, making the network more concise [33].
Additionally, the CBAM attention mechanism can be inserted
before or after convolutional layers to perform more fine-grained
adjustments on the network. It is an effective method to improve the
performance of convolutional neural networks, as it can
automatically learn important features in the feature map and
strengthen their importance while reducing the influence of non-
key features. In this paper, the CBAM attention module is

introduced into the feature extraction network to enhance its
ability to recognize and extract key details.

2.3.2 Loss function optimization
In neural networks, the loss function serves the purpose of evaluating

the degree of dissimilarity between the model’s predicted values and the
true values [34]. Generally, the smaller the computed loss value, the better
the model’s performance [35]. During the training stage of the model in
this paper, the loss function is primarily employed. Following each batch
of training data fed into the model, the predicted values are obtained
through forward propagation, and subsequently, the loss function
calculates the deviation between the predicted values and the true
values, resulting in a loss value. After obtaining the loss value, the
model updates its various parameters via backpropagation to minimize
the loss between the true values and the predicted values, consequently
narrowing the gap between the predicted values generated by the model
and the true values, ultimately achieving the learning objective.

YOLOX uses the IoU (Intersection over Union) loss function,
which is the most commonly used metric in the field of object
detection. The calculation method of IoU is as follows:

IoU � A ∩ B| |
A ∪ B| | (6)

IoU reflects the detection effect of the bounding box and the
ground truth bounding box, and is insensitive to scale, making it
widely used in neural network training. However, when the
bounding box and the ground truth bounding box do not

FIGURE 5
Structure of the CAM module.

FIGURE 6
Structure of the SAM module.
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intersect, IoU cannot perform effective gradient backpropagation,
which interferes with learning training. In addition, the value
reflected by IoU is essentially the intersection-over-union ratio of
the two, only considering the overlapping area between the
predicted box and the ground truth box, without considering the
position information of the predicted box, which cannot accurately
reflect the degree of overlap between the two [36].

In response to the flaws of IoU, the idea of GLoU was proposed
in paper [37]. Since IoU is a ratio concept, it is insensitive to the scale
of the target object. However, the regression loss (MSE loss, L1-
smooth loss, etc.) optimization for BBox in detection tasks is not
equivalent to IoU optimization, and the Ln norm is also sensitive to
the object’s scale, and IoU cannot directly optimize the non-
overlapping parts [38]. GIoU directly sets IoU as the regression
loss, first calculating the minimum closed area of the two boxes, then
calculating the IoU, then calculating the proportion of the area not
belonging to the two boxes in the closed area, and finally subtracting
this proportion from IoU to obtain GIoU.

GIoU � IoU − Ac − U| |
Ac| | (7)

The range of IoU is (0, 1), but GIoU has a symmetrical interval,
with a range of (−1, 1). When the two overlap, the maximum value is
1, and when there is no intersection and they are infinitely far apart,
the minimum value is −1. Therefore, GIoU has a significant
improvement in distance measurement. Unlike IoU, which only
focuses on the overlapping region, GIoU not only focuses on the
overlapping region but also on the non-overlapping region, which
better reflects the degree of overlap between the two.

On the basis of GLoU, Z.Zheng [39] further proposed the DIoU
(Distance-IoU) function, which takes into account the distance,
overlap rate, and scale between the target and the anchor. The
calculation method of DIoU is expressed as follows:

DIoU � IoU − ρ2 b, bgt( )
c2

(8)

In the equation, b and bgt represent the center points of the
predicted box and the ground truth box, respectively, and rho
represents the Euclidean distance between the two center points. c
represents the diagonal distance of the minimum enclosing region that
can simultaneously contain the predicted box and the ground truth
box. TheDIoU loss can directly minimize the distance between the two
target boxes, making it much faster to converge than the GIoU loss. For
the case where the two boxes are horizontally and vertically aligned, the
DIoU loss can enable very fast regression, while the GIoU loss almost
degenerates to the IoU loss. DIoU can also replace the traditional IoU
evaluation strategy and be applied in non-maximum suppression
(NMS) to obtain more reasonable and effective results [40].
Furthermore, considering the aspect ratio of the bounding box
based onDIoU, CIoU [37] is proposed with the following penalty term:

CIoU � 1 − IoU + ρ2 b, bgt( )
c2

+ av (9)

In the equation, a is the weight function, v is used to measure the
similarity of aspect ratio, which is defined as:

v � 4
π2

arctan
wgt

hgt
− arctan

w

h
( )

2

(10)

FIGURE 7
Comparison of detection performance before different network.
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The CIoU loss function simultaneously considers the coverage
area, center point distance, and aspect ratio, which effectively
improves the convergence speed and accuracy of the model [41].
Therefore, in this paper, the CIoU loss function is used to replace
and optimize the loss function part of the YOLOX network.

3 Experimental preparation and
implementation

3.1 Construction of the target field
environment projectile dataset

The target field environment projectile dataset is obtained from
high-speed CCD imaging during actual ballistic tests. The camera was
set at a predetermined distance of 15 m from the shooting range. The
dataset consists of ten sets of tracking images, totaling 1,200 images.
Each set of images corresponds to a separate shooting test, covering
different target field backgrounds and environmental lighting levels.

