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How do soft granular materials (or dense amorphous systems) respond to
externally applied deformations at different rates and for different system
sizes? This long-standing question was intensively studied for shear
deformations but only more recently for isotropic deformations, like
compression–decompression cycles. For moderate strain rates, in the solid-
like state, above jamming, the system appears to evolve more or less smoothly
in time/strain, whereas for slow enough deformations, the material flips
intermittently between the elastic, reversible base state and plastic, dynamic
“events.” Only during the latter events, the microstructure re-arranges
irreversibly. The reversible base state involves both affine and non-affine
deformations, while the events are purely non-affine. The system size and rate
dependence of the events are studied, providing reference data for comparison in
future studies evaluating materials like hydrogel particles.
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1 Introduction

In non-Newtonian fluids [1], colloidal suspensions [2], or granular matter [3, 4], the
transport properties depend on various state variables, such as the density and granular
temperature [5], but also on the deformation rate [6] and system size, which is a main focus
of this study.

This interdependence and the presence of energy dissipation are at the origin of many
interesting phenomena, like clustering [7], shear band formation [8], jamming/unjamming
[9, 10], dilatancy [11], shear thickening [2, 12, 13], or shear jamming [10, 14, 15]. While
granular gases are better described by kinetic theory [5], dense granular fluids and granular
solids are much harder to understand, in particular since they can transit from fluid-like
flowing states to static, reversibly elastic states, dependent on the inflow and dissipation of
energy. How and why they achieve this transition is still under debate, e.g., by irreversible
plastic deformations [16–25], related also to creep/relaxation [11, 26–28], and many other
studies, see Ref. [29] and references therein.

Related experiments on systems other than granular matter are presented in Ref. [30] on
creep and aging of hard-sphere glasses under constant stress [31], on rheological signatures
of aging in hard-sphere colloidal glasses, or [32] rheology and relation to microstructure in
colloids and metallic glasses. More recently, different further flow situations were studied in
Ref. [33] for colloids under shear and extensional flow, and in Ref. [34] for yielding and
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resolidification of colloidal gels under constant stress, both related to
rheology and aging, where the latter study is displaying intermittent,
discrete “events” under very low shear stress conditions—possibly
quite similar to the present results.

While slow shear shows evident stress drops due to meso-
scale re-arrangements and deformations, see Refs. [21, 23–25], it
was reported that there is only much weaker action under
isotropic deformations in a small density window [21] for
non-spherical, frictional particles. However, for frictionless
spheres, a lot of re-arrangements are possible [4, 6] and visible
if only the compression rate is slow enough. Therefore, we
look closer to isotropic compression—over a wide density
window, as relevant for soft particles—for moderate-to-very-
slow compression rates and for various system sizes. A
complementing study involved network analysis by persistence
diagrams [35], and related results for frictional spheres are (to be)
published elsewhere [29].

To the best of the author’s knowledge, it is not clear if and how
the re-arrangements that occur during shear are related to the
present “events” during (isotropic) compression. Both show
similar characteristics, but the analysis and understanding of
isotropic events lag behind, e.g., concerning questions about their
avalanche type [20, 36–38], statistics, or the nature and shape of the
minimal local events, as reported in Refs. [21, 23–25].

The remainder of the article is organized as follows: in Section 2,
the system, the particle model, and the affine as well as non-affine
deformation modes are discussed. In Section 3, particle simulations
from isotropic loading cycles at highly different rates and system
sizes are compared, and Section 4 concludes the study with the
summary, conclusion, and outlook.

2 DEM particle simulations

The discrete element method (DEM) particle simulations presented
here are a simple element test in a periodic cubical cell, in three
dimensions, with only diagonal components of the strain rate tensor
active. Only isotropic loading is presented here, from many different
alternative loading paths (e.g., unloading, pure shear in plane strain, or
axial strain modes). Deformations are applied to all particles in each
time-step, while at the same time, the periodic cell size also changes
accordingly. The reference system contains N = 3371 particles, with
various additional simulations with 999 < N < 85184. The particle
diameters are drawn randomly from a homogeneous size distribution
with maximum to minimum width, w � dmax

p /dminp � 2. The contact
model is the simplest linear spring-dashpot model set to frictionless
(resulting in higher packing densities) since only this allows to focus on
(irreversible) structural re-arrangements rather than on effects of contact
non-linearity or sliding.

