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The dependent or independent variables of differential equations may be reduced
by applying its associated Lie point symmetries. Seven-dimensional Lie point
symmetry algebra exists for differential equations representing heat transfer in
a boundary layer flow in the presence of radiation. The linear combinations of
these seven Lie symmetries are used first to deduce the invariants and then derive
the Lie similarity transformations for the original set of partial differential equations
(PDEs). This procedure is repeated for the set of transformed equations to further
reduce the system of PDEs into the system of ordinary differential equations
(ODEs). Multiple exact similarity transformations are obtained using this
procedure. All these transformations map the system of three PDEs with three
independent variables of flow and heat transfer under the specified set of
conditions into two-dimensional systems of equations with only one
independent variable, the system of ODEs. Approximate solutions for these
reduced systems are established using the finite difference method to illustrate
the effects of unsteadiness, Prandtl number, and radiation on the boundary layer
thickness, flow, and heat transfer. This type of study was conducted under the
effect of these parameters previously with a different set of similarity
transformations. However, the Lie similarity transformations deduced in this
work, which have not been employed, lead to different types of reduced
systems of ODEs, thereby providing different velocities and temperature
profiles and providing valid solutions for previously unexplored regions for
unsteadiness in the fluid flow and heat transfer. Some of these transformations
and their resulting systems provide results that contradict the flow and heat
transfer in real fluids.
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1 Introduction

Heat transfer in thin films has garnered significant attention
in various manufacturing processes. For example, the process of
cooling thin films during the extrusion of polymer sheets, metal
sheets, wire coatings, painting, polishing, and many other
processes involves heat transfer in thin liquid films. Moreover,
some industrial processes, such as surface paint and heat
treatments on ceramics, involve radiation treatment to control
the temperature of the fluid and boundary layer thickness
without affecting the temperature of the surface. In many of
these applications, the final product requires a smooth surface
finish, which is attained by controlling the rate of heat transfer in
these films. With advancements in manufacturing techniques
and processes, more accurate methods are required to predict the
physics of heat transfer in these types of fluid flows. In some
industries, radiation treatments are performed to control the
temperature, unsteadiness, and rate of heat transfer in the fluid by
altering the surface temperature, such as surface paints on metal
sheets in the automobile industry, surface polishing on ceramic
products, and thin-walled solar water heaters. These applications
require applying thermal radiation effects in energy equations
while modeling fundamental boundary layer flows.

Crane [1] investigated the fluid flow driven on a semi-infinite
linearly stretching surface, which Wang [2] extended to include the
unsteady effects of hydrodynamics in thin-film stretching sheets.
Andersson et al. [3] modeled the non-Newtonian fluid flow in a
thin film on an unsteady stretching sheet using a power law.
Andersson et al. [4] studied this phenomenon further by
incorporating heat transfer. Moreover, on an unsteady stretching
surface, Chen [5] studied non-Newtonian fluid flow; Dandapat et al.
[6] included thermocapillary effects; Chen [7] illustrated viscous
dissipation effects on heat transfer in a thin-film flow of a non-
Newtonian fluid; Wang [8] obtained analytical solutions for the
problem considered in [4] using the homotopy analysis method
(HAM); and Dandapat et al. [9] explored the heat transfer in thin
films with variable thermal conductivity, viscosity, and
thermocapillarity. Several other authors [10–15] developed numerical
and analytical solutions to similar problems with additional physical
conditions and constraints. Liu andMegahed [16] illustrated the effects
of thermal radiation, variable thermal conductivity, and viscosity on
heat transfer and fluid flow in a thin film on an unsteady stretching
sheet. Furthermore, Kumar [17] scrutinized the 3D flow and non-linear
radiative heat transfer of non-Newtonian nanoparticles over an
exponentially stretching sheet. Kumar [18] analyzed the flow and
heat transfer of non-Newtonian nanofluid over a stretching sheet by
considering the slip factor. Reddy et al. [19] demonstrated the transverse
magnetic flow over a Reiner–Philippoff nanofluid by considering solar
radiation. Kumar [20] studied the ferromagnetic hybrid nanofluid
effects on heat transfer under solar radiation. Azam et al. [21]
examined the transient bioconvection and activation energy impacts
on Casson nanofluid with gyrotactic microorganisms and non-linear
radiation. Puneeth et al. [22] considered a 3D flow of a nanofluid with
non-linear thermal radiation and multi-slip conditions. Sudharani et al.
[23] analyzed the influence of slip flow and linear radiation on a hybrid
and tri-hybrid nanofluid. Naik et al. [24] investigated heat transfer
under the influence ofmagnetic dipole. In all these studies, the similarity
transformations remained the same. In such boundary layer problems,

the flow originates from the origin, and the stretching of the elastic sheet
causes it to flow in a plane parallel to its motion. Restriction of the
stretching sheet velocity and temperature, namely, when U(x, t) and
T(x, t) depend on thex− distance from the origin and time, enables the
mapping of systems of boundary layer partial differential equations
(PDEs) into systems of ordinary differential equations (ODEs) [2]. The
systems of equations thus obtained are non-linear and coupled;
therefore, analytic and approximate solution schemes are employed
to construct the velocity and temperature profiles.

