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This communication analyzes the dual convection regime of Newtonian fluid flow
in a Y shaped porous enclosure with heat and mass distribution, using a
mathematical model of dimensionless PDEs and an effective finite element
method. The top curved wall of the enclosure is assumed hot and side walls
are cold while the bottom wall is assumed adiabatic. The problem is discretized
using P2 and P1 finite element methods to approximate the displacement,
pressure, and velocity. The linearized system of equations is solved using
Newton’s iterative scheme. The study evaluates the impact of key parameters
such as the Hartmann number, Lewis number, Rayleigh number, and buoyancy
ratio on the flow, heat transfer rate, andmass transfer rate. Results indicate that an
increase in the Hartmann number, Rayleigh numbers and buoyancy ratio amplifies
bothmass and heat transfer rates. The buoyancy ratio has a noteworthy impact on
the flow and transfer rates, with a greater influence seen for. The study presents
graphical representations of flow and temperature fields, as well as Nusselt and
Sherwood numbers provide a comprehensive visualization of the results. Heat and
mass transfer rate is minimum for concentration dominated counter flow (N � −2)
and maximum for concentration dominated assisting flow (N � 2).
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1 Introduction

The interaction between mass and heat transfer is a common occurrence observed in
both natural and industrial settings. An interesting consequence of this interplay arises
when a fluid experiences simultaneous gradients in both temperature and concentration,
resulting in the emergence of a complex and intricate fluid flow pattern, referred to as
double diffusive convection. This phenomenon has long fascinated the scientific and
engineering communities, owing to its far-reaching implications in numerous fields, such
as oceanography, geophysics, energy transport, and materials science. To obtain a more
comprehensive understanding of this phenomenon, delving into some of the crucial
foundational works is imperative [1–3]. Later on several authors had noticed the
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occurrence of doubly diffusive natural convection (DDNC) [4]
effects of a fluid within a porous material [5, 6] with a high
Rayleigh number [7] and transition between oscillatory and
steady convection [8]. The transport of heat and mass in
double diffusive natural convection is closely linked, as the fluid
flow induced by the temperature and concentration gradients
affects the transport of both heat and mass. Kumar etal [9].
Conducted a numerical investigation to examine the transport
of flow, heat, and mass in a rectangular cavity with partially heated
walls. He employed the Lattice Boltzmann Method (LBM) as a
numerical technique to solve the fluid flow problems involving
single and multi-phase systems. Furthermore, he recommended
conducting additional experiments to visualize the application of
LBM in heat and mass transfer. The phenomenon of double
diffusive convection has been studied extensively by various
researcher AA Farooq [10]. The phenomenon of double
diffusive convection has been studied extensively by various
researchers. Han and Kuehn [11] looked at how the
temperature and concentration gradients applied horizontally
would affect a vertical rectangular cavity. They concluded that a
complicated temporary multi-structural formation can be seen
during the concurrent transfer of heat and mass in a rectangular
container under both supporting and opposing buoyancy
circumstances. The study conducted by Beghein et al. [12]
focused on exploring the consequences of steady-state
thermosolutal convection in a square cavity, while Mamou et al.
[13] analyzed a numerical and analytical model for natural
convection in a rectangular cavity containing a double-diffusive
fluid, with uniform heat and mass flux along the vertical sides.
Nikbakhti and Rahimi [14] conducted a computational analysis of
the fluid dynamics, thermal dynamics, and mass transfer in a
rectangular chamber where the walls were heated partially. He
obtained results for different heating conditions and parameters,
also measured the heat and mass transfer rates to determine the
mean Sherwood and Nusselt numbers. The researchers discussed
DDNC in a rectangular [15], trapezoidal [16, 17], irregular [18],
trapezoidal with fillets [19], and hexagonal [20, 21] enclosure.
While Walker and Homsy [22] investigated natural convection
driven by buoyancy in a porous square cavity where one of the
horizontal sides was differentially heated. The study concluded
that non-uniform heating of the bottom wall produces a higher
heat transfer rate at the centre of the bottom wall compared to the
uniform heating case. Furthermore, the study determined that
conduction is the primary mechanism for heat and mass transfer,
and established critical Rayleigh numbers for dominant cases, as
well as a correlation between average Nusselt number and Rayleigh
numbers.

Porous media have found wide-ranging applications in
different fields, owing to their exceptional characteristics and
features. Even though Mamou et al. [23] analyzed the
commencement of the double-diffusive convection phase
inside a rectangular porous channel, while Karimfard et al.
[24] analyzed the occurrence of double-diffusive natural
convection in a squared porous cavity. Some of the fluid-flow
models that the researchers looked into were the Forchheimer
and Brinkman additions, the Darcy flow, and the extended flow.
In a similar way, Nithiarasu et al. [25] used analytical methods to
study double-diffusive flow in a rectangular cavity, while

Bennacer and others [26] used numerical simulation methods
to study how soaked asymmetrical porous materials affect this
kind of convection. Anand Rao et al. [27] cast-off the finite
element method to study the flow of a rotating fluid across an
infinite flat porous plate when a magnetic field and Hall current
were present. He found that fluid flows in plate at constant
angular velocity and the primary and secondary velocity fields
are in non-dimensional form. Researchers [28–31] have used the
finite element method to explore the influence of mass and heat
transfer on the dynamics of suction-driven, vertically oscillating
plates in unstable magneto hydrodynamic flows. Ramana Murthy
et al. [32]. Looked at the effects of mass and heat transmission on
instable MHD regular convection stream over an infinite vertical
plate in a porous environment warmed by thermal radiation. A
well-known author [33] examined the transfer of heat and mass
while discussing the blood flow through a narrow artery with
stenosis. He investigated that the presence of gold (Au)
nanoparticles (NPs) in Oldroyd-B nanoliquid flow affects
stenosis arteries under the influence of MHD. Taklifi and
Aliabadi [34] did an analytical study of the stream of a non-
Newtonian fluid over a permeable layer when the magneto
hydrodynamic (MHD) conditions were unstable. Taza et al.
[35] presented a numerical model that investigates and
compares the behavior of simple and hybrid nanoparticles on
a spreading surface. The work on stretching surface was discussed
by zahr shah [36, 37]. Abdullah et al. [38] studied about ceramic
materials, i.e., Alumina. As a result, the author has developed a
mathematical equation to describe the mixed convective flow of
nanofluid contain Alumina nanoparticles past a stretching
surface in three dimensions under magnetohydrodynamic
condition.

