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Image segmentation methods usually fuse shallow and deep features to locate
object boundaries, but it is difficult to improve the accuracy of smoke
segmentation by conventional fusion methods. It is a very difficult vision task
to perform semantic segmentation of smoke images, because the translucency
and irregular shapes of smoke lead to extremely complicated mixtures with
background that are adverse to segmentation. To improve the segmentation
accuracy of smoke scenes, we propose a Boundary Enhancement and Pixel
Alignment based smoke segmentation Network for fire alarms. For the shallow
features of the network, an attention mechanism is adopted to capture spatially
details of smoke for improving boundary precision. For the deep layers, the
Pyramid Pooling Module is used to extract local features and abstract semantic
ones simultaneously. Finally, to efficientlymerge shallow and deep features, a Pixel
Alignment Module is adopted to model the relationship between pixel locations.
The experimental results show that the mean Intersection over Union of the
proposed method on the three synthetic smoke test datasets is 78.61%, 77.63%
and 77.30%, respectively, and it outperforms most of the existing methods. In
addition, our method obtains satisfying results on inconspicuous smoke and
smoke-like images.
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1 Introduction

The frequent occurrence of fires not only causes significant economic losses for society,
but more importantly, it will jeopardize social public security and have extremely bad effects
on the natural and ecological environment. It is too late to detect the naked flame, so the
recognition of smoke early in the fire can control this disaster to a certain extent.

To solve fire detection in open or large spaces, a number of deep models [1–6] have been
proposed for fire detection. These deep fire detection methods differ from traditional ones.
Deep learning models segment smoke areas at a fine granularity for separating smoke targets
from cluttered backgrounds, which are more accurate than those obtained by traditional
methods. According to segmented maps, staffs can analyze safe areas and predict fire trends
for reducing damages. Detecting smoke from fires at the pixel level is important, but the task
is very challenging due to the variability introduced by the visual characteristics of smoke.
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Smoke is visually semi-transparent, so it becomes more
challenging to separate pixels in smoke edge regions. The
problem that needs to be focused on is how to collect semantic
information for categorization and localization. Some methods try
to increase the depth of network for capturing more semantic
features, but this technique also loses local details. The solutions
to the above-mentioned conflicts can be divided into three main
categories. The first category is to adopt a skip-connection structure
[7] between deep and shallow levels. U-Net [7] adopts gradual
upsampling to avoid the loss of features. The second one is to use the
atrous convolution [8] to capture information at large scales. The
third one is to use the multi-scale fusion [9] approach to integrate
information from different scales. Spatial attention [10] is able to
capture the most informative region of feature maps by globally
modeling the relevance of all pixels, thus it effectively solves the
misclassification problem of isolated regions that are far away from
the main smoke area and strengthens the boundaries of smoke.

Based on the analysis of existing methods, we propose a
Boundary Enhancement and Pixel Alignment based smoke
segmentation Network (BEPA-Net). For the shallow features, we
design a Boundary Enhancement Module (BEM) to model the long-
range ability of attention mechanism for obtaining clear target
boundaries. For the deep features, we adopt the Pyramid Pooling
Module (PPM) [11] to extract global and local contextual
information for enhancing semantics. By fusing different
resolution feature maps, we propose a Pixel Alignment Module
(PAM), which can construct the pixel correspondence relationship
between feature maps for better information fusion.

This paper is organized as follows. Section 2 describes related
work on image semantic segmentation and smoke segmentation. In
Section 3, we describe the main idea of this paper. Section 4 presents
experiments and analysis. At last, we conclude this paper in
Section 5.