2.1 Non-dimensionalization of DEM

In this paper, parameters given with a prime, e.g., ρp′ � 2000 or
dp′ � 2, are used in the simulations. For a size distribution with w =
2, the total mass is M′ � (4π/3)Nρp′m3(dp′ /2)3, with the non-
dimensional third moment of the size distribution, m3 �
〈(dp′ )3〉/〈dp′〉3 � 〈d3p〉/〈dp〉3 � 1.005, averaged, as indicated by

the brackets, 〈. . .〉, see Ref. [39] for different other and
equivalent size distributions.

For working with units, there are two alternatives: one can read
either the numbers in chosen, typical units (e.g., length,
xu′ � 0.5 × 10−3 m, time, tu′ � 10−5 s, and mass,
mu′ � 1.25 × 10−10 kg) or units set according to some physical
properties to achieve convenient non-dimensional quantities. The
latter option is adopted here, i.e., the unit of length is chosen as
the mean particle diameter, xu′ � 〈dp′〉 � 2, so that 〈dp〉 = 1 is the
dimensionless mean diameter. As the second unit, the material
density, ρu′ � ρp′ � 2000, yields the dimensionless bulk density, ρ =
ϕ, with volume fraction ϕ, and thus the unit of mass, mu′ � ρu′(xu′)3,
i.e., the dimensionless mean particle mass, mp = (π/6). For the third
unit, one has several choices. Here, we adopt the units of elastic stress,
σu′ � kn′/dp′ , based on the linear normal contact stiffness, kn′ � 105, per
diameter, which yields the dimensionless stress1, σ � σ′
dp′ /kn′ � σ′(tu′)2xu′/mu′ , resulting in the unit of time as
tu′ � (mu′/kn′)1/2 � 0.4. In these units, using contact forces from
Ref. [35], or references therein, the dimensionless (linear) stiffness
is kn � kn′(tu′)2/mu′ � 1, and the contact viscosity (linear) γn′ � 103

becomes γn � γn′tu′/mu′ � γn′/[kn′tu′] � 4 × 10−3, with background
viscosity γb′ � 102 changing to γb � γb′tu′/mu′ � 4 × 10−4. The
consequent physically relevant properties are the restitution
coefficient r = exp (−ηtc) ≈ 0.855, with a damping factor η = γn/
(2m12), reduced mass m12 = 0.063, and contact duration tc �
π/

����������
kn/m12 − η2

√ � 0.79 or tc′ � tctu′ � 0.316, all considered for a
contact between the largest and the smallest particle, with the
larger viscous damping time-scale tv = 2m12/γn ≈ 5 and the even
larger background damping time-scale tb = 2m12/γb ≈ 50. The latter
separation of time-scale allows to mostly ignore the background
damping.

2.2 Affine, non-affine, and event
displacements

One basic idea of continuum theories—and relevant to granular
packings—is that the macroscopic elastic work (per volume) needed
to deform a system is equal to the sum of the work performed at the
level of all grain–grain contacts:

Δu � ΔEpot

V
� 1
2V

∑M
c�1

kc δc Δδc , (1)

where V is the system volume, kc is the contact stiffness, and δc is the
overlap of all M contacts. Δq signifies the change in any quantity q,
during a finite but small deformation during time Δt, without
change in the contact network, ignoring dynamics/inertia (for
simplification, without loss of generality). On the contact
scale—not detailed further here—and on the particle scale,
deformations can be split into global/average (affine) and local/
fluctuating (non-affine) contributions.

The displacement of particle i during Δt is

1 The alternative dimensionless stress: σγ � σ′/[ρp′(dp′ _γ′)2], with the unit of
time set by the shear rate, tu′ � 1/ _γ′, is more useful for collisional (shear)
flows, see Ref. [40], and is thus not adopted here.
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Δxi � xi t + Δt( ) − xi t( ) ,
� Δxiaffine + Δxinon−affine ,�  va · xiΔt + Δ xna xi( ) + Δ xev xi( ) ,

(2)

where xi= xi(t) is the position of particle i at time t in a coordinate system
with the origin relative to which deformations are applied2. The
subscripts indicate (a) affine and (na) non-affine deformations, both
reversible, and (ev) non-affine, irreversible displacements (during plastic
events), with a velocity gradientv or displacements Δx evaluated at the
position of the particles. As introduced in Ref. [35] and shown in the
following paragraph, for some of the present cases, the “events” are
characterized by much higher displacement, velocity, or granular
temperature (several orders of magnitude) than the system features
during the smooth, reversible deformation phases.

