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This paper deals with an unstirred competitive chemostat model with the
Beddington–DeAngelis functional response. With the help of the linear
eigenvalue theory and the monotone dynamical system theory, we establish a
relatively clear dynamic classification of this system in terms of the growth rates of
two species. The results indicate that there exist several critical curves, which may
classify the dynamics of this system into three scenarios: 1) extinction; 2)
competitive exclusion; and 3) coexistence. Comparing with the classical
chemostat model [26], our theoretical results reveal that under the
weak–strong competition cases, the role of intraspecific competition can lead
to species coexistence. Moreover, the simulations suggest that under different
competitive cases, coexistence can occur for suitably small diffusion rates and
some intermediate diffusion rates. These new phenomena indicate that the
intraspecific competition and diffusion have a great influence on the dynamics
of the unstirred chemostat model of two species competing with the
Beddington–DeAngelis functional response.
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1 Introduction

It is well known that the chemostat is a laboratory apparatus used for the continuous
culture of microorganisms, while the chemostat models are extensively applied in ecology to
simulate the growth of single-celled algal plankton in oceans and lakes [1–4]. Most of the
earlier chemostat models assume the well-stirring of culture, which leads to chemostat
models generally described by ordinary differential equation models (see, e.g., [2, 4, 5]).
However, this idealized mixing is quite different from the real environment in which
microbial populations live. Since the ability of microorganisms to move in a random fashion
plays an important role in determining the survival and extinction of populations, many
unstirred chemostat models have sprung up in which populations and resources are
distributed in spatially variable habitats; please refer to [6–10] for small sampling of
such works.

There are various types of response functions; among them, Holling types I–IV [11] are
usually introduced to model the growth of microorganisms. Particularly, the various
chemostat models with Holling type II functional response have been extensively studied
(see, e.g., [4, 10, 12, 13]). As far as we know, for the unstirred competitive chemostat models
with Holling type II functional response, So and Waltman [14] first obtained the local
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coexistence by standard bifurcation theorems. Later, Hsu and
Waltman [6] obtained the asymptotic behavior of solutions by
the theory of uniform persistence in an infinite-dimensional
dynamical system and the theory of strongly order-preserving
semi-dynamical system. To explore the effect of diffusion, Shi
et al. [8] further studied this model and confirmed that stable
coexistence solutions only occur at the intermediate diffusion
rates. In addition, a diffusive predator–prey chemostat model
with Holling type II functional response was studied by Nie et al.
[7], and their analytical and numerical results show that a relatively
small diffusion is conducive to the coexistence of species.

However, in nature, it is known that there is not only
competition between two species but also mutual interference in
species. Therefore, it is necessary to consider mutual interference in
species. To this end, Beddington [15] and DeAngelis et al. [16]
(simplified as B.–D.) proposed the following B.–D. functional
response:

f1 S, u( ) � S

k1 + S + β1u
, f2 S, v( ) � S

k2 + S + β2v
, (1.1)

where ki > 0 (i = 1, 2) are the Michaelis–Menten constants, S
represents the density of the resources, u and v represent the density
of two species, respectively, and βi > 0 (i = 1, 2) model the mutual
interference between two species.

As illustrated by Harrision [17], the B.–D. functional response
with intraspecific interference competition was superior to well-
known Holling type II functional response in modeling the resource
uptake of species. Therefore, there appear successively many works
to describe the population dynamics by using the B.–D. functional
response. For instance, Jiang et al. [18] discussed a competition
model with the B.–D. functional response, and they applied the
fixed-point index theory to obtain the sufficient conditions for the
existence of positive solutions. In addition, a predator–prey model
with a heterogeneous environment and the B.–D. functional
response was constructed by Zhang and Wang [19], and the
existence of positive stationary solutions was obtained by using
the fixed-point index theory. We also refer the recent works [20–22]
about population models with the B.–D. functional response.

Particularly, the unstirred chemostat models with the B.–D.
functional response have also received considerable attention in the
past decades. Wang et al. [23] obtained the sufficient conditions for
the existence of positive steady-state solutions and studied the effect
of parameter β1 on coexistence states by the fixed-point index
theory, the perturbation technique, and the bifurcation theory.
Meanwhile, Nie and Wu [24] studied the unstirred chemostat
model with the B.–D. functional response and inhibitor, and the
uniqueness, multiplicity, and stability of the coexistence solutions
were obtained by the degree theory in cones, bifurcation theory, and
perturbation technique. More works on chemostat models with the
B.–D. functional response can be found in [25–27] and the
references therein.

Mathematically speaking, these sufficient conditions for the
existence of coexistence solutions are usually established in terms
of the principal eigenvalues of the corresponding linearized
eigenvalue problems at trivial or semi-trivial steady states (see,
e.g., [18, 19, 23, 24]). It is worth noting that these principal
eigenvalues depend heavily on the model parameters, which

motivates us to explore how these model parameters affect the
existence of coexistence solutions and establish the dynamics
classification of this system in terms of these model parameters.
Moreover, it should be noted that studying the asymptotic analysis
of steady states of chemostat models is non-trivial, and some new
techniques need to be introduced. Overall, for the unstirred
chemostat system with the B.–D. functional response, we are
concerned with the following questions:

(1) How do parameters such as diffusion rates, growth rates, and
intraspecific competition parameters affect the dynamics of the
unstirred chemostat system with the B.–D. functional response?

(2) Can we establish a clear dynamic classification of the unstirred
chemostat system with the B.–D. functional response in terms of
these parameters?