2 Related works

2.1 Semantic segmentation

Semantic segmentation is an image classification task at the
pixel level [12]. proposed a Full Convolution Network (FCN),
which is a basic paradigm of semantic segmentation methods.
FCN pioneers an end-to-end approach to achieve pixel-by-pixel
classifications. In the encoder of FCN, a series of convolutional
layers and successive down-sampling ones are often used to
extract deep features with large receptive fields, and then the
decoder upsamples the extracted deep features to the same
resolution as the input. To lessen the loss of spatial
information caused by down-sampling, skip connections are
used to fuse low-level features with high-level ones from the
different scales of encoders and decoders. Two fundamental
paradigms have emerged as a result of further researches,
including symmetric codec architectures [7, 13] and
asymmetric codec ones [8, 14–17]. These symmetric codec
structures mainly focus on minimizing the information loss
caused by frequent down-sampling for expanding receptive
fields. Meanwhile, asymmetric codec structures revolve the
problem of extracting the most abstract semantics without

reducing the feature map resolutions too much. Thus, a
balance of spatial and semantic information can be achieved.

2.2 Smoke segmentation

Traditional smoke segmentation methods make an effort to
separate smoke targets from images by extracting the color features
of images in different color spaces [18]. Combined color features and
shape features to present a fast smoke detection method for video
surveillance [19]. Used background removal methods and color
features to filter non-smoke pixels [20]. Used the rough set theory to
extract candidate smoke regions for video fire detection.

With the rapid development of deep learning in recent years,
there are many deep neural networks that have also been proposed
for smoke semantic segmentation. Without the need for designing
complex hand-crafted features, deep learning based semantic
segmentation approaches combine feature extraction and
classification for implementing an end-to-end manner [21].
directly used the AlexNet network [22] for smoke recognition
[23]. proposed a 3D parallel FCN model to segment smoke
regions from videos [24]. proposed a coding and decoding
network by designing a dual-path structure to obtain detailed
information and semantic information for smoke segmentation
[25]. proposed a Wave-shaped deep neural Network (W-Net) for
smoke density estimation, which is factually a regression over each
pixel [26]. proposed a global smoke attention network that makes a
full use of the modeling capabilities of attention mechanism.

Traditional methods rely on manual features, while recent
networks only focus on the performance of CNN itself and
cannot perform smoke segmentation well. We focus more on the
correlation between smoke boundaries and pixels, and complete
smoke segmentation by improving the segmentation ability of
boundaries and strengthening global modeling capabilities.

3 The proposed method

3.1 The network architecture

We choose the ResNet50 network [27] as our backbone network
because it can obtain rich information. As shown in Figure 1, the
ResNet50 [27] is used as the backbone of our method to extract
features, and the backbone network is divided into four stages.
Atrous convolutions [30] increase the receptive field and extract the
abundant features of images without significantly reducing spatial
resolutions, so we adopt atrous convolutions to compensate for the
reduction of spatial resolutions due to down-sampling. The outputs
of Stages 2, 3, and 4 greatly improve the semantic representation of
deep features after feature fusion and multi-scale context extraction.
The shallow features from Stage 1 are first delivered to the proposed
Boundary Enhancement Module (BEM) for pixel alignment
between different feature maps of different layers. Then the
proposed Pixel Alignment Module (PAM) accepts the warping
information of the BEM module for information fusion. Thus,
we implement pixel alignment for different features. Finally, the
fused structure map is upsampled to the original map size for
generating the final segmentation map.
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3.2 Pyramid pooling module

In deep neural networks, the size of receptive fields can roughly
represent the degree of using contextual information. High-level
contextual information can be captured by explicitly fusing features
of objects at different scales, and it can effectively solve the problem
of pixel inconsistency within the objects in the segmentation task
and reinforce deep semantics.

To obtain more contextual information, we use the Pyramid
Pooling Module (PPM) [11] to obtain the context information of
objects, as shown in Figure 2. The PPM module contains global
and local information using the adaptive global pooling with the
different output sizes of 1, 2, 3, and 6. Then, the pooled feature
maps are filtered using a 1 × 1 convolution. Next, bilinear
interpolation is used to up-sample these filtered feature maps
to the same size as the original input of PPM. The resized feature
maps are concatenated together. Three layers of convolution
(Conv), batch normalization (BN), and activation (ReLU) are
used to obtain a feature map with a large amount of contextual
information.