In this study, we used the Lie symmetry method [25–27] to derive
similarity transformations. Safdar et al. [28] proposed Lie similarity
transformations for an unsteady flow in a thin film over a stretching
sheet and constructed analytic solutions using Lie point symmetries. In
their work, instead of using U(x, t) � bx/(1 − at) to obtain the fluid
velocity, the invariance of the obtained Lie symmetry algebra was used
to derive a general form for U(x, t) along with the stretching sheet
temperature Ts(x, t) and film thickness h(t). Bilal et al. [29] recently
proposed a method to obtain the Lie similarity transformations for heat
transfer in boundary layer flowwith additional parameters. For a system
of differential equations (DEs), the Lie point symmetry offers reduction
based on functions that remain invariant under the action of these
generators. For a PDE system, these invariants reduce the number of
dependent and independent terms. Such consecutive reductions in the
independent variables of the flowPDEs resulted in a system ofODEs. In
this study, we found seven Lie point symmetry generators for a system
of PDEs describing the boundary layer flow and heat transfer in a thin
film on an unsteady stretching surface in the presence of radiation, with
three dependent and three independent terms. In the next step, we
reduced one independent variable of the system by applying invariants
associated with the linear combinations of the obtained symmetries.
Consequently, we let the reduction procedure dictate the form of the
velocity components using specific boundary conditions. Another
reduction was achieved through the invariants of the symmetries of
the once-reduced system. This double reduction revealed a system of
ODEs corresponding to the flow and heat transfer PDEs. Similarity
transformations were attained using the invariants derived in both
cases. This directly mapped the flow and heat transfer equations to the
same systems of ODEs obtained through separate reductions. We
showed that five similarity transformations exist for flow and heat
transfer equations. These transformations corresponded only to linear
combinations of the Lie point symmetries for which both the velocity
and temperature of the stretching sheet were retained as functions of
space x and time t. These new similarity transformations revealedmore
than one type of ODE system. Hence, the Lie symmetry procedure led
to more than one class of system of equations for studying the flow and
heat transfer. We used finite-difference approximations to draw the
velocity and temperature profiles for the systems of the ODEs extracted
from the flow model via similarity transformations.

Previous studies on flow and heat transfer have primarily
focused on the solution method(s) or analysis with additional
parameters by utilizing the pre-existing basic similarity
transformations given by [2,8]. Single reductions of systems of
differential equations representing steady flows are performed
using such similarity transformations, whereas double reductions
through these transformations are performed for unsteady fluid
flows. In these transformations, the velocity of the elastic sheet is
considered U(x, t) � bx/(1 − at), which later directly ensures the
fluid velocity u-velocity is a component in these transformations,
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such that u � bxf′(η)/(1 − at). This is problematic when a real-
world problem is modeled using velocity and temperature as inputs,
where the velocity of the flow exceeds that of the stretching sheet
(most real-world flows).

Bilal et al. [30] recently conducted a detailed heat transfer analysis
of boundary layer flow in the presence of radiation using two different
types of transformations. It was observed that the valid transformation
obtained using Lie point symmetries yields results in the different
regions compared with the existing transformations. The comparison
showed that the previously existing transformation is valid only for
steady and marginally accelerating fluid (unsteadiness). However, the
Lie transformations provide a valid solution for any range of
unsteadiness in the fluid. In addition, the previous transformations
are valid for a specific time interval, which depends on a range of
unsteadiness parameters. However, the Lie similarity transformations
provide valid solutions at any given time. This motivates the author to
derive all the Lie point similarity transformations associated with the
system of PDEs representing the flow and heat transfer in the boundary
layer in the presence of radiation.

The remainder of this study is organized as follows: Section
2 describes the mathematical formulation and Lie point symmetry
transformations/generators of the flow. The numerical solutions are
presented in Section 3. The results and discussion based on the
velocity and temperature profiles are presented in Section 4, and
conclusions are presented in Section 5.

