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Surface defect classification is one of key points in the field of steel manufacturing.
It remains challenging primarily due to the rare occurrence of defect samples and
the similarity between different defects. In this paper, a multi-level semantic
method based on residual adversarial learning with Wasserstein divergence is
proposed to realize sample augmentation and automatic classification of various
defects simultaneously. Firstly, the residual module is introduced into model
structure of adversarial learning to optimize the network structure and
effectively improve the quality of samples generated by model. By substituting
original classification layer with multiple convolution layers in the network
framework, the feature extraction capability of model is further strengthened,
enhancing the classification performance of model. Secondly, in order to better
capture different semantic information, we design amulti-level semantic extractor
to extract rich and diverse semantic features from real-world images to efficiently
guide sample generation. In addition, the Wasserstein divergence is introduced
into the loss function to effectively solve the problem of unstable network training.
Finally, high-quality defect samples can be generated through adversarial learning,
effectively expanding the limited training samples for defect classification. The
experimental results substantiate that our proposed method can not only
generate high-quality defect samples, but also accurately achieve the
classification of defect detection samples.

KEYWORDS

few-shot steel surface defect classification, adversarial learning, residual module, multi-
level semantic feature extractor, Wasserstein divergence

1 Introduction

Steel is an essential material for industrial production, with a broad range of uses in areas
such as automobile, aerospace and machinery. As the demand for material fitness in various
industries increases, the surface quality of steel has become increasingly important. However,
during the steel manufacturing process, due to the influence of various unstable factors such
as raw materials and production conditions, various types of defects may appear on the
surface of steel, which affect the quality of steel to varying degrees and easily lead to serious
production accidents, resulting in immeasurable losses to producer and users [1, 2]. Thus, it
is of great importance to classify the defects on the surface of steel efficiently for further
quality enhancement.

Generally, steel surface defects belonging to the same category meet a large intra-class
difference, while those of different categories are highly similar [3], making the classification
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of steel surface defects more complicated. To address this problem,
various approaches have been studies. For instance, Zaghdoudi et al.
[4] proposed a steel surface defect classification method based on the
binary Gabor pattern (BGP) algorithm and support vector machine
(SVM). Hu et al. [5] extracted various visual features such as
geometry, texture, and shape of the defect image and fed them to
SVM for classification. Despite the fact that these methods do
classify different defects, these hand-crafted features are not
optimal, making a constraint on the further performance
improvement. Fortunately, thanks to the development of deep
learning, deep learning based methods have attracted much
attention in the field of steel surface defect classification due to it
powerful capability in feature extraction. Specifically, Duan et al. [6]
used RGB images and gradient images as inputs to a dual-flow
convolutional neural network, and fused multi-source information
to recognize aluminum surface defects. Liu et al. [7] proposed an
improved dual CNN model fusion framework, which uses pre-
trained VGG16 and AlexNet to extract different features from
the input source to classify and identify aluminum surface defects.

Although deep learning based methods enjoy superiority
compared with conventional methods, they also meet the
limitation on the large scale of training data. However, the
number of non-defective samples in actual industrial production
environments is far greater than that of defective samples. Moreover,
it is difficult to identify and collect defective samples, further leading
to an insufficient number of samples [8, 9, 10]. To address this issue
of insufficient samples, many researchers have begun to focus on the
unsupervised data enhancement algorithm: Generative Adversarial
Networks (GANs). Currently, many improved GANs and
adversarial learning strategies have been derived, such as
Wasserstein GAN (WGAN) [11], Deep Convolutional GAN
(DCGAN) [12], and ACGAN [13]. These generative models
augment the original data by generating synthetic samples,
thereby mitigating the effect of few-shot on the classification
performance and improving the accuracy. Dosovitskiy et al. [14]
showed that even with low-fidelity images, the performance can be
significantly improved. If the generated images enjoy the high-
quality, the over-fitting problem can further be solved [15].
However, despite the wide application of GANs and its related
improved models, there are still some tough difficulties, such as
insufficient model feature capture capability, gradient
disappearance, and model collapse, etc.

Furthermore, generating high-quality data similar to the original
data distribution can solve the over-fitting problem, and enhance the
detection accuracy and generalization ability of the model [15]. Lu
and Su [16] proposed a novel method to eliminate mura patterns
from defect images by using conditional generation adversarial
networks; Li et al. [17] studied a cross-domain fault diagnosis
method based on deep neural networks, which has a good
industrial application prospect; Liu et al. [18] introduced an
attention mechanism into feature extraction, proposed a
structural defect detection framework based on GAN-CNN, and
achieved satisfactory results. Despite the wide application of GANs
and its related improved models, there are still some tough
difficulties, such as insufficient model feature capture capability,
gradient disappearance, and model collapse, etc.