Rashad and El-Kabeir [39] studied a diverse flow of
convection over a vertically strained sheet immersed inside a
fluid-saturated porous media under the impact of a chemical
reaction effect to study the associated mass and temperature
transport processes under transient conditions. Noor Fadiya
et al. [40] used the Adomian decomposition method along
with Padé approximants to solve the magneto hydrodynamic
boundary-layer stream caused by a transparent stretching sheet
submerged in a porous material. The problem was effectively and
precisely solved using this method. An analysis of Co-current
convection and radiation phenomena around an impermeable
inclined plate, subject to magneto and thermal radiation effects in
a porous medium, was performed by Orhan and Ahmet [41].
Zahir et al. [42] studied irreversibility in steady water-based
nanofluid flows between two rotating disks using the
Darcy–Forchheimer relation, constant temperatures/velocities,
and a radial/tangential magnetic field. They proved that the
radial velocity component is increased with the Reynolds
number and decreased with the porosity parameter and inertial
coefficient, while the tangential velocity component and
temperature profile are reduced with the Reynolds number and
increased with the Hartmann number and nanoparticle volume
fraction. Mukesh Kumar Sharma et al. [43] examined a non-
Darcian permeable material containing an electrically charged,
viscous, and appropriate solvent trapped between two indefinitely
long, horizontal, impermeable plates and the relatively stable
magneto hydrodynamic flow and heat exchange properties of
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this system. Both viscous as well as Joule absorption
characteristics were taken into account in the analysis. The
mixed convective stream along an inclined surface inside a
permeable material filled with Newtonian fluid was analyzed by
Mansour et al. [44]. The magneto hydrodynamic circulation of an
incompressible level commensurate over porous materials was
studied byMasood Khan et al. [45], who found perfect solutions to
the problem. Hayat et al. [46] looked at magneto hydrodynamic
flow, utilizing Laplace as well as Fourier sine transform techniques
to derive steady-state and transient solutions. Das et al. [47].
Studied the effects of Hall and thermal radiation on an unsteady
magneto hydrodynamic convective flow that vibrates via a porous
medium contained in a vertical plate. Its effect of mass transport
upon the magneto hydrodynamic circulation of two compressible
fluids under the influence of a chemical reaction as they flow
across a translucent stretching sheet in a porous medium was
studied by Abbas et al. [48]. The unsteady, oscillatory flow of a
magneto hydrodynamic flow through a rectangular channel
packed with an absorbent medium that is flooded, as well as
the accompanying thermal transfer properties, were studied by
Ahmer et al. [49]. The effect of a wall’s temperature that is not
consistent with the rest of the surface was also taken into account
in the study. Ahmet and Sezer [50]. Provided an analytical
solution for the constant, two-dimensional, turbulent, forced
magneto hydrodynamic Hiemenz flow that occurs against a flat
board with a changing wall temperature in a permeable material.
The study employed the homotopic perturbation method to arrive
at the solution. Well-known author Mahmood [51] incorporated a
variety of visual representations, including 2D plots, to illustrate
the acquired solutions Based on an assessment of the previously
mentioned scientific studies, the spreading occurrence in non-
newtonian fluid as a result of thermal and solutal buoyancy
propelled forces has not been explored. Moreover, in spite of
the significant increase of magnetic fields in numerous
contemporary engineering systems, such characteristics are
rarely analyzed collectively. Consequently, the aim of this
undertaking is to address this deficiency by introducing non-
newtonian fluid with thermal and solutal limitations on the right
wall of the cavity. In order to achieve this, the mathematical
formulation of the problem is represented as a partial differential

equation, and subsequently, similarity parameters are utilized to
transform PDEs [52] into ODEs. A numerical solution to the
formulated problem is obtained through the utilization of finite
element methodology in simulation. Ultimately, crucial
parameters’ impacts on associated distributions are illustrated
in a visual and tabulated layout.

In the initial section of this paper, the inspiration and rationale
behind the research are explained, along with an extensive
discussion of the relevant references and literature. In Section 2
of the paper, the mathematical equation that governs DDNC in
fluid-saturated porous media is thoroughly described. This section
offers a detailed explanation of the underlying physical phenomena
that drive the DDNC process. The dimensionless form of the
Navier-Stokes equations is solved using FEM. In Section 3 of the
paper, the proposed method’s accuracy and effectiveness are
showcased through a detailed presentation of the numerical
approach and validation methodology. In Section 4, the
outcomes are visually presented through streamlines,
isoconcentration and isotherms plots, depicting the influence of
the variables on the heated and cooled regions. Section 5 summarizes
the results of the analysis conducted in this study.

2 Mathematical model

2.1 Problem description

We have considered the fluid flow that is laminar, uniform,
incompressible, and flowing in two dimensions inside a Y-shaped
cavity with circular cylinder inside. When the left and right side
cavity wall is affected by cooling temperature (Tc) with low
concentration (CC) and wall of a top-side cavity is subjected to a
high temperature (Th)while the concentration (Ch)of the gas in the
cavity is increased, and vice versa. The cavity’s remaining
components are meant to be adiabatic. It was determined that a
magnetic field with a strength of B should be imposed at an angle of
degrees to the horizontal. These equations are discretized all around
the cavity with the help of the unstructured mesh. Figure 1A shows
the flow issue, while Figure 1B shows the unstructured mesh sketch
shape.