2 Mathematical formulation and
construction of similarity
transformations

Consider a fully developed, viscous, nonvolatile, unsteady,
incompressible, two-dimensional fluid flowing on a thin horizontal
elastic surface and emerging from a hole (shown in Figure 1) that
emerges from the origin of the (x,y) coordinate system. The fluid
viscosity was unaffected by temperature changes, and the buoyancy
effects were negligible. The velocity and temperature changed with
time t and x-coordinate, and the streamwise diffusion terms were
neglected. The smoothness of the thin film surface was assumed to be
free of any type of wave. Considering all these assumptions, we
obtained the following boundary layer equations:

ux + vy � 0,

ut + uux + vuy − μ

ρ
uyy � 0,

Tt + uTx + vTy − κ

ρCp
Tyy − 1

ρCp
qry � 0, (1)

such that

y � 0: u � U x, t( ), v � 0,T � Ts x, t( ), y � h t( ): uy � Ty � 0,

v � ht t( ). (2)

In the aforementioned equations, the u- and v-velocities are in
the x- and y-directions, respectively. T and t denote the temperature
and time, respectively. μ is the dynamic viscosity; ρ is the density of
the fluid; Cp is the specific heat of fluid at constant pressure; κ is the
thermal conductivity; qr is the heat flux under the radiation, and
h(t) is the boundary layer film thickness. The subscripts in (Eqs 1, 2)
represent partial derivatives; for example, vy denotes the y derivative
of the v-velocity. The velocity of the stretching surface in x-direction
is denoted by U(x, t). Wang [2] provided the following form of the
stretching velocity U(x, t) by restricting the motion to

U x, t( ) � bx

1 − at
, (3)

According to [4], the surface temperature Ts(x, t) is
expressed as

Ts x, t( ) � T0 − Tref
dρx2

2μ
( ) 1 − at( )−3

2 . (4)

According to the Rosseland approximation [31], qr is

qr � − 4σ
3ka

T4
y . (5)

In Eqs 3, 4, a, b, and d are constants; the first two possess the
dimensions of time−1, whereas the third is a constant of
proportionality. Moreover, T0 and Tref denote the ambient and
reference temperatures, respectively. In Eq. 5, ka and σ represent the
mean absorption coefficient and Stefan–Boltzmann constant,
respectively. Raptis [32] expressed the temperature as a linear
function for small variations in it. By expanding T4 about T0

with diminishing higher order terms of the Taylor series, we obtain

T4 � 4TT3
0 − 3T4

0 . (6)

FIGURE 1
Fluid flow and heat transfer in the boundary layer.
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The formulas of U(x, t)− surface velocity (Eq. 3) and
Ts(x, t)− temperature (Eq. 4) lead to the following similarity
transformations:

η � 1�����
ρb

1−at( )μ
√ y

β
, u � bx

1 − at
f′ η( ), v � β

���������
− bμ

ρ 1 − at( )

√
f η( ),

T � T0 − Tref
dρx2

2μ
( ) 1 − at( )−3

2 ϑ η( ), (7)

where η and ϑ represent the stream function, similarity variable, and
dimensionless temperature, respectively, whereas β denotes the
unknown dimensionless film thickness. Substituting the similarity
transformations Eq. 7 into Eq. 1, the transformed system can be
written as

f‴ + λ ff″ − f′2 − Sf′ − Sηf″
2

( ) � 0,

ϑ″
Pr

1 + R( ) + λ fϑ′ − 2f′ϑ − Sηϑ′
2

− 3Sϑ
2

( ) � 0. (8)

Likewise, the boundary conditions (Eq. 2) are transformed to

η � 0: f η( ) � 0, ϑ η( ) � f′ η( ) � 1,

η � 1: f η( ) � S

2
, ϑ′ η( ) � f″ η( ) � 0, (9)

where

R � 16σT3
0

3kaκ
. (10)

The aforementioned approach serves as a reference procedure
for converting a system of PDEs into a system of ODEs. The
transformed system (8) is valid only when t< a−1. In Eqs (8) and
(9), the prime (′) indicates a derivative with respect to the similarity
variable η; the dimensionless film thickness is denoted by λ � β2;
Pr � μ

Cp

κ is the Prandtl number; R denotes the radiation parameter;
and S � a/b is the dimensionless unsteadiness parameter.

2.1 Lie symmetries and symmetry
transformations

Lie developed an algebraic approach for constructing Lie point
symmetries associated with differential equations [25–27]. These
point transformations map the dependent and independent
variables of a differential equation into new dependent and
independent variables. These mappings leave the differential
equations form-invariant such that their properties (e.g.,
linearity/non-linearity, order, and type) remain unaltered. Here,
for the system of PDEs considered (1), we followed the procedure
described by [28] for such systems and their associated conditions
(2). The Lie point symmetry associated with system (1) in the
general form can be written as

X � ξ1
∂
∂x

+ ξ2
∂
∂t

+ ξ3
∂
∂y

+ ϕ1

∂
∂T

+ ϕ2

∂
∂u

+ ϕ3

∂
∂v
, (11)

where ξi, ϕi, for i � 1, 2, 3, are known as infinitesimal coordinates
that are functions (x, t, y). System (1) and related conditions (2)
possess partial derivatives up to order two; hence, X[1]− first

extension and X[2]− second extension of the generator (11) are
required to establish the invariance of (1) and (2) under (11). These
extensions can be obtained from