Aimed at above problems, we propose a steel surface defect
classification method based on residual adversarial learning with

Wasserstein divergence. First, the residual module is introduced into
the network framework of adversarial learning, to enhance the
feature extraction ability of the model and improve the quality of
generated samples. Subsequently, to extract semantic information
from defect samples at different levels, we design a multi-level
semantic feature extractor (MSFE), which guides sample
generation by extracting the most relevant semantic features
from images. Then Wasserstein divergence is used to alleviate
gradient disappearance, gradient explosion and mode collapse
during model training. Finally, high-quality samples are
generated, and few-shot steel surface defect classification is
realized by adversarial learning. The experimental results show
that the proposed method improves the accuracy of steel surface
defect classification, which are superior to many state-of-the-arts.

The main contributions of this paper are as follows:

• The residual module is introduced into the network structure
of adversarial learning to contribute to the feature extraction.
Moreover, multiple convolutional layers are employed in the
model architecture to replace the original classification layer,
further boosting the classification performance of the model.

• A multi-level semantic feature extractor (MSFE) which
effectively extracts features at different levels is designed,
fully capturing diverse semantic information of images to
guide the generator in sample generation and improve the
quality of generated samples.

• The proposed method can generate high-quality samples to
compensate for the deficiencies under few-shot conditions,
further improving the classification performance.

2 Related works and preliminary
knowledge

2.1 Steel surface defect classification

Steel surface defect classification based on deep learning has
gained considerable attention in recent years and achieved
remarkable results. Chenon et al. [19] proposed a defect
classification approach based on a single convolutional neural
network, which can extract effective features for defect
classification without the prior of hand-crafted features.
Nakazawa et al. [20] proposed a method for surface defect
classification and image retrieval using convolutional neural
networks. The model was trained, validated, and tested using
generated data samples, and it was demonstrated that the model
trained by synthetic data can be classified efficiently. Zhu et al. [21]
studied an intelligent identification algorithm based on
convolutional neural networks and random forest algorithms,
which enabled the intelligent identification of weld surface
defects. However, obtaining effective defect samples is very
challenging in the actual industrial environment, and there is the
problem of insufficient samples, which leads to a low performance of
the surface defect classification model based on deep learning.
Therefore, data augmentation and transfer learning have been
proposed by many researchers to address the few-shot problem
in this field. Wan et al. [22] studied an improved VGG19 neural
network based on small samples and unbalanced datasets for strip
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steel defect detection. Through fast image preprocessing algorithms
and transfer learning theory, excellent results have been achieved on
multiple datasets. Han et al. [23] proposed a new framework for
intelligent fault diagnosis, namely, Deep Transfer Network (DTN),
which generalized deep learning models to domain self-adaptation
scenarios. By using the discriminative structure associated with the
labeled data in the source domain to adapt to the unlabeled data,
more accurate distribution matching is ensured. Furthermore, Liu
et al. [24] designed ImDeep, a deep learning model for unbalanced
multi-label surface defect classification, which combines three key
technologies to improve the classification performance of the model:
imbalanced sampler, Fussy-FusionNet, and transfer learning.

Apart from the domain adaptation, some scholars also utilize
GAN as a data augmentation technique to address few-shot
issue. Goodfellow et al. [15] first proposed the unsupervised deep
learning model GAN in 2014, which was inspired by the two-
player zero-sum game in game theory and consists of two
components: the generator and the discriminator. The
generator is mainly responsible for generating data that is as
similar as possible to the original data samples, while the
discriminator is tasked with distinguishing between real and
fake images. Currently, GAN has been widely applied in various
fields, such as image generation, data augmentation, image
restoration, and image coloring. Specifically, Jain et al. [25]
trained three GAN architectures to generate synthetic images
for data augmentation, which significantly improved the
performance of surface defect classification. He et al. [26]
proposed a semi-supervised learning for defect classification
based on GAN and ResNet to expand the training samples
and exploit the unlabeled images. Zhao et al. [27] designed a
reconstruction network to reconstruct the potential defect areas
in the sample image, and determine the final defect area
according to the difference between the reconstructed sample
and the original sample. Lian et al. [28] proposed a novel
machine vision method for automatic identification of tiny
defects in a single image. To effectively achieve pixel-level
defect detection on textured surfaces without manual
annotation, Tsai et al. [29] introduced a two-stage deep
learning scheme. Particularly, the first stage used CycleGAN
to automatically synthesize and annotate the pixels of defect in
images. The second stage used the synthesized defect images and
their corresponding annotation results as input-output pairs for
training the U-Net semantic network.