FIGURE 1
Schematic of the considered study.
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2.2 Governing equations

The non-dimensional governing equations for two-dimensional
incompressible and steady flow is defined through Eqs. 1–7 (for ref
see [53])

∂U
∂x

+ ∂V
∂y

� 0, (1)

U
∂U
∂x

+ V
∂U
∂y

( ) � −∂~p
∂x

+ Pr
∂2U
∂x2

+ ∂2U
∂y2

( ) + ξx, (2)

U
∂V
∂x

+ V
∂V
∂y

( ) � −∂~p
∂y

+ Pr
∂2V
∂x2

+ ∂2V
∂y2

( ) + ξy , (3)

U
∂~θ
∂x

+ V
∂~θ
∂y

� ∂2~θ
∂x2

+ ∂2~θ
∂y2

, (4)

Le U
∂~C
∂x

+ V
∂~C
∂y

( ) � ∂2~C
∂x2

+ ∂2~C
∂y2

( ), (5)

Where

ξx � PrHa2 V sinγsosγ − U sin2γ( ) − Pr
Da

U, (6)

ξy � PrHa2 U sinγ cosγ − Vcos2γ( ) + RaPr ~θ +N~C( ) − Pr
Da

V, (7)

The dimensionless boundary conditions are defined as

U � V � 0, ~θ � ~C � 1. for hot side( ), (8)
U � V � 0, ~θ � ~C � 0. for cold side( ), (9)

U � V � 0,
∂~θ
∂n

� ∂~C
∂n

� 0. for rest of the walls( ), (10)

The local and average Nusselt and Sherwood numbers are
calculated on the heated wall using Eqs. 11–14,

Nu � −∂
~θ

∂x
( )

x�h
, (11)

Sh � −∂~C
∂x

( )
x�h

, (12)

Nuavg � ∫1

o
Nudy, (13)

Shavg � ∫1

0
Shdy, (14)

3 Numerical scheme

Exact procedures are useful for dealing with fluid flow behavior
in the absence of limited barriers, but it is challenging to find the
solution in a closed cavity with obstacles of varying forms and sizes
using only those approaches. Hence, most researchers use
numerical systems to publish their findings, with FEM, FDM,
and FVM among the most common approaches. One of the most
flexible of these numerical methods is the FEM, which is used to
discrete elements to simulate complicated and irregular geometries
on a flat domain. Fluid, heat and mass transfer movement inside of
enclosures have served as the focus of a significant amount of
research using computational methods. Using the finite-element
method (FEM), the above leading Eqs. 1–10 are discretized. Then

Newton’s Raphson iteration approach is applied to the nonlinear
algebraic equations. The flowchart in Figure 2 shows FEM’s basic
process.

3.1 Weak formulation

The Eqs. 1–5 can be written in the weak form as follows

∫
A

∂U
∂x

+ ∂V
∂y

( )wdA � 0 (15)

∫
A

U
∂U
∂x

+ V
∂U
∂y

( )wdA + ∫
A

∂~p
∂x

wdA − Pr∫
A

∂2 U
∂x2

+ ∂2 U
∂y2

( )wdA
− ∫

A
ξXwdA � 0,

(16)
∫

A
U

∂V
∂x

+ V
∂V
∂y

( )wdA + ∫
A

∂~p
∂y

wdA − Pr∫
A

∂2 V
∂x2

+ ∂2 V
∂y2

( )wdA
− ∫

A
ξYwdA � 0,

(17)

∫
A

U
∂~θ
∂x

+ V
∂~θ
∂y

( )wdA − ∫
A

∂2 ~θ
∂x2

+ ∂2 ~θ
∂y2

( )wdA � 0, (18)

∫
A

U
∂~C
∂x

+ V
∂~C
∂y

( )wdA − 1
Le
∫

A

∂2 ~C
∂x2

+ ∂2 ~C
∂y2

( )wdA � 0, (19)

In order to obtain a numerical approximation, we compare the
solutions obtained from continuous and discrete methods within
finite dimensional sub-spaces.

U ≈ Uk

V ≈ Vk
~θ≈ θk

∈ wk

⎫⎪⎬⎪⎭,
~C≈ Ck ∈ qk
~p≈ Pk ∈ Qk

}, (20)

FIGURE 2
Finite element flowchart.
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Using Eq. 22 into above equation the discrete version is as follow

∫
A

∂Uk

∂x
+ ∂Vk

∂y
( )wkdA � 0, (21)

∫
A

Uk
∂Uk

∂x
+ Vk

∂Uk

∂y
( )wkdA + ∫

A

∂Pk

∂x
wkdA

− Pr∫
A

∂2 Uk

∂x2
+ ∂2 Uk

∂y2
( )wkdA − ∫

A
ξXwkdA � 0,

(22)

∫
A

Uk
∂Vk

∂x
+ Vk

∂Vk

∂y
( )wkdA + ∫

A

∂Pk

∂y
wkdA

− Pr∫
A

∂2 Vk

∂x2
+ ∂2 Vk

∂y2
( )wkdA − ∫

A
ξYwkdA � 0,

(23)

∫
A

Uk
∂θk
∂x

+ Vk
∂θk
∂y

( )wkdA − ∫
A

∂2 θk
∂x2

+ ∂2 θk
∂y2

( )wkdA � 0, (24)

∫
A

Uk
∂Ck

∂x
+ Vk

∂Ck

∂y
( )wkdA − 1

Le
∫

A

∂2 Ck

∂x2
+ ∂2 Ck

∂y2
( )wkdA � 0,

(25)
For discrete solution the basic function is as follow

Uk ≈ ∑N
h�1

Uhϕh x, y( )
Vk ≈ ∑N

h�1
Vhϕh x, y( )

Pk ≈ ∑N
h�1

PhΨh x, y( )

θk ≈ ∑N
h�1

θhθh x, y( )
Ck ≈ ∑N

h�1
ChCh x, y( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (26)

∫
A

∂Uk

∂x
+ ∂Vk

∂y
( )wkdA � 0, (27)

∫
A

Uk
∂Uk

∂x
+ Vk

∂Uk

∂y
( )wkdA

+ ∫
A

∂Pk

∂x
wkdA − Pr∫

A

∂Uk

∂x
∂wk

∂x
+ ∂Uk

∂y
∂wk

∂y
( )wkdA

− ∫
A
ξXwkdA � 0,

(28)