(3) Will there arise a new phenomenon if one introduces the B.–D.
functional response into the unstirred chemostat model?

The purpose of this paper is to address these problems. We hope
that the approaches in this paper might provide some new insights
on the dynamical behavior of the unstirred chemostat models.

This paper is organized as follows. In Section 2, we introduce
an unstirred chemostat model with the B.–D. functional response
and its corresponding limiting system. In Section 3, some
preliminary results are given. In Section 4, we aim to
investigate the dynamics of this limiting system and obtain a
relatively clear dynamic classification of this limiting system in
the m1 − m2 plane. In Section 5, the coexistence solution for this
limiting system is established by a bifurcation argument. In
Section 6, we study the effect of diffusion on system dynamics
by numerical approaches. In Section 7, a discussion is presented
from the opinion of analytic and numerical results. Finally, the
proofs of some theoretical results are deferred to the
Supplementary Appendix in Supplementary Section S8.

2 The model

In this paper, we consider following the unstirred chemostat
system with the B.–D. functional response:

St � dSxx −m1uf1 S, u( ) −m2vf2 S, v( ), x∈ 0, 1( ), t> 0,
ut � duxx +m1uf1 S, u( ), x∈ 0, 1( ), t> 0,
vt � dvxx +m2vf2 S, v( ), x∈ 0, 1( ), t> 0,
Sx 0, t( ) � −S0, Sx 1, t( ) + γS 1, t( ) � 0, t> 0,
ux 0, t( ) � ux 1, t( ) + γu 1, t( ) � 0, t> 0,
vx 0, t( ) � vx 1, t( ) + γv 1, t( ) � 0, t> 0,
S x, 0( ) � S0 x( )≥ 0, x ∈ 0, 1[ ],
u x, 0( ) � u0 x( )≥ ,u0, v x, 0( ) � v0 x( )≥ ,u0, x ∈ 0, 1[ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2.1)

where S(x, t) is the concentration of the nutrient and u(x, t) and v(x,
t) represent the population density for the two competing
microorganisms with location x and time t, respectively. The
positive constants m1 and m2 are corresponding to the growth
rates of species u and v with nutrient concentration S. d > 0 is
the diffusion rate of the nutrient and microorganisms. The initial
data S0(x), u0(x), and v0(x) are non-negative non-trivial continuous
functions. In the reactor, the nutrients are pumped with the rate of
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S0 > 0 at position x = 0, and the mixed cultures containing nutrients
and microorganisms are pumped out with the rate of γ > 0 at the
position x = 1, which results in the Robin boundary conditions at x =
1 [6]. Here, f1(S, u), f2(S, v) satisfying Eq. 1.1 are the nutrient uptake
of species u and v at nutrient concentration S. Moreover, we redefine
f1(S, u), f2(S, v) as follows [10]:

f̂1 S, u( ) � f1 S, u( ), S≥ 0, u≥ 0,
0, others,

{
f̂2 S, v( ) � f2 S, v( ), S≥ 0, v≥ 0,

0, others.
{

For convenience, we still denote f̂i(S, u) (i � 1, 2) as fi(S, u),
throughout this paper.

It is worth pointing out that system (2.1) satisfies the conservation
law [4]. In other words, the total biomass concentration S + u + v in the
chemostat approaches asymptotically a steady state ϕ(x) � S0(1+γγ − x)
(see [14], Lemma 2.1); that is,

lim
t→∞

S x, t( ) + u x, t( ) + v x, t( )( ) � ϕ x( ) uniformly for x ∈ 0, 1[ ].

Hence, we apply the classical internal chain transitive theory
[[28], Lemma 2.1] to reduce system (2.1) into the following limiting
system:

ut � duxx +m1f1 ϕ x( ) − u − v, u( )u, x ∈ 0, 1( ), t> 0,
vt � dvxx +m2f2 ϕ x( ) − u − v, v( )v, x ∈ 0, 1( ), t> 0,
ux 0, t( ) � ux 1, t( ) + γu 1, t( ) � 0, vx 0, t( ) � vx 1, t( ) + γv 1, t( ) � 0, t> 0,
u x, 0( ) � u0 x( )≥ ,u0, v x, 0( ) � v0 x( )≥ ,u0, u0 x( ) + v0 x( )≤ ϕ x( ) x ∈ 0, 1[ ].

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2.2)

In this paper, we are mainly concerned with the dynamics
classification of system (2.2). Based on the competition
relationship of two species, system (2.2) generates a strictly
monotone dynamical system in the partial competitive
order induced by the cone K = {(u, v) ∈ C[0, 1] × C[0, 1]: u ≥
0, v ≤ 0} (see [27], Proposition 1.3 in Chapter 8). Since the
dynamics of Eq. 2.2 are related to the stability of non-negative
steady states [29], we also focus on the following steady-state
system:

duxx +m1f1 ϕ x( ) − u − v, u( )u � 0, x ∈ 0, 1( ),
dvxx +m2f2 ϕ x( ) − u − v, v( )v � 0, x ∈ 0, 1( ),
ux 0( ) � ux 1( ) + γu 1( ) � 0, vx 0( ) � vx 1( ) + γv 1( ) � 0.