2.2 Preliminary knowledge

GAN consists of a generator and a discriminator [15], as shown
in Figure 1A. The input of the generator is a random noise vector z,
and the output is the fake sample generated by it. The discriminator
uses the fake sample generated by the generator and the real data x as
the input, and the output is the discrimination score of the
discriminator on the fake sample. GAN’s overall objective
function is:

min
G

max
D

L G,D( ) � Ex~Pd
logD x( )[ ] + Ez~Pz log 1 −D G z( )( )( )[ ]

(1)
where Pd is the probability density distribution of the real data x; z is
the noise vector randomly sampled from the prior distribution Pz;G
represents the generator, D represents the discriminator, and E(·)
represents the calculated expected value; D(X) is a probability
distribution, that is, the probability of classifying data X as a real
sample, and X is derived from a real sample x or a generated
sample G(z).

Formula 1 shows that the optimization problem of GAN is same
as the max-min optimization problem, which includes the
optimization goals of the generator and the discriminator. The
main function of the discriminator is to perform binary
classification on the input data to determine whether the input
data comes from the distribution of the real data or the generated
pseudo data. Thus, its objective function is:

max
D

L G,D( ) � Ex~Pd
logD x( )[ ] + Ez~Pz log 1 −D G z( )( )( )[ ] (2)

It can be seen from Formula 2 that the goal of the discriminator
is to maximize the discrimination accuracy for the data. In other
words, we aim to maximize the discriminant resultD(x) for the real
data x, and minimize the result D(G(z)) of the generated sample
G(z) (maximize 1 −D(G(z))).

The purpose of the generator is to generate samples that the
discriminator cannot distinguish as false, and its objective
function is:

min
G

L G,D( ) � Ez~Pz log 1 −D G z( )( )( )[ ] (3)

The generator is optimized by Eq. 3. Specifically, the probability
scoreD(G(z)) of the discriminator for the generated sampleG(z) is
maximized (1 −D(G(z)) is minimized). During training, the

FIGURE 1
The model framework of GAN and ACGAN. (A) GAN. (B) ACGAN.
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alternate optimization methods are used: fix one side and update the
parameters of the other network. In other words, the model updates
the discriminator’s parameters firstly through the fixed generator so
that the discriminator maximizes the discriminant result. Then we
fix discriminator’s parameters for updating the generator, which
minimize the result that discriminator works. Finally, when the
probability distribution Pg of the samples generated by the generator
G is infinitely close to the probability distribution Pd of the real
samples (that is, Pg � Pd), the global optimal solution can be
reached.

ACGAN is a variant of GAN [13], and its structure is illustrated
in Figure 1B. By incorporating auxiliary label information c into the
generator, the generated samples can be constrained to possess
certain characteristics, thus allowing for more precise expression
of the samples and the generation of specific samples according to it.
Moreover, in order to ensure accurate classification, ACGAN adds a
softmax layer to the discriminator network, thus enabling the
improved model to not only judge the authenticity of the data,
but also classify the input samples.

The loss function of ACGAN consists of two parts: the
discriminative loss Ls and the classification loss Lc. The role of
discriminative loss is to judge the authenticity of the generated
samples, thereby improving the quality of the samples generated by
the generator. The role of the classification loss is to measure the
accuracy of the classification of the sample category. And, the
specific calculation of Lc is:

Lc � Ex~Pd
R x|cx( )[ ] + Ez~Pz, c~Pc R G z, c( )|c( )[ ] (4)

where R is the cross-entropy loss function, cx represents the category
label of the real data x, c is the category label of the generated data
G(z, c), and Pc is the category label distribution of the sample.

Since a classifier is added to the discriminator D, the network
can not only distinguish the authenticity of the data, but also classify
the data, so its loss function needs to calculate two parts:
discriminant loss Ls(D) and classification loss Lc. The specific
calculation is as follows.

Ls D( ) � Ex~Pd
logD x( )[ ] + Ez~Pz, c~Pc log 1 −D G z, c( )( )( )[ ] (5)

L D( ) � Lc + Ls D( ) (6)
Similarly, the loss function of the generator G also needs to

consider the classification loss:

Ls G( ) � Ez~Pz, c~Pc log 1 −D G z, c( )( )( )[ ] (7)
L G( ) � Lc − Ls G( ) (8)

Formulas 6, 8 ultimately constitute the entire loss function of the
ACGAN model. During the training process, the model is
continually optimized to enhance the quality of the samples
generated by the model and augment the classification accuracy
of the model.