3.3 Boundary enhancement module

The embedding of spatial contexts can emphasize the most
informative parts and enable the network to selectively focus on
more important features. The proposal of attention mechanism

FIGURE 1
Deep and shallow features based Smoke Segmentation Network. BEM, PAM and PPM denotes Boundary Enhancement Module, Pixel Alignment
Module and Pyramid Pooling Module, respectively. Conv 1 × 1 is a convolutional kernel with the kernel size equal to 1.

FIGURE 2
Pyramid Pooling Module (PPM). AdaptiveAvgPool is average pooling that uses different pooling kernel. Conv-BN-ReLu 3 × 3 denotes a convolution
kernel with batch normalization and ReLU activation function.

FIGURE 3
Boundary enhancement module (BEM).
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offers a new direction for extracting powerful spatial and contextual
information. Most spatial attention methods adopt matrix
operations to capture the relationship between any two pixels in
the global scope. To obtain spatial attention maps and improve
object boundary localization accuracy, we propose a Boundary
Enhancement Module (BEM). As shown in Figure 3, the input
feature map of BEM is fed into the three branches for extracting
features. H,W and C denote the height, width and channel numbers
of the feature map, respectively. Average pooling captures the low
frequency components of features, maximum pooling is able to
extract the high frequency signals, and a 1 × 1 convolution learns the
features about objects. As a result, we obtain three two-dimensional
attentional feature maps, which are fused by point-wise summation.
The fused feature map is activated by the sigmoid function for
generating a spatial attention map. Finally, the input to our BEM is
weighted with the spatial attention feature map to produce the
feature map of the adaptive refinement boundary. Conv1x1 is a
convolutional kernel with a kernel of 1.

3.4 Pixel alignment module

To aggregate multi-scale features, feature fusion is often
performed in different levels of feature maps, but pixel positions
corresponding to their objects are different. To solve this problem,
we propose a Pixel Alignment Module (PAM). This module first
calculates the pixel offsets for pixel alignment, and the feature maps
are pixel-aligned for effective fusion. Figure 4 shows the proposed
PAM, which accomplishes pixel alignment by obtaining the pixel
offset field. The value of each pixel in the offset field can be viewed as
a moving distance for the pixel. In other words, the offset field can
also be called a motion field. The relationship between a feature map
and another one obtained by convolutions can be reconstructed by
the pixel motion field. Thus, we actually obtain translation
invariance by convolutions.

A bilinear interpolation layer is used to up-sample the feature
map F1 to produce a feature map F7, which has the same size as the
feature map F2, and feature maps F7 and F2 are concatenated to

generate a feature map F3 for channel fusion. A set of depth-wise
separable convolutions (DW-Conv) are used to establish the
positional relationships between pixels on different feature maps.
The pixel motion field F4 ∈ RH×W×2 is then generated using a 3 ×
3 convolution in a similar way to DCN [28]. The field map F4
contains the spatial translation offsets along x and y-axes, and the
feature values at each pixel position ρl on F4 are used to move the
pixel of F1 to a new position, resulting in a warped feature map
F5 ∈ RH×W×256, formulated as:

F5 ρl( ) � ∑
ρ∈δ ρl( ) ωρF4 ρl( ) (1)

where ωρ denotes the weight of the bilinear kernel on the curved
space grid, which is calculated by F4, and δ(ρl) denotes the adjacent
position of pixel position ρl.

The warped feature map F5 is generated by F1 and F4, and F4 is
produced from F1 and F2, so F5 certainly has a strong relationship
with F2. Therefore, we concatenate F5 and F2 along the channel axis
for further feature enhancement. Finally, the concatenated feature
map is processed by a 3 × 3 convolution without BN and ReLU
layers for feature fusion and dimensionality control to obtain the
final output F6.