⎧⎪⎨⎪⎩
(2.3)

The contribution of this paper is to explore the effect of these
model parameters on the dynamics of system (2.2). Precisely, we first
apply the linear eigenvalue theory and the monotone dynamical
system theory to establish the threshold dynamics of system (2.2) in
terms of growth rates and intraspecific competition parameters (see
Theorems 4.1, 4.2). Moreover, we give a relatively clear dynamic
classification of system (2.2) in them1 −m2 plane (Figure 2). Finally,
by numerical simulations, we further investigate the effect of
diffusion on the dynamics of system (2.2) (Figures 3–5).
Particularly, the numerical results show that under the different
competitive cases, coexistence occurs for suitably small diffusion
rates and some intermediate diffusion rates, which reveals that the
dynamics of system (2.2) are relatively complicated.

FIGURE 1
Phase portrait graphs of system (2.2) for different growth ratesm1 andm2. Here, we take β1 = 0.01, β2 = 0.01, L = 1, S0 = 1, d = 0.5, γ = 0.5, k1 = 1, and
k2 = 0.4. As shown, (0,0) is globally asymptotically stable (simplified as g.a.s) in (A)withm1 = 0.2,m2 = 0.1; (û,0) is g.a.s. in (B)withm1 = 1,m2 = 0.1; (0, v̂) is
g.a.s. in (C) with m1 = 0.2, m2 = 1; and there exist stable coexistence steady states in (D) with m1 = 1, m2 = 0.545.
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3 Preliminaries

In this section, some preliminary results are presented, which are
helpful in the following analysis.

We first consider a linear eigenvalue problem

dφxx + q x( )φ � μφ, x ∈ 0, 1( ),
φx 0( ) � ϕx 1( ) + γφ 1( ) � 0,

{ (3.1)

where γ is a positive constant and q(x) ∈ C[0, 1]. For fixed d > 0, it
is well known that problem (3.1) admits a principal eigenvalue
μ1(q(x)) [29], which corresponds to a positive eigenfunction φ1(·,
q(x)) normalized by max

x∈[0,1]
φ1 � 1. Furthermore, by the variation

characterization of the principal eigenvalue [29], we have

μ1 q x( )( ) � − inf
φ∈H1 0,1( ),φ≠0

d∫1

0
φx( )2dx + dγφ2 1( ) − ∫1

0
q x( )φ2dx

∫1

0
φ2dx

.

(3.2)
Moreover, the principal eigenvalue μ1(q(x)) has the following

properties.

Lemma 3.1. (See [21], Lemma 2.1). The following statements on the
principal eigenvalue μ1(q(x)) are true:

(i) μ1(q(x)) depends continuously and differentially on parameter d
in (0, + ∞), and it is strictly decreasing with respect to d in (0,
+ ∞).

(ii) qn(x) → q(x) in C[0, 1] implies μ1(qn(x)) → μ1(q(x)).
(iii) q1(x) ≥ q2(x) implies that μ1(q1(x)) ≥ μ1(q2(x)), and the equality

holds only if q1(x) ≡ q2(x). Particularly, μ1(0) < 0.

We consider the following single-species model:

ωt � dωxx +mf ϕ − ω,ω( )ω, x ∈ 0, 1( ), t> 0,
ωx 0, t( ) � ωx 1, t( ) + γω 1, t( ) � 0, t> 0,
ω x, 0( ) � ω0 x( )≥ ,u0, x ∈ 0, 1[ ],

⎧⎪⎨⎪⎩ (3.3)

where d,m > 0 are constants and f(ϕ − ω,ω) � ϕ−ω
k+ϕ+(β−1)ω. For fixed

d, k > 0, let μ1(mf(ϕ, 0)) be the principal eigenvalue of

dφxx +mf ϕ, 0( )φ � μφ, x ∈ 0, 1( ), t> 0,
φx 0( ) � φx 1( ) + γφ 1( ) � 0,

{

FIGURE 2
Illustration of the dynamics of system (2.2) in them1 −m2 plane for the case of k1 > k2 > 0. More precisely, (A) 0< β1 ≤ β01 and 0< β2 ≤ β02 ; (B) 0< β1 ≤ β01
and β2 > β+2 ; (C) β1 > β+1 and 0< β2 ≤ β02 ; and (D) β1 > β+1 and β2 > β+2 . Then, (0,0) is g.a.s in regionΠ0; (û,0) is g.a.s in regionΠ1 ∪Π3; (0, v̂) is g.a.s in regionΠ2 ∪
Π4; (û,0) is locally asymptotically stable in region Π5 and unstable in region Π6 ∪ Π7; (0, v̂) is locally asymptotically stable in region Π6 and unstable in
region Π5 ∪ Π7; and there exist stable coexistence steady states in Π7. Here, we note that (B) Π7 � Π0

7 ∪ Π1
7, (C) Π7 � Π0

7 ∪ Π2
7 , and (D) Π7 �

Π0
7 ∪ Π1

7 ∪ Π2
7 .
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where f(ϕ, 0) � ϕ
k+ϕ. Then, we can conclude from Lemma 3.1(iii)

that μ1(mf(ϕ, 0)) is strictly increasing with respect to m in (0, +∞).
Moreover, lim

m→0+
μ1(mf(ϕ, 0)) � μ1(0)< 0 by Lemma 3.1(iii), and

lim
m→+∞ μ1(mf(ϕ, 0)) � +∞ by Eq. 3.2. For fixed d, k > 0, there exists
a unique critical value m+ such that

μ1 mf ϕ, 0( )( )< 0 if 0<m<mp,
μ1 mf ϕ, 0( )( ) � 0 if m � mp,
μ1 mf ϕ, 0( )( )> 0 if m>mp.

⎧⎪⎨⎪⎩ (3.4)

To stress the dependence of the unique positive steady state of
system (3.3) on m and β, let us denote it by ωp(·; m, β).