3 Methods

Although Generative Adversarial Networks (GANs) and
Auxiliary Classifier GANs (ACGANs) can effectively alleviate the
few-shot classification problem by generating samples, they still
meet the limitation on inadequate information extraction

capabilities, gradient vanishing, and pattern collapse. To address
these issues, we propose a novel network structure. Specifically, a
residual adversarial learning model with Wasserstein divergence
based on ACGAN under multi-level semantic guidance is proposed,
as shown in Figure 2.

First, the random noise vector z and sample label c are input into
the generator. The generator generates synthetic samples Ig,
expanding the scale of the training data. By utilizing a multi-level
semantic feature extractor to process original samples, semantic and
contextual information can effectively be captured and used for
guiding sample generation of generator. Then, the discriminator
takes the generated sample Ig and real sample I as the inputs, and
outputs the discriminant result R/F? (True or Fake) and the
classification result c′ of the generated sample. During the
adversarial training of model, the Wasserstein divergence
(W div) is used as the distance measurement between the
distributions of the initial data and the distributions of the
generated data.

3.1 The modification of network

Despite the fact that ACGAN achieved significantly
satisfactory results in image generation [13], it still faces the
problem of insufficient feature extraction ability when it is
applied to tasks within the few-shot environment, resulting in
inadequate acquisition of image information and a consequent
decrease in model performance. To address this issue, the overall
network structure of ACGAN is optimized, as illustrated in
Figure 3. The specific improvements of the network structure
are detailed below.

(1) As shown in Figure 3, the residual module (Residual) is
introduced into the network structure of the generator and
the discriminator to optimize the feature learning ability of the
model, so that the model can extract more valuable features.
Meanwhile, it can ensure the quality of the samples generated by
the model while optimizing the model’s ability to discriminate
and classify images. The specific network structure of the
introduced residual module is shown in Figure 4.

(2) When the kernel size of the deconvolution layer cannot be
divisible by stride in the actual calculation, uneven overlapping
problems will occur. Also, the generated sample images would
have some checkerboard-like artifacts [30]. Therefore, in order
to avoid such problems, as shown in Figure 3A, the up-sampling
layer (US) and the convolutional layer (Conv) are used to
generate sample images in the generator network structure.
As shown in Figure 3B, in the discriminator network structure,
two convolutional layers are added before the sigmoid and
softmax classification layers, which makes the classifier in the
discriminator learn more image information and improve the
classification performance.

(3) The generator network mainly consists of several residual modules
and convolutional layers as well as operating up-sampling layers.
The input of the model is the randomly generated 128-dimensional
vector z and the sample label c, which undergoes a fully connected
layer (FC) and the reshape (reshape) operation. Before the
convolution calculation, the first two convolution layers have
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both performed the up-sampling operation using the nearest
neighbor interpolation, which increases the feature map by two
times. At the same time, Batch Normalization (BN) is used to
optimize the network throughput the training. There are three
residual modules between each two convolution layers to improve
the feature learning ability of the model, and the Leaky-ReLU

activation function is used between each layer. The discriminator
network also includes 6 convolutional layers and 3 residualmodules.
And the 3 residual modules follow the first convolutional layer. At
the same time, a Dropout layer (Dropout) is further introduced to
prevent overfitting problems. Furthermore, the Leaky-ReLU
activation function is used between each layer.

FIGURE 2
Overview of our framework. Given an image I as input, our framework first extracts rich semantic information through multi-level semantic feature
extractor to guide generator. After that, we deliver the noise z and label c to generator for generating sample Ig. Finally, we can obtain the classification
result c′ and the discriminate result R/F? (True or Fake?) of generated sample Ig by discriminator. Lc , Ls , andW div indicates respectively the classification
loss, the discriminant loss, Wasserstein divergence during training.