In this study, the affine velocity gradient is homogeneous, i.e., for
isotropic decompression/compression,  va � _εv1, with unit-tensor
1 and rate of volume change _εV � 3 _εv � (ΔV/V)/Δt, which is
positive for decompression and negative for compression.

This desirable homogeneity is actively taken care of in the DEM
simulations by a strain-control step that, first, computes the forces
f i(t) at time t; second, integrates the equations of motion with a
simple Verlet integrator:

xi t + Δt( ) � 2xi t( ) − xi t − Δt( ) + f i t( )/mi( )Δt2 ; (3)
third, computes the non-affine velocities:

vina t( ) � xi t + Δt( ) − xi t − Δt( )( )/ 2Δt( ) ;
fourth, updates the present velocity to the previous; and finally applies
the affine displacement  va ·xiΔt to every particle position at both3

times t + Δt and t (which will be t and t − Δt in the next iteration);
finally, the time is increased by Δt before the next iteration.

This choice of step-sequence results in uniformly driven particle
trajectories; their positions homogeneously follow the applied strain rate.
On top of these (affine) displacements, the particles respond to their
interaction forces, while the affine velocity (and thus inertia/momentum)
is not active 4. In other words, the particle motion is integrated with a
“moving” or deforming reference frame, where the affine velocity of
particles, via �  va · xi, is entering neither the total velocities nor the
kinetic energy. This allows to focus on the non-affine velocity
components and non-affine kinetic energies, Ek � (1/2)〈mv2na〉
� Ek,total − Ek,a, within the whole system volume V.

If the total velocity vi � via + vina is desired, one can reconstruct it
from the displacement time series for each particle in post-processing or

estimate via analytically in each coordinate direction, α, as
viα � (va)α + (vina)α, in a coordinate system with origin in the center,
where nomotion is applied. The analytical expression for (via)α � _εααxi

α

can be integrated to approximate the components of an artificial, false
“granular temperature” due to the affine velocity field in direction α:

Ta( )α ≔ 〈 via( )2α〉 ≈
1
Lα
∫Lα/2

−Lα/2
va( )2αdxα,

� 1
3Lα

_ε2ααx
3
α

∣∣∣∣Lα/2−Lα/2,

� 1/12( ) _ε2ααL2
α,

(4)

which enter the total affine kinetic energy5:
Ek,a � (3/2)MTa ≈ (1/8)M _ε2ααL

2
α, with no summation convention

over α, the affine, artificial Ta � [(Ta)x + (Ta)y + (Ta)z]/3, and the
total mass of all particles M = ρpϕV.

Note that while the first two terms (a and na) in Eq. 2 are
reversible, only the first term is affine. The last two terms (na and ev)
provide qualitatively different contributions to non-affine
deformations. The former is reversible, due to the disordered
structure of the packing, while the latter is irreversible, due to re-
arrangements of the packing. Whether the granular temperature is
isotropic or not can be checked by comparing the non-affine
contributions in the three spatial directions, α (not discussed
further here).

The first two terms in Eq. 2 provide the smooth, elastic,
reversible total displacements of particles, both affine and non-
affine, as will be detailed further in the following sections.
However, the last term accounts for the much more violent
dynamics during non-reversible deformations (events); it is
intermittent, i.e., neither smooth in time nor in space
(density); it reveals the plastic, irreversible system response to
finite strain deformations and the subsequent relaxation
dynamics toward a new, different elastic state.

Note the different system size and rate dependencies of the
three different energies:
Ek,a � (3/2)M(Ta) ≈ (1/8)M _ε2L2 ∝ML2 _ε2,
Ek,na � (3/2)M(Tna) � (3/2)M(Tna)∝Md2 _ε2, and
Ek,ev � (3/2)M(Tev) � (3/2)M(dTg)2 ∝M(dTg)2,
whereM is the totalmass, L is the system size, and d represents diameter.
We consider the intensive variable granular temperature as the sum of
the non-affine parts TG = Tna + Tev, representing all objective fluctuating
kinetic energy densities per particle per mass per degree of freedom
[units velocity squared]; the dynamic granular temperature rateTg [units
of inverse time] scales as T2

g � Tev/d2 � (2/3)Ek,ev/(Md2), decoupled
from the applied strain rate, varying widely between Tg ≫ _ε, during
events, and Tg → 0, in the static, very slow limit.