Each set of captured images captures the entire process from bullet
muzzle to target impact. The camera model used is the Phantom
v1612, capable of reaching a maximum frame rate of 16,600 at a
resolution of 1280 × 800. It performs well in high-speed capture
scenarios and is suitable for tracking and capturing flying bullets. The
captured images have a resolution of 1280 × 512 and were annotated
using the LabelImg software. The bullet heads during the shooting
process were annotated as target objects, including their category and
specific pixel positions. The dataset was divided into training, testing,
and validation sets following an 8:1:1 ratio.

3.2 Experimental environment

The experimental environment of this study was Ubuntu 18.04,
with an Intel Core i9-9900X CPU (3.50 GHz) and an NVIDA
GeForce GTX 2080Ti (11 G RAM). The deep neural network was
trained and tested using the Pytorch1.9 framework, with Python
version 3.7 and Pycharm version 3.2.0.

3.3 Experimental steps

The main experimental process of this study is divided into the
following steps:

(1) Randomly divide the dataset into training set, validation set, and
test set, and the neural network obtains the Ground-Truth of all
annotated categories.

TABLE 1 AP for each test set.

Image group Number CBAM LOSS AP (%)

Group A 85 × × 73.56

Group B 85 × √ 74.43

Group C 85 √ × 82.34

Group D 85 √ √ 84.82

FIGURE 8
Comparison of metrics before and after network improvement. (A) Original AP, (B) Original Precision, (C) Original recall, (D) Improved AP, (E)
Improved Precision and (F) Improved recall.
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(2) Train the network with the weights of the VOC dataset as the
initial input and set the epoch to 100 to obtain the pre-training
weights for the YOLOX deep learning network.

(3) Train the network and divide the training process into two
stages: the frozen stage and the unfrozen stage. The initial
learning rate is set to 0.001, which changes with the epoch.
In addition, the initial learning rate can be determined
based on the quality of the training results. The
optimization process uses the SGD optimizer to update
the parameters.

(4) Use the trained deep learning network to validate and test the
dataset, and obtain the average precision AP (Average
Precision) based on the validation results to evaluate the
learning performance and detection accuracy of the projectile
detection of the neural network.

4 Results

Four sets of actual high-speed mirror recordings from the target
field were selected as test objects for the experiments (denoted as
groups A-D). Each group of videos was decomposed into frames and
a random set of test images was extracted. The visible conditions of
the projectiles included common interferences such as flame,
fragment, and motion blur to simulate realistic experimental
environments. The YOLOX network with different levels of
improvement was applied to process the A-D groups, with “×”
indicating the corresponding improvement method was not used in
the algorithm model and “√” indicating that the corresponding
improvement method was used in the algorithm model. The actual
improvement effect of the network was tested by comparing the
recognition results with manually labeled results and calculating the
average precision (AP). The results of the experiments are shown in
Table 1.

The experimental results show that adding attention
mechanism and improving the loss function in the network
structure can effectively improve the recognition accuracy.
The improvement is more significant with the addition of
attention mechanism, and the network structure using both
attention mechanism and loss function improvement has the
highest recognition rate.

We compared the recognition performance of the original
YOLOX network and the improved YOLOX network proposed in
this paper, as well as the YOLOv5 detection algorithm as a control
group, for identifying flying projectiles in different scenarios, as shown
in Figure 7. To demonstrate the improvement of the algorithm more
intuitively, we selected five images of flying projectiles under different
lighting conditions, target backgrounds, and projectile shapes, and
compared their recognition results.

The recognition results were marked using FP (false positive),
TP (true positive), FN (false negative), and TN (true negative). It
can be observed that YOLOv5 has poor recognition performance,
with mostly false negatives, meaning it fails to correctly identify the
projectile targets. Although the original YOLOX network
improved the detection performance, its low discriminability of
small target features led to misclassifying surrounding debris as
target projectiles, resulting in multiple incorrect target
identifications in a single image. The improved YOLOX

network effectively improves the detection performance while
avoiding the occurrence of false positives. A comparison of
various indicators between the original network and the final
improved network is presented in Figure 8.

5 Conclusion

In order to address the challenge of recognizing flying projectiles
in shooting range environments using traditional methods, this
paper proposes a novel approach utilizing an improved YOLOX
object detection model. Specifically, CBAM attention mechanisms
are added to the three effective feature layers that feed into the
feature pyramid network. Additionally, the loss function is replaced
and improved to enhance the model’s ability to extract small targets
and improve its convergence speed.

Experimental results demonstrate that the proposed method
achieves high recognition accuracy and shows promising potential
for application in the shooting range testing environment. In future
work, the recognition results can be combined with camera
calibration data to achieve further functions such as measuring
the flight trajectory, velocity, and orientation of the projectiles.
Furthermore, expanding the dataset and continuing to refine the
network architecture are expected to further improve the
recognition accuracy.

In summary, this paper presents an effective and efficient method
for identifying flying projectiles in shooting range environments. The
proposed method not only outperforms traditional methods, but also
opens up new possibilities formore comprehensive analysis of projectile
behavior in real-world scenarios.
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