FIGURE 3
Improved generator and discriminator network structure. (A) The structure of the improved generator network. (B) The structure of the improved
discriminator network.
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3.2 Multi-level semantic feature extractor

Recently, ACGAN has achieved remarkable progress in the field
of image generation. Given a category label, ACGAN can map
random noise into high-resolution images with abundant texture
features and comprehensive shape details. However, satisfactory
results depend on training ACGAN with sufficient quantity of
samples. When there is an inadequate number of samples, the
effectiveness of ACGAN in generating samples close to reality is
compromised due to its inability to obtain enough semantic
information, which motivates us to design a multi-level semantic
feature extractor to facilitate sample generation tasks, as shown in
Figure 2. As illustrated above, the role of the multi-level semantic
feature extractor is to extract the semantic and contextual
information of defects at different levels in the image. Therefore,
the original samples are input into the multi-level semantic feature
extractor to obtain the learned hierarchical features, such as texture
and shape, which are then incorporated into the generator to serve as
guidance for sample generation. Specifically, the sample image I
corresponding to the true sample label c is processed by the multi-
level semantic feature extractor to obtain rich semantic information,
which is then aligned with the different convolutional layers in the
generator, facilitating better integration of multi-level semantic
features into the process of sample generation. The core of
alignment operation mainly relies on a convolutional layer,
which adjusts semantic features extracted by MSFE to the size
corresponding to different layers of the generator, and adds the
adjusted features to the original ones to obtain new features under
semantic guidance. The aligned features are added to the
convolutional layers of the generator, leveraging diverse levels of
semantic features to facilitate the generation of specific defective
samples, as depicted in Figure 3A. We use VGG19 pretrained on the
ImageNet dataset as a multi-level semantic feature extractor, and use
the features extracted from layers 7 to 23 in it to guide the generator.

3.3 Objective function

The Kullback-Leibler (KL) divergence [15] is prone to gradient
instability in the Generative Adversarial Networks (GANs) training
phase, and can also lead to mode collapse. To address these issues,
the Wasserstein GAN (WGAN) uses the Wasserstein distance to
ensure that the gradient of the model is continuous during the
training process [11]. However, WGAN utilizes weight clipping to
restrict the weights within a fixed range strictly, which greatly limits
the expressiveness of the network. Consequently, WGAN-GP [31]
adopts gradient penalty to enhance the stability of the network
training. According to the research conducted by [32], in
experiments, WGAN-GP typically employs the technique of
interpolating between real and fake data to simulate a uniform
distribution across the whole space. This approach is somewhat
mechanistic and empirical, which makes it challenging to simulate
the full spatial distribution using limited sampling.

In order to solve this problem, Wu et al. [32] proposed
Wasserstein divergence to reduce the distance loss function
properly between two distributions, as shown in Formula 9. It
removes the K-Lipschitz conditional restriction, and changes the
penalty term added to the loss function.

Wk,p Pd, Pz( ) � max
D

Ex~Pd
D x( )[ ] − Ez~Pz D z( )[ ]

−kEu~Pu ∇D u( )‖ ‖p[ ]
(9)

where k and p are selected empirically. Generally, k = 2, p = 6. ∇
represents the gradient. x comes from the distribution Pd of the real
data; similarly, z comes from the generated sample distribution Pz.
Pu is a distribution derived from the real data distribution Pd and the
generated data distribution Pz. D represents the discriminator, and
E(·) represents the calculated expected value. Experiments in [32]
prove that all different distributions have improved performance.

Based on the loss function of ACGAN [13], we use Wasserstein
divergence to address the potential gradient explosion issue in the
training process. Hence, the loss function of our method consists of
two parts: the loss function L(D) of discriminator and the loss
function L(G) of generator, with each loss function consisting of two
components: the adversarial loss function Ls and the conditional loss
function Lc.

The purpose of L(D) is to ensure that the discriminator can
distinguish between real and generated samples and accurately
classify them based on their respective conditions, as shown below:

Ls D( ) � Ex~Pd
D x( )[ ] − Ez~Pz D z( )[ ] − kEu~Pu ∇D u( )‖ ‖p[ ] (10)

Lc � Ex~Pd
R x|cx( )[ ] + Ez~Pz, c~Pc R G z, c( )|c( )[ ] (11)
L D( ) � Lc + Ls D( ) (12)

where Ls(D) represents the adversarial loss function that is modified
withWasserstein divergence; Lc is the conditional loss function; R(·)
denotes the cross-entropy loss function; cx indicates the category
label of real data sample x, and c denotes the category label of
generated data G(z, c). Pc represents the distribution of sample class
labels. During the training process of discriminator, our objective is
to maximize its loss function L(D).

Likewise, the purpose of L(G) is to generate high-quality data
samples such that the discriminator cannot distinguish whether the
sample is real or fake, as illustrated below:

FIGURE 4
The specific network structure diagram of the residual block.
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Ls G( ) � Ez~Pz D z( )[ ] (13)
Lc � Ex~Pd

R x|cx( )[ ] + Ez~Pz, c~Pc R G z, c( )|c( )[ ] (14)
L G( ) � Lc − Ls G( ) (15)

where Ls(G) represents the adversarial loss function for the
generator. Similarly, we aim to maximize its loss function L(G)
in the training process.