In this study without friction, dissipation is caused by normal
contact dissipation only and leads to an exponential decay of kinetic
energy Ek(t)∝ exp (−t/tdiss), with a characteristic decay time tdiss∝ (1 −
r2), with a coefficient of restitution r (data not shown). Note the
qualitative difference between the homogeneous cooling state of a

2 In our systems, all deformations are applied symmetrically to the center,
equally from all sides.

3 The sequence of steps can be changed, such that the velocity contains the
affine motion, but this is not detailed further here.

4 An alternative way of driving compression/decompression in each
direction is wall-driven, where the affine strain-control step is just left
out (works for both wall and periodic boundary conditions). This works
well for frictionless particles, if the deformation is slow; however, it is
strongly discouraged for frictional and cohesive particles since it causes
strong inhomogeneities due to inertia effects (data not shown). For
isotropic deformations, there is an alternative to changing the system
size, namely growing or shrinking particles such that their size distribution
is conserved, like in experiments with swelling hydrogel particles. This
procedure leads to identical results like the strain-driven method used
here, even for frictional/cohesive materials since inertia is not active and
the system remains homogeneous (work in progress, data not shown).

5 The affine kinetic energy is valid for isotropic deformations, summing up
(Ta)α over the three dimensions but can also be decomposed for uni- or
bi-axial deformations or for different deformations in different directions.
For simple shear flows, the affine kinetic energy was defined and discussed
in Sec. V.A of Ref. [41].
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(dilute or dense) granular gasEk(t)∝ t−2 and the solid Ek(t)∝ exp (−t)—
below and above jamming, respectively—as highlighted in Ref. [4].

In Figure 1, the affine, non-affine, and event displacements are
visualized for one characteristic example, from before to after an
event, while in Figure 2, a series of non-affine displacements is
shown during compression, covering static steps, dynamic, local
events, and system-spanning, global events.

From Figure 1, we conclude that neither the affine nor the total
displacements are relevant since they contain size-dependent affine
motion contributions; we rather consider the non-affine
displacements, which are either homogeneous in elastic, stable
situations or quantify the event activity in the system, where the
highlighted particles indicate the location of an event. During events,
reversible, non-affine displacements are typically much smaller than

FIGURE 1
Snapshots (2D projections) of the (left) affine, (middle) non-affine, and (right) total displacements, from data with very slow strain rate _εv ≈ 10−7, with
N = 3375, at volume fraction ϕ = 0.68623, corresponding to the left-most peak in Figure 4 (right).

FIGURE 2
Snapshots of the non-affine displacements at various volume fractions during compression, from the same simulation as in Figure 1. The first eight
panels are taken at ϕ = 0.68731, relative to ϕ − Δϕ, with steps Δϕ = 0.00036, while the last four panels are taken from ϕ = 0.69202, with the same Δϕ.
Counting from top, left to right, and then to bottom, panels 1, 2, 4, and 8 are from elastic situations, where Δxna is active, while Δxev ≈ 0. The black arrows
are the upscaled displacement vectors, where the sixth panel, at ϕ = 0.68912—corresponding to the largest peak in Figure 4 (right)—has a much
reduced scaling factor, 100 times smaller than others; particles are plotted as colored circles only if their non-affine displacement is higher than a certain
threshold, where blue, green, and orange indicate increasing magnitudes of order 1, 100, and 104 higher than the threshold.
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irreversible, non-affine displacements, so we do not attempt to separate
them but rather display in Figure 2, both non-affine contributions
together as Δxnon-affine. In order to visualize the evolution during
compression, the non-affine displacements of all particles (from ϕ =
0.682 to 0.693) are plotted as thin lines with a given stretch factor in
Figure 2. The figure shows a smooth, almost (not perfectly)
homogeneous non-affine deformation field for a few steps (panels 1,
2, and 4), disrupted by events of strongly varying magnitudes, where
particles with displacements higher than a certain threshold are plotted
in color, whereas the particles with less displacement amplitude are
omitted. Some events are local when only a few particles are involved
(panels 5, 7, 8, 10, and 12), while in one case, events are global where the
whole system is violently involved (panel 6), and a few other cases
(panels 3, 9, and 11) indicate events approaching system size and thus
possible finite size effects.