∫
A

Uk
∂Vk

∂x
+ Vk

∂Vk

∂y
( )wkdA

+ ∫
A

∂Pk

∂y
wkdA,−Pr∫

A

∂Vk

∂x
∂wk

∂x
+ ∂Vk

∂y
∂wk

∂y
( )wkdA

− ∫
A
ξXwkdA � 0

(29)

∫
A

Uk
∂θk
∂x

+ Vk
∂θk
∂y

( )wkdA + ∫
A

∂θk
∂x

∂wk

∂x
+ ∂θk

∂y
∂wk

∂y
( )wkdA � 0

(30)
∫

A
Uk

∂Ck

∂x
+ Vk

∂Ck

∂y
( )wkdA − 1

Le
∫

A

∂Ck

∂x
∂wk

∂x
+ ∂Ck

∂y
∂wk

∂y
( )wkdA

� 0

(31)

The parameters retain their typical definitions, and in order to
obtain the solution, the non-linear system is iteratively processed
until a certain threshold of tolerance is reached.

3.2 Verification and investigation of grid
dependency

To validate the efficiency of the achieved consequences, Table 1
displays the results of using several grids with the parameters
Ha � 20, Ra � 1e5, Pr � 6.8, and Le � 2. As a direct consequence
of this, the number of degrees of freedom (DOFs), and the number
of elements (NEL), can range anywhere from (6424 − 191,996) and
(598 − 21124), respectively. Variations between Sherwood and
Nusselt numbers are almost indiscernible in the final two grids
(8, 9). The grid-independent numerical findings are thus provided
using DOFS 168196 and NEL of 18324.

4 Result and discussion

In this section, we will compare the findings of the study in the
form of streamlines, temperature profile, and isoconcentration
patterns to a variety of physical parameters. This involves Ra
(Rayleigh number), N (buoyancy ratio), Ha (Hartmann number),
Le (Lewis number) and Da (Darcy number). The obtained mass flux
coefficients (Sherwood numbers) and heat flux coefficients (Nusselt
numbers) are of significant importance, in terms of their wider
applicability and their local relevance.

The dispersion of streamlines, temperature profile, and
isoconcentrations at different Ra are shown in Figure 3. The
results show that an increase in the Ra results in a stronger
natural convection, causing notable changes in fluid velocities,
temperature, and concentration distributions. The impact of the
Rayleigh number on natural convection and its related heat and
mass transfer properties is noticeable. Due to the temperature gradient
between the top, left, and right walls, the fluid within the system
circulates from the region with higher temperature to the cooler areas.

Figure 4 displays the streamlines for varying buoyancy ratios.
Natural convection and the related flow dynamics are seen to be

TABLE 1 Grid independency for mean Sh and Nu.

Grid NEL DOFS Nu Sh

1 598 6424 2.6743 0.91052

2 842 8838 2.7652 0.95749

3 1376 14023 2.7999 0.97585

4 2186 21690 2.8246 0.98775

5 2498 24529 2.8246 0.98770

6 3428 33097 2.8293 0.99010

7 6878 64989 2.8357 0.99279

8 18324 168196 2.8422 0.99542

9 21124 191996 2.8422 0.99542
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significantly affected by the buoyancy ratio. When buoyancy ratio is
negative (concentration dominated counter flow), fluid flows mostly
from the warm to the cool side of the cavity, creating two convection
cells. As the buoyancy ratio approaches zero (thermal convection
dominated flow), the 2 cells become increasingly symmetric, and the
flow becomes more uniform. At higher buoyancy ratios
(concentration dominated assisting flow), the flow pattern
becomes more complex, with extra vortices forming in the cavity.
So when buoyancy ratio becomes negative, as seen in part 2 of
Figure 4, the fluid closest to the top wall heats up, while the fluid near
its bottom wall cools down. As buoyancy ratio approaches zero, the
temperature distribution becomes increasingly symmetric, and the
heat transfer becomes more uniform. At higher buoyancy ratios, the
temperature distribution becomes more uniform. In the third part
the Isoconcentration behave same as Isotherms.

Figure 5 shows how Da affects the mass as well as heat
transmission properties of natural convection. As can be seen in
this diagram, Da has a major impact on the distributions of both
temperature as well as concentration. When Darcy’s number goes
down, its temperature closest to hot wall goes up, while the
temperature close to the cold wall falls down. The same is true
for concentration, which gets better as it gets closer to the top of the
wall and worse as it gets closer to the bottom. Moreover, the
concentration distribution becomes more uniform as the Darcy
number decreases.

In Figure 6, we see how the streamlines, isotherms, and
concentrations vary for various Hartmann numbers. When the
Hartmann number rises, its magnetic field becomes stronger,
resulting in increased suppression of fluid motion, and hence
reduced rates of thermal and mass transfer. The figure reveals
this phenomenon as the streamlines start pointing in the same
direction as the magnetic field and the fluid flow is restricted to the
bottom of the cavity. Further it also shows that the temperature and
concentration distributions become more uniform as the Hartmann
number increases, which is caused by suppressed temperature and
concentration gradients and decreased fluid velocity.

Figure 7 shows the relationship between the Nusselt number and
the Sherwood number as a function of the Rayleigh number for a
range of Darcy numbers. When the Darcy number goes down, the
rate of heat andmass transfer goes down. For all Darcy numbers, it is
seen that a rise in the Rayleigh number results in a corresponding
increase in the Nusselt number.

Figure 8 illustrates how the Rayleigh number affects the heat and
mass transfer for variation of Hartmann numbers. Heat and mass
transfer rate is minimum for pure hydrodynamic case (Ha � 0) and
increase for increasing values of Hartmann number. This influence
of magnetic field strength on heat and mass transfer rates can be
better understood with the help of above illustration. As the Rayleigh
number rises, the Sherwood and Nusselt numbers also rise
gradually, as shown in the figure.