X 2[ ] � X + ϕt
k

∂
∂ζk,t

+ ϕx
k

∂
∂ζk,x

+ ϕy
k

∂
∂ζk,y

+ ϕtt
k

∂
∂ζk,tt

+ ϕxx
k

∂
∂ζk,xx

+ ϕyy
k

∂
∂ζk,yy

. (12)

The coefficients in these extensions are obtained from

ϕn
k � Dnϕk − ζk,tDn ξ1( ) − ζk,xDn ξ2( ) − ζk,yDn ξ3( ), (13)

where n ∈ t, x, y{ } and k � 1, 2, 3. The second extension coefficients
are derived using

ϕtt
k � Dtϕ

t
k − ζk,ttDn ξ1( ) − ζk,txDn ξ2( ) − ζk,tyDn ξ3( ),

ϕxx
k � Dxϕ

x
k − ζk,txDn ξ1( ) − ζk,xxDn ξ2( ) − ζk,xyDn ξ3( ),

ϕyy
k � Dyϕ

y
k − ζk,tyDn ξ1( ) − ζk,xyDn ξ2( ) − ζk,yyDn ξ3( ).

(14)

The subscript in Dt is a total derivative with respect to t, which
expands as

Dn � ∂
∂n

+ ζk,n
∂
∂k

+ ζk,nn
∂

∂k, n
+ . . . , (15)

where n ∈ t, x, y{ } and k � 1, 2, 3. To determine the infinitesimal
coordinates ξk and ϕk of operator (11), its second-order extension
X[2] is applied to the system of PDEs (1). For instance, its application
to the continuity equation in (1) requires the following invariance
criterion:

X 2[ ] ∂u
∂x

+ ∂v
∂y

( )∣∣∣∣∣∣∣∣∂u
∂x+ ∂v

∂y�0
� 0 . (16)

This criterion is evaluated using the continuity equation of
system (1). The partial derivatives and coefficients of u, v, and T
in the resulting equation are zero. Solving these systems
simultaneously yields the system of PDEs, which contains ξk and
ϕk and their partial derivatives. By solving these systems of PDEs, we
obtain

ξ1 � δ6t + δ1, ξ2 � δ4x + δ5t + δ2, ξ3 � δ6y

2
,

ϕ1 � δ4 − δ6( )u + δ5,ϕ2 � −δ6v
2
, ϕ3 � δ3T + δ7, (17)

TABLE 1 Lie symmetries and transformations.

Symmetry generator Symmetry transformation

X1 � ∂
∂t t � ~t + ϵ

X2 � ∂
∂x x � ~x + ϵ

X3 � ∂
∂T T � ~T + ϵ

X4 � t ∂
∂x + ∂

∂u x � ~x + ϵ~t, u � ~u + ϵ

X5 � T ∂
∂T T � ~Teϵ

X6 � x ∂
∂x + u ∂

∂u
x � ~xeϵ , u � ~ueϵ

X7 � t ∂
∂t + y

2
∂
∂y − u ∂

∂u − v
2

∂
∂v t � ~teϵ , y � ~y

��
eϵ

√
u � ~ue−ϵ , v � ~v��

eϵ
√
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where δ1, δ2, . . . , δ7 are constants that yield the seven Lie point
symmetry generators given in Table 1.

MAPLE offers a built-in code, “Infinitesimals,” for computing
Lie point symmetries in its package “PDEtools.”We use the same
method to obtain the symmetry transformations for system (1),
which form a Lie algebra. These symmetry generators X1, . . . ,X7

and their linear combinations leave system (1) form-invariant.
To obtain similarity transformations using symmetry

generators, condition (2) must remain form-invariant when
operated by generators. Both velocity and temperature are
functions of the time t and x-coordinate. However, when we
use a single symmetry X1, . . . ,X7, (considering one at a time),
both the velocity U(x, t) and temperature Ts(x, t) in (2) become
functions of only the time t or x-coordinate. However, both must
remain functions of the time t and x-coordinate. Therefore,
U(x, t) and Ts(x, t) in (2) become the desired functions when
linear combinations of X1, . . . ,X7 are used considering two at a
time. In the present study, five valid combinations in which both
boundary conditions with U(x, t) and Ts(x, t) became functions
of the time t and x-coordinate, were obtained.