3 Results

3.1 Rate- and size-dependent loading

In this subsection, various simulations are compared with different
system sizes, and thus particle numbers N, and with different applied

(constant) isotropic strain rates: _εv � _εαα � 1.05 × 10−7 s−1 (XXXS),
1.05 × 10−6 s−1 (XXS), 1.05 × 10−5 s−1 (XS), and 1.05 × 10−4 s−1 (S),
where the code refers to Slow (S), eXtra-Slow (XS), . . ., i.e., every X
corresponding to 10 times slower than case (S).

Next, physical quantities are reported for initial loading, from a
density slightly below jamming, for different system sizes,
complementing a previous study in Ref. [6], where the focus was on
different rates.

The dimensionless pressure p = p′dp/kn is plotted against the
volume fraction (density) in Figure 3 for a few different system
sizes and for one system, N = 3375, as well as for different rates,
as indicated in the legend. The fastest deformation rate (S)
results in a smooth, nonlinear increase in pressure with ϕ, see
Refs. [4, 14], while much slower rates result in much more
discontinuous pressure increases at slightly lower magnitudes,
see Ref. [6], where the pressure drops are perfectly sharp only for
the very slow rate (XXXS). The pressure is not much different for
different system sizes, for the compression rate (XXS), but the
pressure drops (events) are somewhat less pronounced when the
larger the system gets, as can be seen best in the right zoom-in
panel. The slow and very slow simulation data support the
picture illustrated in Refs. [4, 14], where each event means an
increase in the jamming density ϕJ, with corresponding shift of

FIGURE 3
Dimensionless pressure p= p′d/kn plotted against the volume fraction for initial loading (left) and zoom-in (right) for different particle numbersN and
strain rates, as indicated in the legend (every X means 10 times slower than the reference “S”), see main text for details. The data almost collapse for
different slow strain rates [6], and the pressure magnitude is also almost independent of the system size. The reference simulation “S” features a
systematically higher pressure than most of the other data due to the dynamic stress invoked by its comparatively large compression rate.

FIGURE 4
Kinetic-to-potential energy ratio Ek/Ep plotted against the volume fraction (density), for initial loading (left) and zoom-in (right), from the same
simulations as in Figure 3 with the same colors. The horizontal lines are the ratio of unity (1), indicating the dynamic jamming/unjamming transition point,
and K0 = 4 × 10−7, an arbitrary threshold below which the systems with rate XXS can be considered static, elastic, or reversible, almost in mechanical
equilibrium. The two dashed lines in the left panel give the affine kinetic energy ratio Ek,a/Ep from the slow (XXS) smallN = 3375 (lower) and largeN =
85184 (upper) simulations; the four dashed lines in the right panel give Ek,a/Ep from the smallN= 3375 simulation, with decaying rates S, XS, XXS, and XXXS,
from top to bottom.
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the state-line p = p0 (ϕ − ϕJ) to the right in Figure 3; given a
system with certain N and _εv, its state-line pre-factor p0 remains
(almost) constant, ϕJ increases at every drop, and thus p
decreases, accordingly. The larger the systems get, the less
sharp the pressure drops appear.

In Figure 4, the energy ratioK = Ek/Ep plotted against the volume
fraction is strongly rate-dependent, as discussed previously in Ref.
[6], with approximately two orders of magnitude difference between
simulations that feature different rates with factors X (= 10) between
each other. The largest strain rate (S) is comparatively smooth with
K ≈ 10−3, while decreasing rates lead to smaller K, with more and
more non-smooth, irregular, violent variations over many orders of
magnitude. The slow (XXS) and very slow (XXXS) cases, feature
baselines of the order of K ≈ 10−10 and K ≈ 10−12, respectively,
approximately 20% lower than the affine kinetic energy ratio. The
events, pressure drops, are associated with a very rapid increase in K

by orders of magnitude and a subsequent exponential decay with
time because ϕ ∝ t; this can be seen in zoom-in picture in Figure 4,
where the cases XS, XXS, and XXXS decay slowly, rapidly, and very
sharply, respectively; each drop is exponential, see Ref. [4], from a
large K level, established during an event, back to the baseline.
Note that (data not shown) the exponential rate of decrease is
practically constant in time, given the same material properties
(dissipation), even though the pressure drops appear with different
negative slopes when plotted against ϕ—see also Ref. [29]. Only the
very slow case (XXXS) shows perfectly separated peaks (events) due
to the rapid decay of the kinetic energy ratio K, with ϕ, while the
rather fast compression S does not show much fluctuation at all.