FIGURE 3
Profiles of momentum, temperature, and solute against (Ra).
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FIGURE 4
Profiles of momentum, temperature, and solute against buoyancy ratio.

FIGURE 5
Profiles of momentum, temperature, and solute for different Darcey number.
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Figure 9 is a chart that illustrates the Sherwood and Nusselt
numbers as a consequence of the Rayleigh number for a variety of
buoyancy ratios (−2, 0, 2). Heat and mass transfer rate is minimum
for concentration dominated counter flow (N � −2) and maximum
for concentration dominated assisting flow (N � 2).

Figure 10 presents a statistical analysis of the relationship between
heat andmass transfer considering variation in the Darcy number and
Rayleigh number. The heat transfer rate is visually represented by
blocks, whereas the variation in mass transfer is illustrated by lines.
The result indicates a discernible increase in both heat and mass

transfer for higher values of the Darcy number (Da) and Rayleigh
number (Ra), as visually observed in the figure.

Table 2 presents numerical data on the Hartmann number
(0≤Ha≤ 40), Darcey number (10−2 ≤Da≤ 10−4), Rayleigh
number (1e5 ≤Ra≤ 1e7), Lewis number (1≤ Le≤ 10), and
buoyancy ratio (−2≤N≤ 2) for mean Nusselt number (Nu) and
mean Sherwood number (Sh). It is observed that at fixed parameter
Ha � 20,Da � 0.01, Ra � e5, Le � 2, N � 2, the mean Nusselt
number (Nu) is 2.7998 and the mean Sherwood number (Sh) is
0.9758. The data shows that the highest values for the mean Nusselt

FIGURE 6
Profiles of momentum, temperature, and solute across (Ha).

FIGURE 7
Effect of Da and Ra on the mean Nusselt number and mean Sherwood number for Pr = 6.8, Ha = 20, N = 2.
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FIGURE 8
Effect of Ha and Ra on the mean Nusselt number and mean Sherwood number for Pr = 6.8, Ha = 20, N = 2.

FIGURE 9
Effect of N and Ra on the mean Nusselt number and mean Sherwood number for Pr = 6.8, Ha = 20, N = 2.

FIGURE 10
Effect of Da, Ra vs. Ha on Nusselt number and Sherwood number.
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number and mean Sherwood number is observed at a Rayleigh
number (Ra � 1e7) with magnitude 7.0651 and 2.3072 respectively
where the other parameter are fixed.

5 Conclusion

The purpose of the present investigation is to demonstrate the
flow characteristics of a viscous fluid inside of a Y shaped porous
cavity containing a circular cylinder. The problem is formulated
mathematically using system of dimensionless PDEs. An effective
FEM is used to handle modified partial differential systems. The
domain is discretized using quadrilateral and triangular elements at
multiple level. The LBB-stable element provides as close
approximation of the velocity, temperature and concentration.
These results could be used to improve the design of heat
transfer systems, cooling systems, and other engineering parts.

• Increase in the Hartmann number, Buoyancy ratio and Rayleigh
numbers amplifies both the heat and mass transfer rates.

• The natural convection becomes stronger as the Rayleigh number
increases, leading to higher fluid velocities and significant changes
in the temperature and concentration distributions.

• The Darcy number significantly affects the temperature and
concentration distributions, with decreasing Darcy number
resulting in increased temperature near the hot wall and
increased concentration near the top wall.

• For concentration dominated counter flow heat and mass
transfer rate decreases for the variation in Ra (Rayleigh
number).

• For concentration dominated assisting flow mass and heat
transfer rate increases for the variation in Rayleigh number.
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TABLE 2 Relationship between Ha,Da,Ra, Le,N on mean Nusselt and Sherwood numbers.

Ha Da Ra Le N Nu Sh

20 0.01 1e5 2 2 2.7998 0.9758

0 - - - - 2.7970 0.9739

40 - - - - 2.8094 0.9823

- 0.001 - - - 2.8275 0.9922

- 0.0001 - - - 2.7699 0.9683

- - 1e6 - - 3.7663 1.4053

- - 1e7 - - 7.0651 2.3072

- - - 1 - 2.8437 0.9504

- - - 5 - 2.8392 1.0623

- - - 10 - 2.8329 1.1732

- - - - −2 2.6743 0.8900

- - - - 0 2.7589 0.9453

Frontiers in Physics frontiersin.org10

Aslam et al. 10.3389/fphy.2023.1207462

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1207462


References

1. Huppert HE, Turner JS. Double-diffusive convection. J Fluid Mech (1981) 106:
299–329. doi:10.1017/s0022112081001614

2. Huppert HE, Sparks RSJ. Double-diffusive convection due to crystallization in magmas.
Annu Rev Earth Planet Sci (1984) 12(1):11–37. doi:10.1146/annurev.ea.12.050184.000303

3. Schmitt RW. Double diffusion in oceanography. Annu Rev Fluid Mech (1994)
26(1):255–85. doi:10.1146/annurev.fl.26.010194.001351

4. Uddin M, Rasel S, Adewole JK, Al Kalbani KS. Finite element simulation on the
convective double diffusive water-based copper oxide nanofluid flow in a square cavity
having vertical wavy surfaces in presence of hydro-magnetic field. Results Eng (2022) 13:
100364. doi:10.1016/j.rineng.2022.100364

5. Griffiths R. Layered double-diffusive convection in porous media. J Fluid Mech
(1981) 102:221–48. doi:10.1017/s0022112081002619

6. Gumir FJ, Al-Farhany K, Jamshed W, Tag El Din ESM, Abd-Elmonem A. Natural
convection in a porous cavity filled (35%MWCNT-65% Fe3O4)/water hybrid nanofluid
with a solid wavy wall via Galerkin finite-element process. Scientific Rep (2022) 12(1):
17794. doi:10.1038/s41598-022-22782-0

7. Linden P, Shirtcliffe T. The diffusive interface in double-diffusive convection.
J Fluid Mech (1978) 87(3):417–32. doi:10.1017/s002211207800169x