Lemma 3.2. Suppose d, m, β, k > 0. Let ω(x, t) be the solution of
system (3.3). Then,

(i) if m > mp, system (3.3) admits a unique positive steady state 0 <
ωp(·; m, β) < ϕ(x) for x ∈ [0, 1], and lim

t→∞ω(x, t) � ωp(·;m, β)
uniformly on [0,1];

(ii) if m ≤ mp, system (3.3) has no positive steady state and
lim
t→∞ω(x, t) � 0 uniformly on [0,1].

The proof of Lemma 3.2 is similar to the arguments in [6],
Theorem 3.2. So, we omit it here.

We next give some asymptotic properties of the unique positive
steady state ωp(·; m, β) of system (3.3) by taking m and β as the
variable parameters.

Lemma 3.3. suppose that m > mp holds. The following statements
about the positive solution ωp(; m, β) will hold.

(i) For fixed d, k, β > 0, there exists positive solution ωp(; m, β),
which is continuously differentiable with respect to m in (mp, +
∞), and it is point-wise strictly increasing in m ∈ (mp, + ∞).
Moreover,

lim
m→ mp( )+

ωp ·;m, β( ) � 0, lim
m→+∞

ωp ·;m, β( )
� ϕ x( ) uniformly on 0, 1[ ]. (3.5)

(ii) For fixed d, k > 0 andm >mp, there exists positive solution ωp(·;
m, β), which is continuously differentiable with respect to β in
(0, +∞), and it is point-wise strictly decreasing in β ∈ (0, +∞).
Moreover,

lim
β→+∞

ωp ·;m, β( ) � 0 uniformly on 0, 1[ ]. (3.6)

Proof. For (i), it follows from Lemma 3.2 that ωp(·;m, β) exists if and
only ifm >mp. Moreover,ωp(·;m, β) is continuously differentiable with
respect to m in (mp, + ∞) refering to the arguments in [30], Lemma
5.4(ii). Differentiating the equation of ωp(·;m, β) with respect tom and
denoting Pm(x) = ∂ωp(·; m, β)/∂m, Pm(x) satisfies

dP″
m +m f ϕ − ωp,ωp( ) − k + βϕ( )ωp

k + ϕ + β − 1( )ωp[ ]2[ ]
Pm � −f ϕ − ωp,ωp( )ωp, x ∈ 0, 1( ),
Pm′ 0( ) � Pm′ 1( ) + γPm 1( ) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3.7)

We define X � {ψ ∈ C2[0, 1]: ψ′(0) � ψ′(1) + γψ(1) � 0} and

denote L1(ψ) � dψ′′ +m[f(ϕ − ωp,ωp) − (k+βϕ)ωp

[k+ϕ+(β−1)ωp]2]ψ. It is

easy to see that μ1(L1) < μ1(mf(ϕ − ωp, ωp)) = 0 by Lemma
3.1(iii). Noting that Pm(x) ∈ X and L1(Pm) = −f(ϕ − ωp, ωp)ωp <
0, we have Pm(x) > 0 on [0,1] by the generalized maximum principle
[23, Theorem 5], which implies that ωp(·; m, β) is point-wise strictly
increasing in m ∈ (m

p

, + ∞).
Since 0 < ωp(·;m, β) < ϕ and ω′′

p � −m
d f(ϕ − ωp,ωp)ωp < 0, ωp′ is

decreasing on [0,1]. Note that the boundary conditions
ωp′(0) � 0, ωp′(1) � −γωp(1). Then, ωp′(x) is uniformly bounded
for x ∈ [0, 1]. It follows from the Arzela–Ascoli theorem that there
exist ω1, ω2 ∈ C[0, 1] with 0 ≤ ω1 ≤ ϕ and 0 ≤ ω2 ≤ ϕ such that

FIGURE 3
Bifurcation diagrams of the positive steady-state solutions to system (2.2) at t= 2000with the bifurcation parameter d ranging from 0.01 to 10. Here,
we take L = 1, S0 = 1, γ = 0.5, k1 = 1, k2 = 0.4, m1 = 1, and m2 = 2 and (A) β1 = 0.01, β2 = 0.01 and (B) β1 = 0.01, β2 = 1.
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lim
m→ mp( )+

ωp ·;m, β( ) � ω1, lim
m→+∞

ωp ·;m, β( ) � ω2 in C 0, 1[ ].

To prove ω1 = 0 on [0,1], we assume by contradiction that
ω1u0 on [0,1]. Since 0 < f(ϕ − ωp, ωp) < 1, the standard Lp-
estimate implies that ωp(·; m, β) is uniformly bounded in W2,p(0,
1) with p ∈ (1, ∞) for m ∈ (mp, M], where M is a fixed constant
larger than mp. Therefore, lim

m→(mp)+
ωp(·;m, β) � ω1 weakly in W2,

p (0, 1) and the convergence also holds in C
1

[0, 1] by the Sobolev
embedding theorem. Then, ω1 satisfies

dω′′
1 +mpf ϕ − ω1,ω1( )ω1 � 0, x ∈ 0, 1( ),

ω1′ 0( ) � ω1′ 1( ) + γω1 1( ) � 0.
{ (3.8)

Since ω1u0 on [0,1], we have ω1 > 0 on [0,1] by the strong
maximum principle. It is easy to see that μ1(m

pf(ϕ, 0)) > μ1(m
pf(ϕ −

ω1, ω1)) = 0 by Lemma 3.1(iii), a contradiction to the definition ofmp

(Eq. 3.4). Thus, ω1 = 0.
We next prove ω2 = ϕ(x) on [0,1]. We recall that ωp(·; m, β)

satisfies

dω′′
p +mf ϕ − ωp,ωp( )ωp � 0, x ∈ 0, 1( ),

ωp′ 0( ) � ωp′ 1( ) + γωp 1( ) � 0.
{ (3.9)

Dividing the first equation of Eq. 3.9 by mωp and integrating
over (0,1),

d

m
∫1

0

|ωp′|2
ω2
p

dx − dγ

m
+ ∫1

0
f ϕ − ωp,ωp( )dx � 0,

which implies

0≤∫1

0
f ϕ − ωp,ωp( )dx≤ dγ

m
.