The zoom-in picture in Figure 4 (right) also shows the affine
kinetic energy (dashed lines) at various rates from the small system.
For the fastest compression case S, we observe Ek,na ≫ Ek,a; for the
case XS, the non-affine energy varies considerably and reaches the

FIGURE 5
Coordination number, C* (without rattlers), plotted against the volume fraction (density), for initial loading (left) and zoom-in (right), from the same
simulations as in Figure 3 with the same colors. The three horizontal lines indicate the levels C = 4, 5, and 6, respectively, where the jamming/unjamming,
here, occurs at CJ* � 6.

FIGURE 6
Bulk modulus B = dp/dεV plotted (only for Ek/Ep < K0) against the volume fraction (density), from the same simulations as in Figure 3 with the same
colors. Due to the rather low threshold K0, see Figure 4, the faster simulations (S and XS) do not show up here. Due to the discrete differentiation, the
vertical peaks do not indicate B but the beginning/ending of a plastic, reorganization event with considerable dynamics. The cases (XXS) display a bulk
modulus only higher than ϕ > 0.65, while the very slow case (XXXS) displays a bulk modulus much closer to ϕJ ≈ 0.641.
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affine case in its minimum only,Emin
k,na ≈ Ek,a; and the slow (XXS) and

very slow (XXXS) cases both achieve a clear baseline minimum, with
Emin
k,na ≈ (1/5)Ek,a

6. Note that while Ek,a is indeed system size-
dependent, the kinetic energy ratio K is not; it is intensive,
i.e., the baseline for the case XXXS Emin

k,na/Ep ≈ 10−12 is not
dependent on system size, above jamming and for slow enough
deformation (data not shown).

Considering the rate of case XXS only, the small system N =
3375 features clearly separated events, whereas the larger systems
suffer more and more events with increasing N. For a given
compression rate, more events mean that those are also
overlapping in time (density). However, this can only be
appreciated if the deformation rate is small enough, i.e., larger
systems require even smaller rates than small systems if events are
to be observed in isolation from each other. As a consequence, if K
is used to identify the jamming density ϕJ, then care has to be taken
to apply slow enough compression, like case XXXS; if events are
too likely, too frequent, an artificially increased jamming density
might be the consequence. From our more complete data, all
system sizes 999 < N < 85184 consistently have their first,
initial jamming at approximately ϕJ ≈ 0.641 ± 0.001. There is
no systematic size dependence in ϕJ for these exemplary cases
where particle number was varied by two orders of magnitude. A
detailed statistical analysis of events (sizes, numbers, intervals, etc.)
is in progress; however, data are not shown here since this is
beyond the scope of this study.

3.2 Micro- and macro-mechanics
observables

In Figure 5, the coordination numbers C* are also very similar
for different system sizes N and for various slow compression rates.
Only the faster simulation S is somewhat less than the other
simulations, i.e., the coordination number is slightly smaller for
more dynamic, faster compression. The slower the compression, the
more localized the events in ϕ. Furthermore, like for pressure, events
are associated with drops in C* that, if strong enough, can
undershoot the continuous increase in coordination numbers due
to compression. Note that for a few events, one can also observe an
increase in C* after an event.

In Figure 6, the bulk (tangent) modulus B is computed by
discrete differentiation at density ϕ(t), such that B = dp/dεV ≈
Δp/(−ΔV/V), where Δp = p (t + Δt) − p(t) and −ΔV/V = 1 − V
(t + Δt)/V(t), only if K < K0 ≪ 1, with an arbitrary, small threshold
K0 = 4 × 10−7. The modulus B appears to be independent of system
size and rate (for small enough compression rates); only the negative
peaks that indicate plastic, irreversible re-arrangement events are
different. Note that B only shows up for the two slowest simulations,
when the system is in an elastic state, with K < K0 ≪ 1.

4 Conclusion and outlook

In summary, “microscopic”DEM particle simulations were used
to track the system response at granular jamming and slightly above,
in order to obtain some novel insights on the strain rate dependence
and completely new results from different system sizes during initial
isotropic loading. Another new observation concerns the affine and
non-affine deformations and more details on the system evolution
slightly above jamming during over-compression. For moderately
fast compression, the system state variables, pressure, kinetic energy
ratio, and coordination number, develop rather smoothly. However,
for slower and slower compression rates, the system rather features
elastic (base) states interrupted by discontinuous, irreversible re-
arrangement “events.” During compression, the elastic states are
reversible, mechanically stable configurations, with smooth minor
changes (in pressure and coordination number) and very small
kinetic energy; from those states, the bulk modulus can be deduced
consistently for different rates and different system sizes. Every
event is characterized by (i) a drop in pressure, mostly, (ii) a drop in
coordination, and always (iii) a peak in kinetic energy; events are
associated with a change in the jamming density, increasing during
loading, as described in detail in Refs. [4, 14]. For different rates, if
slow enough, the evolution becomes rate-independent and events
occur after a certain strain step—where the frequency of events
increases with increasing system size.