8. Curry JH, Herring JR, Loncaric J, Orszag SA. Order and disorder in two-and three-
dimensional Bénard convection. J Fluid Mech (1984) 147:1–38. doi:10.1017/
s0022112084001968

9. Kumar S, Gangawane KM, Oztop HF. Applications of lattice Boltzmann method
for double-diffusive convection in the cavity: A review. J Therm Anal Calorim (2022)
147(20):10889–921. doi:10.1007/s10973-022-11354-z

10. Farooq A, Shah Z, Shutaywi M, Bonyah E, Roy P. Axisymmetric mixed convective
propulsion of a non-Newtonian fluid through a ciliated tubule. AIP Adv (2020) 10(5):
055214. doi:10.1063/5.0003671

11. Han H, Kuehn TH. Double diffusive natural convection in a vertical rectangular
enclosure—II. Numerical study. Int J Heat mass transfer (1991) 34(2):461–71. doi:10.
1016/0017-9310(91)90265-g

12. Beghein C, Haghighat F, Allard F. Numerical study of double-diffusive natural
convection in a square cavity. Int J Heat Mass Transfer (1992) 35(4):833–46. doi:10.
1016/0017-9310(92)90251-m

13. Mamou M, Vasseur P, Bilgen E. Analytical and numerical study of double
diffusive convection in a vertical enclosure. Heat Mass Transfer (1996) 32(1):115–25.
doi:10.1007/s002310050100

14. Nikbakhti R, Rahimi AB. Double-diffusive natural convection in a rectangular
cavity with partially thermally active side walls. J Taiwan Inst Chem Eng (2012) 43(4):
535–41. doi:10.1016/j.jtice.2012.02.010

15. Moraveji MK, Hejazian M. Natural convection in a rectangular enclosure
containing an oval-shaped heat source and filled with Fe3O4/water nanofluid. Int
Commun Heat mass transfer (2013) 44:135–46. doi:10.1016/j.icheatmasstransfer.2013.
03.011

16. Esfe MH, Abbasian Arani AA, Yan WM, Ehteram H, Aghaie A, Afrand M.
Natural convection in a trapezoidal enclosure filled with carbon
nanotube–EG–water nanofluid. Int J Heat Mass Transfer (2016) 92:76–82.
doi:10.1016/j.ijheatmasstransfer.2015.08.036

17. Khan ZH, Khan WA, Haq R, Usman M, Hamid M. Effects of volume fraction on
water-based carbon nanotubes flow in a right-angle trapezoidal cavity: FEM based
analysis. Int Commun Heat Mass Transfer (2020) 116:104640. doi:10.1016/j.
icheatmasstransfer.2020.104640

18. Mohammadi M, Nassab SG. Double-diffusive convection flow with Soret and
Dufour effects in an irregular geometry in the presence of thermal radiation. Int
Commun Heat Mass Transfer (2022) 134:106026. doi:10.1016/j.icheatmasstransfer.
2022.106026

19. Shahzad H, Ain QU, Pasha AA, Irshad K, Shah IA, Ghaffari A, et al. Double-
diffusive natural convection energy transfer in magnetically influenced Casson fluid
flow in trapezoidal enclosure with fillets. Int Commun Heat Mass Transfer (2022) 137:
106236. doi:10.1016/j.icheatmasstransfer.2022.106236

20. Shah IA, Bilal S, Noeiaghdam S, Fernandez-Gamiz U, Shahzad H. Thermosolutal
natural convection energy transfer in magnetically influenced casson fluid flow in
hexagonal enclosure with fillets. Results Eng (2022) 15:100584. doi:10.1016/j.rineng.
2022.100584

21. Khan Y, Majeed AH, Shahzad H, Awan FJ, Iqbal K, Ajmal M, et al. Numerical
computations of non-Newtonian fluid flow in hexagonal cavity with a square obstacle: A
hybrid mesh–based study. Front Phys (2022) 10:336. doi:10.3389/fphy.2022.891163

22. Basak T, Roy S, Paul T, Pop I. Natural convection in a square cavity filled with a
porous medium: Effects of various thermal boundary conditions. Int J Heat Mass
Transfer (2006) 49(7-8):1430–41. doi:10.1016/j.ijheatmasstransfer.2005.09.018

23. Mamou M, Vasseur P, Bilgen E. Multiple solutions for double-diffusive
convection in a vertical porous enclosure. Int J Heat Mass Transfer (1995) 38(10):
1787–98. doi:10.1016/0017-9310(94)00301-b

24. Karimi-Fard M, Charrier-Mojtabi M, Vafai K. Non-Darcian effects on double-
diffusive convection within a porous medium. Numer Heat Transfer, A: Appl (1997)
31(8):837–52. doi:10.1080/10407789708914067

25. Nithiarasu P, Seetharamu K, Sundararajan T. Double-diffusive natural convection
in an enclosure filled with fluid-saturated porous medium: A generalized non-Darcy
approach. Numer Heat Transfer, A Appl (1996) 30(4):413–26. doi:10.1080/
10407789608913848

26. Bennacer R, Tobbal A, Beji H, Vasseur P. Double diffusive convection in a vertical
enclosure filled with anisotropic porous media. Int J Therm Sci (2001) 40(1):30–41.
doi:10.1016/s1290-0729(00)01185-6

27. Anand RJ, Srinivasa RR, Sivaiah S. Finite element solution of MHD transient
flow past an impulsively started infinite horizontal porous plate in a rotating fluid
with Hall current. J Appl Fluid Mech (2012) 5:105–12. doi:10.36884/JAFM.5.03.
19452

28. Mahmood R, Hussain Majeed A, Ain Q, Awrejcewicz J, Siddique I, Shahzad H.
Computational analysis of fluid forces on an obstacle in a channel driven cavity:
Viscoplastic material based characteristics. Materials (2022) 15(2):529. doi:10.3390/
ma15020529

29. Wang X, Shahzad H, Chen Y, Kanwal M, Ullah Z. Mathematical modelling
for flexible blade coater with magnetohydrodynamic and slip effects in blade
coating process. J Plast Film Sheeting (2020) 36(1):38–54. doi:10.1177/
8756087919848807