3.4 Network training

During the training process of the model, the discriminator
continuously enhances its capability to distinguish between real samples
and generated samples, while the generator continuously improves its
ability to generate realistic samples. The discriminator updates its weights
by utilizing both real and generated samples, and the generator updates its
weights through the error feedback from the discriminator. The training
process of the model is a maximization and minimization process. In the
adversarial training of the discriminator and the generator, the
discriminator minimizes the probability of misclassification, and the
generator maximizes the error probability of the discriminator. The
iterative training method of the generator and the discriminator is
employed to prevent the over-fitting of the generator network. The
specific training steps of the model are illustrated in Algorithm 1.

Data: image dataset

Output: trained Discriminator and Generator, Training

Accuracy

1 for epoch=0 to n do

2 randomly sample from real samples and get

(real_images, labels), and randomly sample

from a uniform distribution to obtain noise z

3 input (z, labels) into Generator to generate

sample fake_images

4 generated sample fake_images and real sample

real_images are fed into discriminator

5 calculate the gradient of the real sample

space, calculate the gradient of the

generated sample space, and calculate the

Wasserstein divergence according to Formula 9

6 for D_epoch=0 to m do

7 calculate Discriminator’s loss by Formulas

10, 11, 12

8 update Discriminator parameters

9 end for

10 calculate Generator’s loss according to

Formulas 13, 14, 15

11 update Generator parameters

12 end for

Algorithm 1. Residual Adversarial Learning Model with
Wasserstein Divergence.

4 Experiments

In order to verify the effectiveness of the proposed method,
experiments are conducted on the NEU-CLS dataset using a

Windows 10 system with 16 GB of memory, an AMD Ryzen
7 4800HS processor, and an NVIDIA GTX 1660 Ti graphics
card. The model is constructed using the PyTorch platform.

4.1 Dataset

This paper performs experiments on the NEU-CLS hot-rolled
steel surface defect dataset from Northeastern University [34]. The
dataset consists of 6 types of defects, and each category contains
300 grayscale images (200 × 200 pixels). These six types of defects
are: crazing (Cr), inclusion (In), patches (Pa), pitted surface (PS),
rolled-in scale (RS) and scratches (Sc), as illustrated in Figure 5.

In the experiment, the NEU-CLS dataset is divided according to
a 2:1 ratio, with 1,200 images used as the training set and 600 images
used as the test set. It takes 10,000 epochs to train our network with
Adam optimizer and a batch of 64 images. The parameter settings of
the model are as follows: learning rate of α = 0.0002, random noise
vector dimension of z = 128, and Adam optimization parameters of
β1 = 0.5 and β2 = 0.999. In addition, we use VGG19 pretrained on
the ImageNet dataset as a multi-level semantic feature extractor, and
use the features extracted from layers 7 to 23 in it to guide the
generator.

4.2 Few-shot classification of steel surface
defects

Considering the restricted size of the dataset, we conduct
experiments with six different training sample sets (200, 150,
100, 50, 30, 10) to evaluate the few-shot classification
performance enhancement of the proposed method after training,
and to comparatively analyze the impact of the data size on the
model. The numbers of test sets are kept constant. The results of the
comparison between ACGAN and the method proposed in this
paper under different training sample sizes are presented in Table 1.

According to Table 1, it can be observed that the classification
performance of ACGAN and the proposed model decreases as the
training sample size decreases. It is evident that insufficient samples
reduce the generalization capability of the model, resulting in a
poorer performance on the test set. Furthermore, the decline of our
model is more gradual than that of ACGAN, indicating that the
method proposed in this paper is more stable and robust when
dealing with few-shot issues. As illustrated in Figure 6, the trend of
classification results of ACGAN and our model under different
training sample sizes can be observed.

Observing Figures 5, 6, it can be seen that the accuracy of our
model has a distinct advantage over ACGAN under different
training sample sizes. When the sample size is 200, the average
accuracy of our model reaches 98.67%. At the same time, when
the training sample size is 10, the average accuracy of the model
in this paper is 89.67%, while the accuracy of ACGAN drops to
66.5%. This indicates that ACGAN is more reliant on data.
Furthermore, as the training sample size decreases, the
classification accuracy gap between ACGAN and the model
proposed in this paper increases. When the sample size is 10,
the accuracy of ACGAN is 23.17% lower than that of the method
proposed in this paper, making it evident that ACGAN is far less
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effective than the model in this paper when dealing with few-
shot problems.