Note lim
m→+∞ωp(·;m, β) � ω2 in C[0, 1]. Taking m → +∞, we

have ∫1

0
f(ϕ − ω2,ω2)dx � 0, which means ω2 = ϕ(x) on [0,1] by 0 ≤

ω2 ≤ ϕ.

(ii) The monotonicity of ωp(·;m, β) with respect to β in (0, +∞) can
be proved by the similar arguments as in the proof of (i) and
lim

β→+∞
ωp(·;m, β) � 0 uniformly on [0, 1] holds (see [23],

Remark 1.2).
It is clear that system (2.2) generates a monotone dynamical

system in the partial competitive order induced by the cone K = {(u,
v) ∈ C[0, 1] × C[0, 1]: u ≥ 0, v ≤ 0} (see [27], Proposition 1.3 in
Chapter 8). Hence, we can recall the well-known results on the
monotone dynamical system as follows.

Lemma 3.4. [9]. For the monotone dynamical system,

(i) if two semi-trivial steady states are asymptotically stable, then it
has at least one unstable coexistence steady state.

(ii) if two semi-trivial steady states are unstable, then it has at least one
stable coexistence steady state. Furthermore, if its coexistence
steady states are all linearly stable, then there is a unique
coexistence steady state that is globally asymptotically stable.

(iii) if there is no coexistence steady state and if one semi-trivial
solution is linearly unstable, the other semi-trivial solution is
globally asymptotically stable.

4 The dynamics analysis of system (2.2)

As we already know, the local dynamics of system (2.2) are
related to the stability of semi-trivial solutions [29]. Hence, we
next establish the stability of semi-trivial solutions, including
local and some global stability results. Recalling
fi(ϕ, 0) � ϕ

ki+ϕ (i � 1, 2), by the similar arguments as in (3.4),
we can define mp

i such that

μ1 mifi ϕ, 0( )( )< 0 if 0<mi <mp
i ,

μ1 mifi ϕ, 0( )( ) � 0 if mi � mp
i ,

μ1 mifi ϕ, 0( )( )> 0 if mi >mp
i .

⎧⎪⎨⎪⎩ (4.1)

FIGURE 4
Bifurcation diagrams of the positive steady-state solutions to system (2.2) at t= 2000with the bifurcation parameter d ranging from 0.01 to 10. Here,
we take L = 1, S0 = 1, γ = 0.5, k1 = 1, k2 = 0.4, m1 = 1, and m2 = 0.2 and (A) β1 = 0.01, β2 = 0.01 and (B) β1 = 1, β2 = 0.01.
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Clearly, mp
i (i � 1, 2) are dependent on ki but not on βi.

Proposition 4.1. For fixed d > 0, the following statements hold:

(i) k2
k1

<mp
2

mp
1

< 1 if k1 > k2 > 0;

(ii) 1<mp
2

mp
1

< k2
k1

if k2 > k1 > 0;

(iii) mp
1 � mp

2 if k1 � k2 > 0.

Proof. (i) Since

μ1
mp

1ϕ

k1 + ϕ
( ) � 0 and μ1

mp
2ϕ

k2 + ϕ
( ) � 0, (4.2)

it is easy to check thatmp
1 >mp

2 by k1 > k2 > 0 and Lemma 3.1(iii). Note
that Eq. 4.2) is equivalent to μ1(m

p
1ϕ/k1

1+ϕ/k1 ) � 0 and μ1(m
p
2ϕ/k2

1+ϕ/k2 ) � 0. Since
ϕ

1+ϕ/k1 >
ϕ

1+ϕ/k2 based on k1 > k2 > 0, we have mp
1

k1
< mp

2
k2
; that is, k2

k1
< mp

2
mp

1
.

Therefore, k2k1 <
mp

2
mp

1
< 1. (ii) can be obtained similarly. For (iii), it is easy to

obtain mp
1 � mp

2 by the fact of k1 = k2 > 0 and μ1(mp
i fi(ϕ, 0)) � 0.

As the consequence of Lemma 3.2, system (2.2) admits the following
trivial and semi-trivial solutions: trivial solution (0,0); semi-trivial solution
(ωp(·; m1, β1), 0) exists if and only if m1 >mp

1; semi-trivial solution (0,
ωp(·; m2, β2)) exists if and only if m2 >mp

2. For convenience, we denote
û � ωp(·;m1, β1), v̂ � ωp(·;m2, β2), and next, we give an a priori
estimate for the positive steady-state solution of system (2.2).

Lemma 4.1. Suppose that (u(x), v(x)) is a non-negative solution of
system (2.2) with uu0 and vu0 on [0,1]. Then,

(i) 0< u(x)≤ û and 0< v(x)≤ v̂ for x ∈ [0, 1]
(ii) 0 < u(x) + v(x) < ϕ(x) for x ∈ [0, 1]

The proof of Lemma 4.1 is exactly similar to that in [10], Lemma
4.2; hence, it is omitted here.