4 Experiments and analysis

4.1 Datasets and implementation details

In this paper, the datasets used for training and testing are the
same as those in [25], including a virtual synthetic smoke training set
with 70,632 images and three virtual synthetic smoke test sets. The
three test sets are respectively named DS01, DS02 and DS03, and
each set has 1,000 images. The synthetic dataset was created from
8,162 pure smoke images [25]. adopted computer graphics to
generate these pure smoke images with a variety of transparency,
texture and fluid properties. Each pure smoke sample is an RGBA
image with a spatial resolution of 256 × 256, containing RGB color
channels S and a opacity channel α, respectively. The opacity α is

FIGURE 4
Pixel AlignmentModule (PAM). Concatmeans concatenation along channel, DW-Conv is a deeply separable convolutional kernel with a size of 1, BN
is a batch normalization operation, ReLU is an activation function, and “3 × 3, s = k” represents a convolution with a step size of k and a kernel size of 3 × 3.
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limited in the range [0, 1]. According to the rules of linear
composition, the combination of a pure smoke image S and a
background B generates an observation image I. This procedure
can be mathematically defined as:

I � α · S + 1 − α( ) · B (2)
Using the above method, we are able to construct a large number

of training sets without the tedious labeling. Each virtual smoke
image is randomly and linearly combined with a real background
image for generating a virtual smoke training dataset. The generated
virtual dataset is diverse in terms of colors, sizes, textures of smoke
and background for simulating most real smoke scenes.

All the experiments were performed on a windows 10 PC with
an NVIDIA RTX3090 GPU, and the programming environment is
the python 3.7 and pytorch 1.7 framework. The Stochastic Gradient
Descent (SGD) optimizer was used for training. The learning rate is
set to 0.0001, the momentum is set to 0.9, and the learning rate decay
is set to 0.95 using step decay. The mean Intersection over Union
(mIoU) is used as the segmentation metric. mIoU is widely used to
evaluate the overall performance of semantic segmentation
algorithms and reflects the degree of overlap between the
predicted results and their corresponding true labels. mIoU is
formulated as:

mIoU � 1
N

∑N
k�1

Pk ∩ Gk

Pk ∪ Gk
(3)

where Pk and Gk are the predicted result of the kth image and the
corresponding true label, respectively.

4.2 Comparison experiments

To evaluate the effectiveness of the proposed network, we tested
it on three synthetic test datasets and one real smoke dataset, and
compared it with several state-of-the-art semantic segmentation
methods based on deep learning, including FCN-8S [12], SegNet
[13], SMD [29], TBFCN [9], Deeplab v1 [15], ESPNet [31], LRN
[32], DSS [24],HG-Net [33], MS-Net [34], W-Net [25], and GSANet
[26]. In addition, we also compared it with some Transformer
structures ViT [35], Swin-Transformer [36] and SegFormer [37].
To objectively and fairly evaluate the performance of each method,
we used the same dataset and experimental configurations to train
all the compared methods, and the results are shown in Table 1.

The mIoU metrics achieved by our method on the three virtual
smoke test datasets are 78.61%, 77.63% and 77.30%, respectively.
Our method achieves the good mIoUs among all the existing
methods second only to the SegFormer.

The visualized segmentation results on virtual smoke images are
shown in Figure 5, where the first and second columns are the
original and labeled images, respectively. According to Table 1 and
Figure 5, the models with the mIoU below 70 obtain poor
performance, while DSS, W-Net, and GSANet, as specially
designed smoke segmentation models, have good performance.

TABLE 1 Comparison results of existing algorithms.

Methods mIoU (%)

DS01 DS02 DS03

FCN-8S 64.03 63.28 64.38

SegNet 56.94 56.77 57.18

SMD 62.88 61.50 62.09

TBFCN 66.67 65.85 66.20

Deeplabv1 68.41 68.97 68.71

ESPNet 61.85 61.90 62.77

LRN 66.43 67.71 67.46

DSS 71.04 70.01 69.81

HG-Net2 63.58 62.40 63.61

HG-Net8 63.85 63.27 64.46

W-Net 73.06 73.97 73.36

GSANet 73.13 73.81 74.25

ViT 75.20 75.29 74.10

Swin-Transformer 76.49 75.55 75.80

SegFormer 78.76 78.50 78.03

Our 78.61 77.63 77.30

FIGURE 5
Segmentation results for the virtual smoke test dataset. (A) Virtual smoke images, (B) labeled maps, (C) FCN, (D) SegNet, (E) SMD, (F) TBFCN, (G)
DeepLab v1, (H) ESPNet, (I) HG-Net 2, (J) HG-Net 8, (K) W-net, (L) GSANet, (M) ViT, (N) Swin-Transformer, (O) SegFormer, (P) the proposed method.
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However, compared to our method, they are still slightly worse, both
in terms of evaluationmetrics and visual image quality. Our network
has more distinct boundaries that are basically consistent with the
original image. Compared with the latest transformer structures in
recent years, our model also has good performance, only slightly
worse than Segformer.