30. Shahzad H, Wang X, Raizah Z, Riaz A, Majeed AH, Anwar MA, et al. Fluid-
structure interaction study of bio-magnetic fluid in a wavy bifurcated channel with
elastic walls. Front Phys (2022) 10:1147. doi:10.3389/fphy.2022.999279

31. Anand RJ, Srinivasa RR, Sivaiah S. Finite element solution of heat and mass
transfer in MHD flow of a viscous fluid past a vertical plate under oscillatory suction
velocity. J Appl Fluid Mech (2012) 5:1–10. doi:10.36884/JAFM.5.03.19435

32. Murthy MR, Raju RS, Rao JA. Heat and mass transfer effects on MHD natural
convective flow past an infinite vertical porous plate with thermal radiation and Hall
current. Proced Eng (2015) 127:1330–7. doi:10.1016/j.proeng.2015.11.491

33. Tang TQ, Rooman M, Shah Z, Asif Jan M, Vrinceanu N, Racheriu M.
Computational study and characteristics of magnetized gold-blood Oldroyd-B
nanofluid flow and heat transfer in stenosis narrow arteries. J Magnetism Magn
Mater (2023) 569:170448. doi:10.1016/j.jmmm.2023.170448

34. TaklifiA, Aliabadi A. Analytical solution of unsteadyMHD periodic flow of a non-
Newtonian fluid through a porous channel. J Porous Media (2012) 15(11):1051–9.
doi:10.1615/jpormedia.v15.i11.50

35. Gul T, Khan A, Bilal M, Alreshidi NA, Mukhtar S, Shah Z, et al. Magnetic dipole
impact on the hybrid nanofluid flow over an extending surface. Scientific Rep (2020)
10(1):8474–13. doi:10.1038/s41598-020-65298-1

36. Shah Z, Rooman M, Shutaywi M. Computational analysis of radiative engine oil-
based Prandtl–Eyring hybrid nanofluid flow with variable heat transfer using the
Cattaneo–Christov heat flux model. RSC Adv (2023) 13(6):3552–60. doi:10.1039/
d2ra08197k

37. Deebani W, Lund LA, Chandio AF, Yashkun U, Shah Z, Alshehri A. Convective
micropolar fluid over inclined surface with thermal radiation and velocity slip condition
effects: Duality and stability. Int J Mod Phys B (2023) 2023:2450114. doi:10.1142/
s0217979224501145

38. Dawar A, Thumma T, Islam S, Shah Z. Optimization of response function
on hydromagnetic buoyancy-driven rotating flow considering particle diameter
and interfacial layer effects: Homotopy and sensitivity analysis. Int Commun
Heat Mass Transfer (2023) 144:106770. doi:10.1016/j.icheatmasstransfer.2023.
106770

39. Rashad AM, El-Kabeir S. Heat and mass transfer in transient flow by mixed
convection boundary layer over a stretching sheet embedded in a porous medium with
chemically reactive species. J porous media (2010) 13(1):75–85. doi:10.1615/jpormedia.
v13.i1.70

40. Prasad DK, Chaitanya GK, Raju RS. Double diffusive effects on mixed convection
Casson fluid flow past a wavy inclined plate in presence of Darcian porous medium.
Results Eng (2019) 3:100019. doi:10.1016/j.rineng.2019.100019

41. Aydin O, Kaya A. Effects of thermal radiation on steady MHD mixed convective
heat transfer flow over an impermeable inclined plate embedded in a porous medium.
J Porous Media (2011) 14(7):617–25. doi:10.1615/jpormedia.v14.i7.50

42. Shah Z, McCash LB, Dawar A, Bonyah E. Entropy optimization in
Darcy–Forchheimer MHD flow of water based copper and silver nanofluids with Joule
heating and viscous dissipation effects.AIPAdv (2020) 10(6):065137. doi:10.1063/5.0014952

43. Sharma M, Singh K, Kumar A. MHD flow and heat transfer through non-Darcy
porous medium bounded between two parallel plates with viscous and joule dissipation.
Spec Top Rev Porous Media: Int J (2014) 5(1):1–11. doi:10.1615/
specialtopicsrevporousmedia.v5.i1.10

44. Mansour M, El-Anssary NF, Aly AM, Gorla RSR. Chemical reaction and
magnetohydrodynamic effects on free convection flow past an inclined surface in a