We next establish the linear stability of (û, 0) and (0, v̂). First,
the linearized operator of system (2.3) at (û, 0) is given by

dφxx +m1 f1 ϕ − û, û( ) + ûfu
1 ϕ − û, û( )[ ]φ +m1ûf

v
1 ϕ − û, û( )ψ � μφ, x ∈ 0, 1( ),

dψxx +m2f2 ϕ − û, 0( )ψ � μψ, x ∈ 0, 1( ),
φx 0( ) � φx 1( ) + γφ 1( ) � 0,
ψx 0( ) � ψx 1( ) + γψ 1( ) � 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(4.3)

where fu
1(ϕ − û, û) � − k1+β1ϕ

[k1+ϕ+(β1−1)û]2 < 0, f
v
1(ϕ − û, û) � − k1+β1 û

[k1+ϕ+(β1−1)û]2 < 0.
By the Riesz–Schauder theory, the eigenvalues of Eq. 4.3 consist of the

eigenvalues of the following two operators:

B1 m1( ) � d
d2

dx
+m1 f1 ϕ − û, û( ) + ûfu

1 ϕ − û, û( )( ), B2 m2( )

� d
d2

dx
+m2f2 ϕ − û, 0( ),

(4.4)
subject to the corresponding boundary conditions. It follows from
Lemma 3.1 (iii) that μ1(m1(f1(ϕ − û, û) + ûfu

1

(ϕ − û, û)))< μ1(m1f1(ϕ − û, û)). Moreover, μ1(m1f1(ϕ − û, û)) �
0 with eigenfunction φ1(m1f1(ϕ − û, û)) � û, which implies
μ1(m1(f1(ϕ − û, û) + ûfu

1(ϕ − û, û)))< 0. Hence, the stability of
(û, 0) is determined by the sign of the principal eigenvalue
μ1(m2f2(ϕ − û, 0)) of B2(m2). More precisely, (û, 0) is
asymptotically stable if μ1(m2f2(ϕ − û, 0))< 0, while (û, 0) is
unstable if μ1(m2f2(ϕ − û, 0))> 0.

The linearized operator of system (2.3) at (0, v̂) is given by

dφxx +m1f1 ϕ − v̂, 0( )φ � μφ, x ∈ 0, 1( ),
dψxx +m2 f2 ϕ − v̂, v̂( ) + v̂fv

2 ϕ − v̂, v̂( )[ ]ψ +m2 v̂f
u
2 ϕ − v̂, v̂( )φ � μψ, x ∈ 0, 1( ),

φx 0( ) � φx 1( ) + γφ 1( ) � 0,
ψx 0( ) � ψx 1( ) + γψ 1( ) � 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(4.5)

where
fu
2(ϕ − v̂, v̂) � − k2+β2 v̂

[k2+ϕ+(β2−1)v̂]2 < 0, f
v
2(ϕ − v̂, v̂) � − k2+β2ϕ

[k2+ϕ+(β2−1)v̂]2 < 0.
We denote

B3 m2( ) � d
d2

dx
+m1f1 ϕ − v̂, 0( ),

B4 m2( ) � d
d2

dx
+m2 f2 ϕ − v̂, v̂( ) + v̂fv

2 ϕ − v̂, v̂( )[ ]. (4.6)

FIGURE 5
Bifurcation diagrams of the positive steady state solutions to system (2.2) at t = 2000 with the bifurcation parameter d ranging from 0.01 to 5. Here
we take L = 1, S0 = 1, γ = 0.5, k1 = 1, k2 = 0.4, m1 = 1, and m2 = 0.6 and (A) β1 = 0.01, β2 = 0.01 and (B) β1 = 0.01, β2 = 1.
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Similarly, (0, v̂) is asymptotically stable if μ1(m1f1(ϕ − v̂, 0))< 0, while

(0, v̂) is unstable if μ1(m1f1(ϕ − v̂, 0))> 0.

Theorem 4.1.We consider d, k1, k2 > 0 fixed. Let (u(x, t), v(x, t)) be
the solution of (2.2) with any non-negative non-trivial initial
condition. The following statements hold:

(i) We consider β1, β2 > 0 fixed.
(i.1) If m1 ≤m+

1 and m2 ≤m+
2 , then

lim
t→+∞

u x, t( ) � 0, lim
t→+∞

v x, t( ) � 0 uniformly on 0, 1[ ]. (4.7)

(i.2) If m1 ≤m+
1 and m2 >m+

2 , then

lim
t→+∞ u x, t( ) � 0, lim

t→+∞ v x, t( ) � v̂ uniformly on 0, 1[ ]. (4.8)

(i.3) If m1 >m+
1 and m2 ≤m+

2 , then

lim
t→+∞

u x, t( ) � û, lim
t→+∞

v x, t( ) � 0 uniformly on 0, 1[ ]. (4.9)

(ii) We considerm1 >m+
1 ,m2 >max {m+

2 , max {k2k1, 1}m1}, and β1 >
0 fixed. Then, (û, 0) is unstable. Moreover,
(ii.1) (4.8) holds provided

0< β2 ≤ β02 ≔
m2k1 −m1k2( )γ
m1S0 1 + γ( ) , (4.10)

(ii.2) there exists a unique β+2 ∈ (β02,+∞) such that (0, v̂) is
asymptotically stable when 0< β2 < β+2 ; (0, v̂) is unstable
when β2 > β+2 , and system (2.2) admits at least one stable
coexistence steady state when β2 > β+2 .