2.2 Double reductions with similarity
transformations

In this subsection, successive double reductions of DEs were
used to construct similarity transformations using Lie point
symmetry generators. We allowed the symmetry procedure to
determine the form of the surface velocity using boundary
condition (2). We demonstrate the process of reduction
considering the symmetries X4 + X5. All conditions (2) are
left form-invariant by the symmetry combination X4 + X5,
with a few exceptions, namely, h(t), U(x, t), and Ts(x, t),
which are put in place by the considered linear combination.
After substituting these boundary conditions, the invariance
criterion is as follows:

X[ 4 + X5] u − U x, t( )( )∣∣∣∣u�U x,t( ) � 0,

X[ 4 + X5] T − Ts x, t( )( )∣∣∣∣T�Ts x,t( ) � 0. (18)

By substituting generators and expanding them at u � U(x, t)
and T � Ts(x, t), we obtain the following linear PDEs:

x
∂U
∂x

− u � 0, x
∂Ts

∂x
− T + T0 � 0. (19)

Solving the aforementioned linear PDEs, we obtain

u � x �U t( ), T � T0 + x�Ts t( ) . (20)
To derive invariants, we apply X4 + X5, on J(x, t, y,T, u, v),

which results in a PDE:

tJx + Ju + TJT � 0, (21)
whose solution provides the invariants t, y, ux, v,

T
x{ }. These are

assigned as the new independent variables:

c1 � t, c2 � y, (22)
and new dependent variables:

P � u

x
,Q � v, R � T

x
. (23)

System (1) in these new variables is transformed into

P + ∂Q
∂c2

� 0,

∂P
∂c1

+ P2 + Q
∂P
∂c2

� μ

ρ

∂2P
∂c22

( ),
∂R
∂c1

+ PR + Q
∂R
∂c2

� κ

ρCp

∂2R
∂c22

+ 16σT3
0

3kaκ
( ), (24)

whereas the boundary conditions (2) become

c2 � 0: P � F c1( ),Q � 0,R � G c1( ),
c2 � h c1( ): Q � dh

dc1
,
∂P
∂c2

� ∂R
∂c2

� 0. (25)

For the second successive reduction, the following symmetry
generators for Eq. 24 are derived, which admits a three-dimensional
Lie algebra:

Z1 � ∂
∂c1

,Z2 � R
∂
∂R

,Z3 � c1
∂
∂c1

+ c2
2

∂
∂c2

− Q
2

∂
∂Q

− P
∂
∂P

. (26)

The combination of Z1 + Z2 + Z3 transforms conditions (25) to

c2 � 0: P � a1
1 + c1

,Q � 0,R � a2 1 + c1( ), c2 � a3
�����
1 + c1

√
:

Q � a3
2
,
∂P
∂c2

� ∂R
∂c2

� 0. (27)

The invariants obtained using Z1 + Z2 + Z3 are
c2���
1+c1√ ,P(1 + c1),Q �����

1 + c1
√

, R
1+c1{ }. Among the listed invariants,

the following is considered a new independent variable:

c2�����
1 + c1

√ � χ, (28)

whereas the new dependent variables are

P 1 + c1( ) � L,Q
�����
1 + c1

√ � M,
R

1 + c1
� N. (29)

The second reduction is obtained by substituting the variables in
(24) and the associated conditions in (25). The transformed system
can now be expressed as

L +M′ � 0,

L2 − L − χ

2
L′ +ML′ � μ

ρ
L″,

LN +N − χ

2
N′ +MN′ � κ

ρCp
N″ + 16σT3

0

3kaκ
( ), (30)

and

L 0( ) � a1,M 0( ) � 0, N 0( ) � a2,M a3( ) � a3
2
, L′ a3( ) � N′ a3( ) � 0.

(31)
The prime here denotes a derivative with respect to χ. For

introducing S,Pr, and β in the reduced systems obtained here, we
combined (22), (23), (28), and (29) with

χ � ηβ

���
aμ

b

√
, L � −b

a
f′ η( ),M � β

���
bμ

a

√
f η( ), N � ϑ η( ). (32)

This yields
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η � β−1
��������

ρb

a 1 + t( )μ

√
y, u � − bx

a 1 + t( )f′ η( ), v � β

��������
bμ

a 1 + t( )ρ

√
f η( ),

T � −ρx
μ

1 + t( )ϑ η( ).
(33)

Transformations (33) map the first equation of (1) into

f‴ − λ ff″ − f′2 − S
η

2
f″ − Sf′( ) � 0, (34)

and the second transformed equation of (1) under (33) is presented
in Table 2.

All conditions (2) are transformed to

f 0( ) � 0, f′ 0( ) � ϑ 0( ) � 1, f 1( ) � S

2
, f″ 1( ) � ϑ′ 1( ) � 0 . (35)

By employing these symmetries or their linear combinations,
which are again Lie point symmetries, we reduce system (1) twice,
using the invariants of these symmetries and their linear
combinations. These reductions are in the independent
variables of the system, and such double reductions enable the
construction of the Lie similarity transformation, as presented in
Table 2. This table presents the second transformed equation of
(1) obtained through the Lie similarity transformations
mentioned previously. The first transformed equation of (1)
under all similarity transformations is (34), which is the same
for all the systems in Table 2.