Frontiers in Physics frontiersin.org11

Aslam et al. 10.3389/fphy.2023.1207462

https://doi.org/10.1017/s0022112081001614
https://doi.org/10.1146/annurev.ea.12.050184.000303
https://doi.org/10.1146/annurev.fl.26.010194.001351
https://doi.org/10.1016/j.rineng.2022.100364
https://doi.org/10.1017/s0022112081002619
https://doi.org/10.1038/s41598-022-22782-0
https://doi.org/10.1017/s002211207800169x
https://doi.org/10.1017/s0022112084001968
https://doi.org/10.1017/s0022112084001968
https://doi.org/10.1007/s10973-022-11354-z
https://doi.org/10.1063/5.0003671
https://doi.org/10.1016/0017-9310(91)90265-g
https://doi.org/10.1016/0017-9310(91)90265-g
https://doi.org/10.1016/0017-9310(92)90251-m
https://doi.org/10.1016/0017-9310(92)90251-m
https://doi.org/10.1007/s002310050100
https://doi.org/10.1016/j.jtice.2012.02.010
https://doi.org/10.1016/j.icheatmasstransfer.2013.03.011
https://doi.org/10.1016/j.icheatmasstransfer.2013.03.011
https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.036
https://doi.org/10.1016/j.icheatmasstransfer.2020.104640
https://doi.org/10.1016/j.icheatmasstransfer.2020.104640
https://doi.org/10.1016/j.icheatmasstransfer.2022.106026
https://doi.org/10.1016/j.icheatmasstransfer.2022.106026
https://doi.org/10.1016/j.icheatmasstransfer.2022.106236
https://doi.org/10.1016/j.rineng.2022.100584
https://doi.org/10.1016/j.rineng.2022.100584
https://doi.org/10.3389/fphy.2022.891163
https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.018
https://doi.org/10.1016/0017-9310(94)00301-b
https://doi.org/10.1080/10407789708914067
https://doi.org/10.1080/10407789608913848
https://doi.org/10.1080/10407789608913848
https://doi.org/10.1016/s1290-0729(00)01185-6
https://doi.org/10.36884/JAFM.5.03.19452
https://doi.org/10.36884/JAFM.5.03.19452
https://doi.org/10.3390/ma15020529
https://doi.org/10.3390/ma15020529
https://doi.org/10.1177/8756087919848807
https://doi.org/10.1177/8756087919848807
https://doi.org/10.3389/fphy.2022.999279
https://doi.org/10.36884/JAFM.5.03.19435
https://doi.org/10.1016/j.proeng.2015.11.491
https://doi.org/10.1016/j.jmmm.2023.170448
https://doi.org/10.1615/jpormedia.v15.i11.50
https://doi.org/10.1038/s41598-020-65298-1
https://doi.org/10.1039/d2ra08197k
https://doi.org/10.1039/d2ra08197k
https://doi.org/10.1142/s0217979224501145
https://doi.org/10.1142/s0217979224501145
https://doi.org/10.1016/j.icheatmasstransfer.2023.106770
https://doi.org/10.1016/j.icheatmasstransfer.2023.106770
https://doi.org/10.1615/jpormedia.v13.i1.70
https://doi.org/10.1615/jpormedia.v13.i1.70
https://doi.org/10.1016/j.rineng.2019.100019
https://doi.org/10.1615/jpormedia.v14.i7.50
https://doi.org/10.1063/5.0014952
https://doi.org/10.1615/specialtopicsrevporousmedia.v5.i1.10
https://doi.org/10.1615/specialtopicsrevporousmedia.v5.i1.10
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1207462


porous medium. J porous Media (2010) 13(1):87–96. doi:10.1615/jpormedia.v13.
i1.80

45. Khan M, Fetecau C. On the exact solutions for oscillating flow of a MHD second-
grade fluid through porous media. Spec Top Rev Porous Media: Int J (2012) 3(1):13–22.
doi:10.1615/specialtopicsrevporousmedia.v3.i1.20

46. Hayat T, Afzaal MF, Asghar S, Hendi AA. A comparative study on MHD flow by
two different transform methods. J Porous Media (2011) 14(12):1105–13. doi:10.1615/
jpormedia.v14.i12.50

47. Das S, Jana RN, Makinde OD. An oscillatory MHD convective flow in a vertical
channel filled with porousmediumwith Hall and thermal radiation effects. Spec Top Rev
Porous Media: Int J (2014) 5(1):63–82. doi:10.1615/specialtopicsrevporousmedia.v5.
i1.60

48. Abbas Z, Sheikh M, Sajid M. Mass transfer in two MHD viscoelastic fluids over a
shrinking sheet in porous medium with chemical reaction species. J Porous Media
(2013) 16(7):619–36. doi:10.1615/jpormedia.v16.i7.40

49. Mehmood A, Ali A, Mahmood T. Unsteady magnetohydrodynamic oscillatory flow
and heat transfer analysis of a viscous fluid in a porous channel filled with a saturated porous
medium. J Porous Media (2010) 13(6):573–7. doi:10.1615/jpormedia.v13.i6.70

50. Yildirim A, Sezer SA. Analytical solution of MHD stagnation-point flow in porous
media by means of the homotopy perturbation method. J Porous Media (2012) 15(1):
83–94. doi:10.1615/jpormedia.v15.i1.70

51. Abdelrahman MA, Almatrafi MB, Alharbi A. Fundamental solutions for the
coupled KdV system and its stability. Symmetry (2020) 12(3):429. doi:10.3390/
sym12030429

52. Alharbi A, Abdelrahman MA, Almatrafi M. Analytical and numerical
investigation for the DMBBM equation. Comput Model Eng Sci (2020) 122(2):
743–56. doi:10.32604/cmes.2020.07996

53. Qiu G, Wang J, Zhang Y. Double-diffusive natural convection of low Prandtl
number liquids with soret and dufour effects. Front Heat Mass Transfer (2018) 10:24.
doi:10.5098/hmt.10.24

Frontiers in Physics frontiersin.org12

Aslam et al. 10.3389/fphy.2023.1207462

https://doi.org/10.1615/jpormedia.v13.i1.80
https://doi.org/10.1615/jpormedia.v13.i1.80
https://doi.org/10.1615/specialtopicsrevporousmedia.v3.i1.20
https://doi.org/10.1615/jpormedia.v14.i12.50
https://doi.org/10.1615/jpormedia.v14.i12.50
https://doi.org/10.1615/specialtopicsrevporousmedia.v5.i1.60
https://doi.org/10.1615/specialtopicsrevporousmedia.v5.i1.60
https://doi.org/10.1615/jpormedia.v16.i7.40
https://doi.org/10.1615/jpormedia.v13.i6.70
https://doi.org/10.1615/jpormedia.v15.i1.70
https://doi.org/10.3390/sym12030429
https://doi.org/10.3390/sym12030429
https://doi.org/10.32604/cmes.2020.07996
https://doi.org/10.5098/hmt.10.24
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1207462


Nomenclature

x Horizontal coordinate (dimensional), m

y vertical coordinate (dimensional), m

U x-coordinate velocity (dimensional), m/s

V y-coordinate velocity (dimensional), m/s

Pr Prandtl number

Le Lewis number

c Concentration (dimension)

μ Dynamic viscosity, Ns/m2

T Temperature (dimensional), K

Sh Sherwood number

Nu Nusselt number

Ha Hartmann number

g Gravitational accelerationms2

αe Thermal diffusivity (effective)

P fluid pressure (dimensional), Pa

NEL number of elements

DOF degree of freedom

Ra Rayleigh number

B Magnetic field Tesla

Ke Thermal conductivity (effective) (W m−1 k−1 )
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