To illustrate the classification ability of the proposed model for
each type of defect, Figure 7 shows the confusion matrix of our
model under different sample sizes, where the numbers 0–5 in the
abscissa and ordinate represent defect types, respectively: Cr, In, Pa,
PS, RS, and Sc. It is evident that our method can train an ideal model
under different training sample sizes and can accurately classify
most of the defects. Moreover, when the sample size is 200, the
model can accurately classify all Pa defects. Under different training
sample sizes, the cases of classifying Cr as RS and RS as Cr occupy a
large proportion in the wrong classification cases. The high
similarity between Cr and RS defects and the lack of distinct
inter-class features lead to misjudgment of the model. The overall
results demonstrate that the method proposed in this paper only
misjudges a few fault types under different sample sizes, and the
overall accuracy remains high as the sample size decreases.

FIGURE 5
Six types of steel surface defects.

TABLE 1 Average classification accuracy of different sample sizes.

Sample size for each category (total sample size) Average accuracy (%) Increase (%)

ACGAN Ours

200 (1,200) 94.83 98.67 4.04

150 (900) 93.67 98.33 4.66

100 (600) 90.00 95.50 5.5

50 (300) 83.83 94.67 10.84

30 (180) 77.83 94.00 16.17

10 (60) 66.50 89.67 23.17

Bold values mean the best results.

FIGURE 6
Trend chart of classification results under different sample sizes.
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In order to further validate the classification performance of our
model, we compare it with the classic ResNet18 and
ResNet50 classification methods. To ensure the efficient
classification performance of the classic classification models, the
ResNet18 and ResNet50 models are pre-trained using the ImageNet
dataset. Additionally, we also compared with the latest few-shot
deep learning classification models, including: the model proposed
by Lian et al. [28], which combine generative adversarial networks

and convolutional neural networks to generate exaggerated defect
image samples to ensure the accuracy of micro-surface defect
detection; and the model proposed by Li et al. [35], which
replace the fully connected classification layer with an orthogonal
SoftMax layer, significantly reducing the complexity of the model
and making it suitable for few-shot classification. Moreover, in order
to fully demonstrate the impact of MSFE on the final classification
results, MSFE is deliberately excluded in the original framework and
a corresponding experiment is conducted. The experimental results
are presented in Table 2, and it can be seen that, in the case of
different sample sizes, the methods proposed in this paper have
achieved the best results and achieved the highest classification
accuracy.

In order to further verify the importance of introducing various
parts in our model, we compare the classification performance of the
model after introducing the residual module, Wasserstein distance
and penalty weight GP [30], Wasserstein divergence, and MSFE into
the ACGAN model respectively. At the same time, in order to verify
the important role played by the residual module in the
discriminator network, we replace the residual module in the
discriminator of our model with the CBAM attention mechanism
module proposed by [35], and introduce the SENet module to
conduct comparative experiments. The training sample size is
200, and the experimental results are shown in Table 3. It can be
found that after adding the residual module to the original model,
the classification accuracy of ACGAN increases by 1.34%, the

FIGURE 7
Confusion matrix of our model under different training sample sizes. (A) 200, (B) 150, (C) 100, (D) 50, (E) 30, and (F) 10.

TABLE 2 Results of steel surface defects under different methods and sample
sizes.

Methods Average accuracy (%)

200 150 100 50 30 10

ResNet18 92.33 90.67 85.00 83.33 76.33 59.5

ResNet50 93.00 92.33 85.33 83.00 77.00 63.17

Res-ACGAN 96.17 95.00 91.00 84.67 79.00 70.50

[28] 96.50 95.50 91.00 89.50 87.50 76.33

[35] 96.67 94.67 90.50 85.33 84.83 71.33

Ours (lack MSFE) 97.00 96.00 94.33 93.67 91.33 86.00

Ours 98.67 98.33 95.50 94.67 94.00 89.67

Bold values mean the best results.
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classification accuracy of ACGAN + Wasserstein + GP increases by
1.17%, and the classification accuracy of ACGAN + SENet +
Wasserstein + GP increases by 0.84%. After adding Wasserstein
divergence to the original model, the classification accuracy of
ACGAN increases by 1%, and the classification accuracy of
ACGAN + Res increases by 0.83%, which is higher than that of
using Wasserstein distance and penalty weight, showing that

introducing the residual module and Wasserstein divergence into
the model can improve the feature extraction ability of the model
and further improve the model’s ability to discriminate and classify
sample images. In addition, the introduction of attention
mechanism modules SENet and CBAM in the discriminator
network can improve the classification ability of the model, but
the discriminator network structure proposed in this paper has
achieved the best results in experiments. The incorporation of MSFE
in the original framework results in a 1.67% increase in classification
accuracy. This implies that employing semantic features at varying
levels to guide the generator can enhance its efficiency, thereby
advancing the classification abilities of the discriminator.