3 Numerical solution

The difference equations for a non-linear coupled system of
ODEs in (8) are constructed using forward finite difference schemes.
We now solve the resulting non-linear algebraic equations obtained
along with (9) using the Newton–Raphson method. The boundary
conditions at η � 0 and η � 1 are also approximated using forward
difference and backward difference finite schemes, respectively. The

first-order accurate O(h) finite-difference approximations for the
first-, second-, and third-order derivatives are expressed as follows:

Forward difference:

df

dη
� f ηi+1( ) − f ηi( )

h
,
d2f

dη2
� f ηi+2( ) − 2f ηi+1( ) + f ηi( )

h2
,

d3f

dη3
� f ηi+3( ) − 3f ηi+2( ) + 3f ηi+1( ) − f ηi( )

h3
. (36)

Backward difference:

df

dη
� f ηi( ) − f ηi−1( )

h
,
d2f

dη2
� f ηi( ) − 2f ηi−1( ) + f ηi−2( )

h2
,

d3f

dη3
� f ηi+3( ) − 3f ηi+2( ) + 3f ηi+1( ) − f ηi( )

h3
,

(37)

The resulting non-linear algebraic equations are solved
implicitly. If the dimensionless film thickness λ in (8) is known,
five boundary conditions are required to obtain the solution.
However, as λ is unknown, the system is made consistent using
f(η) � S

2 from (9). The system is observed to be stable while
obtaining the solutions of the non-linear algebraic equations.

3.1 Convergence and grid independence

Newton’s method was used because of its quadratic convergence
rate; however, its convergence strongly depended on the initial
guess. We performed iterations with an initial guess of 0.2 for
each term until the error was less than 10−10. For each variable,
satisfactory convergence was achieved over approximately 10
iterations, as shown in Figure 2.

In addition, for all finite-difference-based approximation
methods, the truncation error decreased with an increase in the
number of nodes. The grid independence was assessed, and a
comparison was made with the analytical solution, as shown in
Table 3. As the number of nodes exceeds 1, 500, the |%error in β|
and |%error inf″(0)| do not vary significantly. Thus, 1, 500 nodes
were sufficient to approximate the solution of system (8) subject to

TABLE 2 Lie similarity transformations.

Case Linear combination and similarity transformation System of non-linear ODEs

1 X4 + X5
1+R
Pr ϑ″ + λ(S(η2ϑ′ − ϑ) − fϑ + fϑ) � 0

η � β−1
�����

ρb
aμ(1+t)

√
y, T � −ρx

μ (1 + t)ϑ(η) u � − bx
a(1+t)f′(η), v � β

�����
bμ

aρ(1+t)
√

f(η)

2 X6 + X7
1+R
Pr ϑ″ + λ(S(η2ϑ′ − 1) − fϑ′ + f′) � 0

η � β−1
���
ρb
aμt

√
y, T � −ρ

μ (ϑ(η) + ln(t(1 + x))) u � −b(1+x)
at f′(η), v � β

���
bμ
aρt

√
f(η)

3 X5 + X6
1+R
Pr ϑ″ + λ(S(η2ϑ′ − ϑ) − fϑ′ + f′ϑ) � 0

η � β−1
�����

ρb
aμ(1+t)

√
y, T � −ρt

μ (1 + x)ϑ(η) u � −b(1+x)
at f′(η), v � β

���
bμ
aρt

√
f(η)

4 X4 + X6
1+R
Pr ϑ″ + λ(S(η2ϑ′ + ϑ) − fϑ + fϑ) � 0

η � β−1
���
ρb
aμt

√
y, T � −ρ

μ (1 + x
t)ϑ(η) − 1 u � −b

a (1 + x
t)f′(η) − 1, v � β

���
bμ
aρt

√
f(η)

5 X3 + X6 1+R
Pr ϑ″ + λ(Sη2 ϑ − fϑ + fϑ) � 0

η � β−1
���
ρb
aμt

√
y, T � −ρ

μ (1 + x − t)ϑ(η) − 1 u � 1 − b
at (1 + x − t)f′(η), v � β

���
bμ
aρt

√
f(η)
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(9). However, to verify the convergence of the solution in the present
study, we approximated all solutions using 2, 000 nodes.

3.2 Validation of the numerical solution
method

The numerical results obtained using 2, 000 nodes were
compared with the analytical solutions provided by [8] for the
effects of variation of λ and f″(0) as shown in Table 4.