During isotropic compression, with a constant strain rate, the elastic
(base) states deform affinely, due to the imposed strain field, as well as
non-affinely, due to their disordered structure. The affine field leads to an
artificial, system size-dependent kinetic energy Ek,a, which is ignored in
objective, intensive analysis but seems to be comparable to, somewhat
larger than the non-affine, fluctuation kinetic energy Ek,na, which is
caused by the disorder in the contact network. During events, the non-
affinedeformation increases by orders ofmagnitude, featuring a dynamic,
granular temperature. Events can be isolated only if the compression rate
is small enough and if the system is not too large. The larger the system
gets, the slower the compression rate needed to isolate events.

The “mesoscopic” system re-arrangement events can be local,
involving only a few particles, or global, re-arranging most of the
system; they can be tracked and identified from macroscopic
information such as stress (drops) or kinetic energy (peaks)—if the
deformation rate is small enough. For larger pressures, well above
jamming, the system is much less sensible to the rate, and—except
for too fast simulations—the system has more time between events
(discrete in time) to relax back to hyper-elastic, mechanically stable,
elastic states that also have a well-defined elastic bulk modulus.

However, even the smallest rate used here could not separate events
very close to jamming, since their relaxation times are still too long,
i.e., events are interfering with each other due to the comparatively fast
compression rate. Therefore, in the future, even much slower
compressions have to be performed. The slower the compression, the
closer to jamming one gets in order to allow for a clean separation,
identification, and statistical analysis of the events. The following
questions remain unanswered: whether events can trigger each other
if global events are a superposition of many local events and whether
there are temporal/spatial interrelations between those.

Work in progress concerns more realistic contact models like
frictional [29] or cohesive particles. The question of how the re-
arrangement events look like and whether global events are

6 Note that the factor (1/5), which connects the non-affine baseline
minimum kinetic energy with the artificial affine kinetic energy, is both
density- and system size-dependent and thus cannot be used as a
constant, in general. Without more details, an approximation for the
density dependence of the base non-affine kinetic energy is
Rnaa ≔ Emin

k,na/Ek,a ≈ ϕa0/(ϕ − ϕJ) + R0, where ϕa0 ≈ 0.007 and R0 = R0(N =
3375) ≈ 0.05, possibly related to pv in subsection 4.1.1 in Ref. [4].

Frontiers in Physics frontiersin.org07

Luding 10.3389/fphy.2023.1211394

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1211394


possibly a superposition of many local events remains
unanswered.

The present work also intends to include this into a
macroscopic continuum-level theory as given in Eq. (84) in Ref.
[4] but considering a more complete statistical analysis of event
probabilities, waiting time (strain) distributions, and event
magnitudes.

Finally, the relationship between this granular model system
and other hard-sphere systems, such as dense colloidal
suspensions or even metallic glasses, is still an open question
for modern research.
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SUPPLEMENTARY VIDEOS 1–5
In the supplementary material of this paper, the velocity fields of the XXXS
data set for N = 3375 are animated during the first five events (peaks in
magenta curve in Fig. 4, right) at the volume fractions: ϕ1 = 0.68610, ϕ2 =
0.68775, ϕ3 = 0.68854, ϕ4 = 0.68883, and ϕ5 = 0.68931. The time-step used
for the animations corresponds to Δϕ ≈ 0.69 × 10−7 with a static color code
(blue, green, red corresponds to velocities of order of 10−4, 10−3, 10−2). Due
to the strongly different intensities of event velocities, the movies involve
different scaling factors v → δvv, for the lengths of the vectors, with
δv1 � 2.103, δv2 � 2.103, δv3 � 2.105, δv4 � 2.102, and δv5 � 5.104, as well as for
the particle plotting thresholds, v > vmin, with vmin

1 � 2.10−3, vmin
2 � 2.10−3,

vmin
3 � 2.10−5, vmin

4 � 2.10−2, and vmin
5 � 4.10−5, respectively.
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