The segmentation results on the real smoke images are
essentially as good as those on the synthetic smoke images.
As shown in Figure 6, the predicted results by our BEPA-Net are
visually similar to their corresponding real images. To accurately
locate smoke edges, feature maps require spatial details, local
and global semantic abstractions for delineating smoke. Our
BEPA-Net model is proposed to solve these problems. The
reasons may be that fusing multi-scale features can easily
extract global and local information for better smoke
representations.

As shown in Figures 6H, I, the generalization of HG-Net is poor.
Although it has achieved certain results on virtual datasets, the
performance on real images is poor. The reason may be the lack of
skip connections to complete the fusion of deep and shallow
features. The segmentation area obtained by our method is
basically consistent with the real smoke area. In addition, by
comparing the visualized results of virtual smoke datasets and
real data, we find that Transformers obtain good results on
virtual data, but the results on real data were very poor, as
shown in Figures 6L–N. Hence, it may be overfitting.

Compared with DSS, W-Net, and GSANet, our method uses
multi-scale fusion and skip connections, resulting in better
performance than them. This is because the pixel alignment is
performed during feature fusion. This technique greatly improves
model performance. We also compared the fusion methods in
ablation experiments.

FIGURE 6
The segmentation results on the real dataset. (A) Realistic smoke images, (B) FCN, (C) SegNet, (D) SMD, (E) TBFCN, (F) DeepLab v1, (G) ESPNet, (H)
HG-Net 2, (I) HG-Net 8, (J) W-net, (K) GSANet, (L) ViT, (M) Swin-Transformer, (N) SegFormer, (O) the proposed method.

TABLE 2 Ablation experiments for feature-fused.

Network architecture mIOU(%) Statistical analyses

DS01 DS02 DS03 t score p-value Significant

ResNet + Addition 70.68 66.22 67.15 1.8555 0.1371202 no (p>5%)

ResNet + Concat 71.84 67.18 68.49 1.1796 0.3035128 no (p>5%)

ResNet + Concat + PAM 73.35 69.64 70.78 — — —

ResNet + Addition + PAM 72.81 68.38 69.46 0.6022 0.5795012 no (p>5%)

TABLE 3 Ablation experiments of different modules.

ResNet50 Atrous-conv PPM BEM PAM mIOU(%) Statistical analyses

DS01 DS02 DS03 t score p-value Significant

✓ 61.67 60.23 62.09 24.04 0.0000178 yes (p<5%)

✓ ✓ 64.03 63.28 64.38 27.36 0.0000106 yes (p<5%)

✓ ✓ ✓ 71.83 67.68 69.47 6.474 0.0029330 yes (p<5%)

✓ ✓ ✓ ✓ 73.53 69.70 70.16 5.290 0.0061303 yes (p<5%)

✓ ✓ ✓ ✓ ✓ 78.61 77.63 77.30 — — —
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4.3 Ablation experiments

Commonly used methods for feature fusion are pixel-wise
addition (Addition) and channel concatenation (Concat). In this
paper, we use the technique of pixel alignment followed by feature
fusion to bridge the semantic gap between different feature maps
during channel fusion. Further comparison results of feature fusion
are shown in Table 2. The experiments show that performing pixel
alignment first and then fusing features can achieve better results
than other configurations. It proves that the proposed modules are
powerful for feature representations.