4 Results and discussion

Five similarity transformations exist for the system of PDEs (1),
given in Table 2. The first step is to obtain the approximate solution of
the reduced system ofODEs to classify the transformations based on the
trends. In this section, we studied the effect of variation of different
parameters of flow and heat transfer in the boundary layer. Table 2
indicates that the first equation in all systems (1)–(5) is the same,
namely, an uncoupled non-linear ODE with f(η) and η as the
dependent and independent terms, respectively. Therefore, the
variations in film thickness λ and velocity distributions f′(η) were
the same for all these systems, owing to a change in the unsteadiness

parameter S. In all these systems, the second equation is a coupled non-
linear ODE with f(η) and ϑ(η) as dependent and η as independent
terms. In the remainder of this section, we first discuss similarity
transformations. Subsequently, we study the effects of unsteadiness
on film thickness and fluid velocity using the first uncoupled equations
of systems (1) and (5). Finally, we present the effects of unsteadiness S,
Prandtl number Pr, and radiation R on the temperature.

4.1 Similarity transformations

A major limitation of the previous similarity transformations for
similar types of systems is that they are only valid when t � 1/a. All
previously existing similarity solutions in (7) become invalid at t � 1/a
because of (3), i.e., U � bx/(1 − at), which dictates the form of these
similarity solutions. In a physical sense, these similarity transformations
(7) and the resulting system (8) provide a solution in which the velocity
of the stretching sheetU is less than theu-velocity of the fluid. This limits
their applicability to real-world scenarios; however, they form the basis of
many real problems, including those addressed in the present study.

However, the similarity solutions for all the systems in the current
study obtained using the Lie symmetry transformation and presented in
Table 2 have no such limitations. Mathematically, they are all valid at
any time (i.e., t> 0). However, in a physical sense, the velocity and
temperature profiles in the boundary layer further finalize the valid
transformations. Approximate solutions using a well-established robust
method can help eliminate invalid reductions.

4.2 Effects of unsteadiness

Table 5 presents the variation in the dimensionless film thickness λ
owing to the unsteadiness S. For a fully developedflow, thefilm thickness
λ decreases with an increase in S. Similarly, the velocity of the flowf′(η)
is directly proportional to S as shown in Figure 3 and Table 5.

Figure 4A; Figure 5A; Figure 6A; Figure 7A show the effects of
variation in temperature distribution ϑ (η) with S. For systems (1)
and (3), the surface temperature ϑ(1) is inversely proportional to S,
as shown in Table 6. However, the temperatures for systems (4) and
(5) increase with S. The trends observed for systems (4) and (5) for
the variation in S contradict those of incompressible viscous laminar
flows because the temperature of fluid ϑ(η) cannot exceed the
temperature of surface Ts(x, t) or temperature of the flowing
fluid itself when the S increases in any fluid flow problem.

FIGURE 2
Convergence of the numerical solution.

TABLE 3 Variation of the film thickness and skin friction with the number of nodes for FDM at S � 1.2.

Node Compute time (S) β −f″(0) |% error in β| |%error in f″(0)|
10 0.29 1.2396749 1.5639389 9.93 8.41

50 1.17 1.1475035 1.4657885 1.75 1.61

100 3.4 1.1374664 1.4541253 0.86 0.79

500 87.3 1.1296894 1.4449116 0.17 0.16

1, 000 325 1.1287335 1.4437681 0.08 0.08

1, 500 690 1.1283772 1.4433873 0.05 0.05

2, 000 1, 251 1.1282594 1.4419199 0.04 0.05
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4.3 Effects of the Prandtl number

Figure 4B; Figure 5B; Figure 6B; Figure 7B show the effects of
the variation of the Prandtl number Pr on the temperature

distribution ϑ(η) in the boundary layer. For systems (1) and
(3), the surface temperature ϑ(1) decreases with increasing
Prandtl number Pr, as shown in Table 7. Similar results have
been reported by [16]. However, a decrease in the temperature
ϑ(1) is observed for systems (4) and (5). The temperature profiles
for systems (4) and (5) contradict the trends followed by the
incompressible viscous laminar flows obtained for such
variations in the Prandtl numbers.

4.4 Effects of radiation

The effects of the radiation R on the temperature distribution
ϑ(η) in the boundary layer are shown in Figure 4C; Figure 5C;
Figure 6C; Figure 7C. As observed before, systems (1) and (3)
exhibit trends that are different from the rest of systems (4) and
(5); in other words, the surface temperature ϑ(1) increases with
the R for the first three systems while for systems (4) and (5), it
decreases with increasing R. In addition, we present the results in
Table 8. Liu and Megahed [16] generated temperature profiles by
varying R and reported profiles of the type observed for systems
(1) and (3). The temperature profiles for systems (4) and (5)
contradicted the trends exhibited by the incompressible viscous
laminar flows obtained under such variations in radiation. The
surface temperature ϑ(1) is expected to increase with the
radiation in the fluid.

TABLE 5 Variation of the surface velocity and dimensionless film thickness with
the unsteadiness parameter.

S λ f ′(1)
4.0 0.2140562 2.534312

6.0 0.1791313 4.113212

8.0 0.1460321 5.688561

10.0 0.1225231 7.262964

FIGURE 3
Variation of the velocity with the unsteadiness parameter.