(iii) We considerm2 >m+
2 ,m1 >max {m+

1 , max {k1k2, 1}m2}, and β2 >
0 fixed. Then, (0, v̂) is unstable. Moreover,
(iii.1) Eq. 4.9 holds provided

0< β1 ≤ β01 ≔
m1k2 −m2k1( )γ
m2S0 1 + γ( ) , (4.11)

(iii.2) there exists a unique β+1 ∈ (β01,+∞) such that (û, 0) is
asymptotically stable when 0< β1 < β+1 ; (û, 0) is unstable
when β1 > β+1 , and system (2.2) admits at least one stable
coexistence steady state when β1 > β+1 .

Proof. (i) can be proved by the similar arguments as in [6],
Theorems 3.5, 3.6, and we omit it here. Next, we only prove (ii),
since (iii) can be proved by similar arguments.

Claim 1. For m1 >mp
1, m2 ≥max {k2k1, 1}m1, and β1 > 0 fixed,

(û, 0) is unstable.
Note that û satisfies

dûxx +m1f1 ϕ − û, û( )û � 0, x ∈ 0, 1( ),
ûx 0( ) � ûx 1( ) + γû 1( ) � 0,

{ (4.12)

which implies μ1(m1f1(ϕ − û, û)) � 0. We recall that (û, 0) is
asymptotically stable if μ1(m2f2(ϕ − û, 0))< 0 and it is unstable
if μ1(m2f2(ϕ − û, 0))> 0. Then, we conclude from
m2 ≥max {k2k1, 1}m1 and 0< û< ϕ on [0,1] that
m1f1 ϕ − û, û( ) −m2f2 ϕ − û, 0( ) <m1f1 ϕ − û, 0( ) −m2f2 ϕ − û, 0( )

� m1k2 −m2k1 + m1 −m2( ) ϕ − û( )
k1 + ϕ − û( ) k2 + ϕ − û( ) ϕ − û( )

≤ 0,

,

which means that μ1(m2f2(ϕ − û, 0))> μ1(m1f1(ϕ − û, û)) � 0 by
Lemma 3.2(iii). That is, (û, 0) is unstable.

Claim 2. (1) For m1 >mp
1, m2 >max {mp

2 , max {k2k1, 1}m1}, and
β1 > 0 fixed, (0, v̂) is asymptotically stable when 0< β2 ≤ β

0
2, where β

0
2

is defined by Eq. 4.10.
(2) There exists a unique βp2 > β02 such that (0, v̂) is

asymptotically stable when 0< β2 < βp2, and (0, v̂) is unstable
when β2 > βp2.

For (1), we recall that (0, v̂) is asymptotically stable if
μ1(m1f1(ϕ − v̂, 0))< 0 and unstable if μ1(m1f1(ϕ − v̂, 0))> 0.
Similarly, we can conclude from m2 >max {mp

2 , max {k2k1, 1}m1}
and 0< v̂<ϕ(x)< S0(1+γ)

γ on [0,1] that

m1f1 ϕ − v̂, 0( ) −m2f2 ϕ − v̂, v̂( )
� m1k2 −m2k1 + m1 −m2( ) ϕ − v̂( ) +m1β2v̂

k2 + ϕ + β2 − 1( )v̂[ ] k1 + ϕ − v̂( ) ϕ − v̂( )
< 0

,

provided 0< β2 ≤ β02 ≔
(m2k1−m1k2)γ
m1S0(1+γ) . It follows from Lemma 3.2(iii)

that μ1(m1f1(ϕ − v̂, 0))< μ1(m2f2(ϕ − v̂, v̂)) � 0 when 0< β2 ≤ β02.
That is, (0, v̂) is asymptotically stable when 0< β2 ≤ β

0
2.

For (2), since v̂(·;m2, β2) is point-wise strictly decreasing in β2
∈ (0, + ∞) and lim

β2→+∞
v̂(·;m2, β2) � 0 uniformly on [0,1] (see

Lemma 3.3(ii)), we can obtain from Lemma 3.2(iii) that
μ1(m1f1(ϕ − v̂(·;m2, β2), 0)) is strictly increasing in β2 ∈ (0, +
∞). Furthermore,

lim
β2→+∞

μ1 m1f1 ϕ − v̂ ·;m2, β2( ), 0( )( ) � μ1 m1f1 ϕ, 0( )( )> 0,

based on m1 >mp
1 (Eq. 4.1). Moreover, μ1(m1f1(ϕ −

v̂(·;m2, β2), 0))< 0 when 0< β2 ≤ β02. Therefore, there exists a
unique βp2 > β02 such that

μ1 m1f1 ϕ − v̂ ·;m2, β2( ), 0( )( ) < 0 if 0< β2 < βp2 ,� 0 if β2 � βp2,
> 0 if β2 > βp2,

⎧⎪⎨⎪⎩
which means that (0, v̂) is asymptotically stable when 0< β2 < βp2,
while it is unstable when β2 > βp2.

Claim 3. For m1 >mp
1, m2 >max {mp

2 , max {k2k1, 1}m1}, and β1 >
0 fixed, system (2.2) has no positive steady states when
0< β2 ≤ β

0
2.