To evaluate the performance of the proposed modules, several
ablation experiments were performed on the data set for the different
combinations of the proposedmodules in our network. The results are

shown in Table 3.We adopt ResNet-50 as the backbone network of all
the variants of our method for ablation experiments. In Table 3,
Atrous-Conv indicates the improved Atrous convolution, PPM is the
Pyramid Pooling Module, BEM stands for the Boundary
EnhancementModule, and PAMdenotes the pixel alignmentmodule.

According to Table 3, we find that the performance of the
proposed network can be obviously enhanced by employing
Atrous convolutions in the backbone network. After the pyramid
pooling module (PPM) is enabled, we achieve the mIoUs of 71.83%,
67.68% and 69.47% on the test datasets of DS01, DS02, and DS03,
respectively. The mIoUs are improved by about 2% after using the
Boundary Enhancement Module (BEM). Although the boundary
pixels often occupy a relatively small portion of the whole image,
boundary information plays a key role in improving the accuracy of
segmentation. The mIoUs are greatly improved by 7%–8% after the
pixel alignment module (PAM) is used.

In addition, we compute the p-values of our results in Tables 2, 3 for
analyzing the statistical significance of ablation experiments. Given two
random sets X and Y, the t-score of the two sets is computed as follows:

t � μx − μy
∣∣∣∣∣ ∣∣∣∣∣��������������������

nx−1( )σ2x+ ny−1( )σ2y
nx+ny−2

1
nx
+ 1

ny
( )√ (4)

where μx, σx and nx are respectively the mean, the standard deviation
and the sample number of the best set X, and μy, σy and ny are the
mean, the standard deviation and the sample number of the tested
set Y, respectively.

FIGURE 7
Smoke segmentation results in wilderness scenes.

FIGURE 8
Experiments on images of electric power transmission lines. Reproduced from the Yunnan Electric Power Company, with permission from the
Company.
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According to the t-scores and degree of freedom df = nx + ny-2,
we can find the ranges of the p-values in the t-score lookup table. For
the sake of convenience, we use the Excel software to automatically
compute the p-values. By observing Table 2, we find that all the
p-values are greater than 5%, so it is not significant in statistics. In
vision fields, although existing methods achieving only 1% increase
of mIoUs are not significant statistically, they are often considered as
excellent algorithms, and they do not perform p-value analyses. In
Table 3, we find that all the p-values are far less than 5%, so the best
variant is statistically significant.

4.4 Testing on wild scenes with electric
power transmission lines

The proposed method also achieves good results for real fires in
wild scenes, as shown in Figure 7. The proposed method can
accurately segment smoke regions. Although there are smoke-like
objects, such as clouds, our model easily discriminates between
clouds and smokes.

In order to ensure the safety of electric power transmission lines,
it is necessary to check fire safety around the electric lines. We tested
the proposed method on several images captured from iron towers
of electric power transmission lines, as shown in Figure 8. From the
experimental results, we can see that the proposed method not only
detects smoke successfully, but also obtain a relatively accurate
smoke contours. Segmented smoke contours can allow the
relevant personnel in the electric power department to have a
more accurate judgment of the possible fire spread trend, and
take corresponding countermeasures in advance to determine the
safety of power lines.

5 Conclusion

In this paper, a deep neural network is proposed to improve the
performance of smoke semantic segmentation. To learn the spatial
details and contextual information about objects, we design a spatial
attention mechanism to enhance the localization accuracy of object
boundaries for improving the representation ability of the network.
To improve the segmentation performance of blurry smoke objects,
we use Atrous convolutions with different rates and the Pyramid
Pooling Module (PPM) to obtain contextual and abstract
information. To effectively aggregate features, we propose a Pixel
Alignment Module (PAM) to recalibrate the position of features and
produce more powerful features. Compared with other excellent
semantic segmentation algorithms, the proposed method
consistently outperforms existing algorithms on the three
synthetic smoke datasets and real smoke images. In addition, our

method also achieves very good segmentation results on images
captured from wild scenes with electric power transmission lines.
However, our method is still not lightweight enough and requires a
lot of computational resources. Compared to the existing
transformer structure, its performance cannot achieve optimal
results. In future work, we will focus on lightweight and
Transformer structures to further improve accuracy.
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