4.3 Quality assessment of generated
samples

Figure 8 presents a comparison of steel surface defect samples
generated by different models, including ACGAN, the model
augmented with SENet module, the model augmented with
CBAM module [35], the proposed method while lacking MSFE,
and our model. The training process utilizes 200 samples of each
type of defect, with 10,000 iterations and other parameters hold
constant.

It can be observed that, compared to the original sample in
Figure 5, the samples generated by the method proposed in this

TABLE 3 Classification accuracy of introducing different modules.

Method Accuracy (%)

ACGAN 94.83

ACGAN + Res 96.17

ACGAN + Wasserstein + GP 95.33

ACGAN + Wasserstein-div 95.83

ACGAN + Res + Wasserstein + GP 96.50

ACGAN + SENet + Wasserstein + GP 95.83

ACGAN + Res + SENet + Wasserstein + GP 96.67

ACGAN + Res + CBAM + Wasserstein + GP 96.83

ACGAN + Res + Wasserstein-div 97.00

ACGAN + Res + Wasserstein-div + MSFM (Ours) 98.67

Bold values mean the best results.

FIGURE 8
Sample images generated by different methods. (A) ACGAN. (B) introduce SENet module. (C) introduce CBAMmodule [34]. (D)Ours (lack MSFE). (E)
Ours.
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paper are more distinct and the quality of the samples are also
much better. For instance, for the defect of scratch, such as the
third one in the fifth row and the second one in the sixth row in
Figure 8E generated by the method proposed in this paper, when
compared to the last one in the second row in (a), the last one in
the first row in (b), the third one in the fourth row in (c), and the
last one in the last row in (d), its defect features are more
discernible, the defect is sharper, and it is also more similar to
the original sample image. Although the version of lacking MSFE
can also generate high-quality sample images, it is evident that its
feature extraction ability is inadequate, leading to blurred images
and unclear semantic information, as demonstrated in Figure 8D,
specifically in the fifth one of the second row and the second item
of the fourth row.

In order to assess the quality of samples generated by
different models, the MSE (Mean Square Error) and SSIM
(Structural Similarity) metrics are employed to evaluate the
sample quality. MSE is a metric that reflects the degree of
discrepancy between the estimator and the estimated quantity;
SSIM is used to measure the similarity between two images. The
results of different models are presented in Table 4. The smaller
the value of MSE, or the larger the value of SSIM, the larger the
similarity between original image and generated image. It can be
seen from Table 4 that the MSE and SSIM of our model are more
proximate to the original images than other methods, which
demonstrates that the sample data distribution generated by our
model is more similar to the original sample distribution, and
also shows that MSFE and Wasserstein divergence can improve
the quality of samples generated by the model.

5 Conclusion

Aiming at the difficulties of steel surface defect few-shot
classification, this paper introduces multi-level semantic feature
extractor under the residual adversarial learning network
framework to generate high-quality samples and achieves
promising steel surface defect classification. First, we modify the
network structure of the adversarial learning model by the residual
module, so that the model can obtain more information during
training and generate synthetic data to the original sample. To
overcome the challenge of inadequate feature extraction in generator
networks which may lead to suboptimal sample quality in small-
sample environments, we design a multi-level semantic feature
extractor for obtaining diverse semantic information at various

levels. By leveraging this comprehensive semantic information,
we directed sample generation. At the same time, the
Wasserstein divergence is introduced into the loss function to
solve the problem of unstable model training and to improve the
generation efficiency and classification performance of the model.
Experiments are conducted on the steel surface defect dataset
NEU-CLS from Northeastern University. The results
demonstrate that, under the condition of the restricted number
of training samples, the method proposed in this paper achieves
the highest classification accuracy. Moreover, when the number of
training data is reduced, our method exhibits better stability and
robustness than classical classification models and state-of-the-art
of deep learning models. Additionally, in terms of the quality of
generated samples, the MSE value and SSIM value of the samples
generated by the model proposed in this paper are the closest to the
original samples, further showing the effectiveness of our proposed
method. With the popularization of sensors and lightweight
devices, the demand for model compression and lightweight
models is becoming increasingly important. Improving the real-
time performance of defect detection systems is the main trend for
deploying online detection systems in actual industrial production
in the future.
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