FIGURE 4
Temperature profiles of systems (1) and (3). (A) Pr = 1, R = 1, (B) S = 6, R = 1, and (C) S = 6, Pr = 1.

TABLE 4 Validation of the numerical solution using 2,000 nodes with the
analytical solution provided by [8].

S [8] Present study

β −f″(0) β −f″(0)
1.0 1.54362 1.97238 1.5443142 1.9715454

1.2 1.127780 1.442631 1.1282594 1.4419199

1.4 0.821032 1.012784 0.8230063 1.0122552

1.6 0.576173 0.642397 0.5743254 0.6425275
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FIGURE 5
Temperature profiles of systems (2). (A) Pr = 1, R = 1, (B) S = 6, R = 1, and (C) S = 6, Pr = 1.

FIGURE 6
Temperature profiles of systems (4). (A) Pr = 1, R = 1, (B) S = 6, R = 1, and (C) S = 6, Pr = 1.

FIGURE 7
Temperature profiles of systems (5). (A) Pr = 1, R = 1, (B) S = 6, R = 1, and (C) S = 6, Pr = 1.
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5 Conclusion

We transformed the system of PDEs representing the flow
and heat transfer in the boundary layer in the presence of
radiation into a system of ODEs using Lie similarity
transformations. The Lie similarity transformations presented
in this study are different from the existing ones in terms of
validity and applicability. These similarity transformations were
obtained through invariants associated with linear combinations
of Lie symmetry generators, which were used to perform double
reductions of the flow model. Four distinct classes of systems of
ODEs were revealed with five deduced Lie similarity
transformations.

Numerical solutions for the obtained systems of ODEs were
determined using finite-difference approximations to eliminate
unphysical cases. The first equations in all five systems are the
same; hence, the velocity profiles are similar under variations in the
unsteadiness parameter. For fully developed flows, the film thickness
decreased, whereas the velocity increased with growing
unsteadiness. Similar trends were observed for the velocity
profiles constructed in this study. For systems (1) and (3), the
temperature decreased with increasing unsteadiness and Prandtl
number, whereas the temperature increased with increasing
radiation parameters. However, for systems (4) and (5), the

temperature increased with the unsteadiness parameter and
Prandtl number and decreased with increasing the radiation,
which is not the case with real fluids. Therefore, we suggest
avoiding the similarity transformation of systems (4) and (5) to
study similar types of problems.

Overall, the valid similarity solutions determined using an
extensive mathematical procedure allowed us to obtain solutions
for unsteady fluid flow and heat transfer in the boundary layer. The
HAM or homotopy perturbation method can be used to obtain the
analytic solutions for the transformed system, providing valid
results. The analytic solutions for fully resolved laminar
boundary layer flow and heat transfer at any given time can be
obtained by inserting the values for appropriate boundary
conditions.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material. Further inquiries can be
directed to the corresponding authors.

Author contributions

Conceptualization: MS; data curation: MB; formal analysis: MB,
SA,MS,MA, and AZ; software: MB andMS; validation: MB, SA,MS,
MA, and AZ; visualization: MB, MS, KK, KK, and JH;
writing—original draft preparation: MS and MB; writing—review
and editing: SA, KK, MA, AZ, KK, and JH; funding: KK and JH. All
authors contributed to the article and approved the submitted
version.

Funding

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (2022R1C1C2003637 to KK and RS-
2023-00210403 to JH).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

TABLE 6 Variation of the surface temperature with the unsteadiness parameter
at Pr � 1 and R � 1.

S Systems 1 and 3 System 2 System 3 System 4

4.0 0.91342208 0.90682704 1.46804559 1.13572439

6.0 0.89826710 0.88910677 1.67129567 1.18476313

8.0 0.89266801 0.88245929 1.78297689 1.20975756

10.0 0.88987833 0.87912922 1.85335392 1.22487492

TABLE 7 Variation of the surface temperature with the Prandtl number at S � 6
and R � 1.

Pr Systems 1 and 3 System 2 System 3 System 4

0.8 0.91737755 0.91144649 1.48278406 1.1425387

1.0 0.89826708 0.88910680 1.67129454 1.18476307

1.2 0.87972372 0.86669294 1.90964758 1.22950774

1.4 0.86172468 0.84419995 2.21767291 1.27750525

TABLE 8 Variation of the surface temperature with the radiation parameter at
S � 6 and Pr � 1.

R Systems 1 and 3 System 2 System 3 System 4

0.0 0.81088221 0.87797861 3.26755159 1.44329681

0.1 0.82578737 0.88908093 2.73931277 1.38958115

0.5 0.86766515 0.91872590 1.80650007 1.26112404

1.0 0.89826708 0.93908276 1.46811762 1.18476309
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