We assume by contradiction that system (2.2) admits a positive
steady state (�u, �v), which satisfies

d�uxx +m1f1 ϕ − �u − �v, �u( )�u � 0, x ∈ 0, 1( ),
d�vxx +m2f2 ϕ − �u − �v, �v( )�v � 0, x ∈ 0, 1( ),
�ux 0( ) � �ux 1( ) + γ�u 1( ) � 0,
�vx 0( ) � �vx 1( ) + γ�v 1( ) � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (4.13)

Multiplying the first equation of (4.13) by �v and the second
equation by �u, integrating over (0,1), and then, subtracting the
resulting equations, we have

∫1

0

m1k2 −m2k1 + m1 −m2( ) ϕ − �u − �v( ) +m1β2�v −m2β1�u

k1 + ϕ + β1 − 1( )�u − �v[ ] k2 + ϕ + β2 − 1( )�v − �u[ ] �u�v ϕ − �u − �v( )dx
� 0.

(4.14)

Since �u + �v< ϕ(x)< S0(1+γ)
γ on [0,1], we can conclude from

m1 >mp
1 and m2 >max {mp

2 , max {k2k1, 1}m1} that the left side of
(4.14) is less than 0, when 0< β2 ≤ β

0
2 ≔

(m2k1−m1k2)γ
m1S0(1+γ) . That is a

contradiction.
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In conclusion, we can deduce that (ii.1) holds from Claim 1, Claim
2(1), Claim 3, and Lemma 3.4(iii). In addition, (ii.2) is the direct result of
Claim 1, Claim 2(2), and Lemma 3.4(ii). The proof is completed.

Remark 4.1. Theorem 4.1(i) implies that both species with sufficiently
small growth rates are washed out, while competition exclusion occurs
and the species with a sufficiently faster growth rate will finally win the
competition. In particular, when both species admit sufficient fast growth
rates, Theorem 4.1(ii.1) suggests that the species v with stronger growth
ability (m2

k2
is large) and weaker intraspecific competition (β2 is small) will

finally win the competition. This is consistent with the biological intuition
that the species with stronger growth ability and weaker intraspecific
competition has more competitive advantages. Theorem 4.1(iii.1)
illustrates the similar biological phenomenon.

We next investigate the local dynamics of system (2.2). Note that
the stability of (û(m1, β1), 0) is determined by the sign of
μ1(m2f2(ϕ − û(m1, β1), 0)), and the stability of (0, v̂(m2, β2)) is
determined by the sign of μ1(m1f1(ϕ − v̂(m1, β1), 0)). Clearly,
μ1(m2f2(ϕ − û(m1, β1), 0)) depends on m1, m2, and β1, and
μ1(m1f1(ϕ − v̂(m2, β2), 0)) depends on m1, m2, and β2. To this
end, we define

σ1 m1, m2, β1( ) ≔ μ1 m2f2 ϕ − û m1, β1( ), 0( )( ) for m1 >mp
1 , m2 > 0, β1 > 0,

τ1 m1, m2, β2( ) ≔ μ1 m1f1 ϕ − v̂ m2, β2( ), 0( )( ) for m1 > 0, m2 >mp
2 , β2 > 0.

Lemma 4.2. The principal eigenvalues σ1(m1, m2, β1) and τ1(m1,
m2, β2) have the following properties:

(i) For fixed d, k1, k2 > 0 and m1 >mp
1 ,

(i.1) σ1(m1, m2, β1) is strictly decreasing with respect to m1

in (mp
1 ,+∞),

(i.2) σ1(m1, m2, β1) is strictly increasing with respect to β1 in (0,
+ ∞),

(i.3) σ1(m1, m2, β1) is strictly increasing with respect to m2 in
(mp

2 ,+∞); moreover,

lim
m2→ mp

2( )+
σ1 m1, m2, β1( ) � μ1 mp

2f2 ϕ − û, 0( )( )< 0, lim
m2→+∞

σ1 m1, m2, β1( )
� +∞ .

(ii) For fixed d, k1, k2 > 0 and m2 >mp
2 ,

(ii.1) τ1(m1, m2, β2) is strictly increasing with respect to m1

in (mp
1 ,+∞),

(ii.2) τ1(m1,m2, β2) is strictly increasing with respect to β2 in (0,
+ ∞),

(ii.3) τ1(m1, m2, β2) is strictly decreasing with respect to m2 in
(mp

2 ,+∞); moreover,

lim
m2→ mp

2( )+
τ1 m1, m2, β2( ) � μ1 m1f1 ϕ, 0( )( )> 0, lim

m2→+∞ τ1 m1, m2, β2( )
� μ1 0( )< 0.

Proof. For (i), (i.1) can be obtained by Lemma 3.1(iii) and Lemma
3.3(i). Similarly, (i.2) is followed by Lemma 3.1(iii) and Lemma
3.3(ii). To prove (i.3), it is obvious that σ1(m1, m2, β1) is strictly
increasing with respect to m2 in (mp

2 ,+∞) by Lemma 3.1(iii) and
lim

m2→+∞ σ1(m1, m2, β1) � +∞ by (3.2). We recall

μ1(mp
2f2(ϕ, 0)) � 0. Then, we can conclude from Lemma 3.1(ii)

(iii) that

lim
m2→ mp

2( )+
σ1 m1, m2, β1( ) � μ1 mp

2f2 ϕ − û, 0( )( )< μ1 mp
2f2 ϕ, 0( )( )

� 0.

For (ii), (ii.1) can be obtained by Lemma 3.1(iii), and (ii.2) can be
proved by Lemma 3.1(iii) and Lemma 3.3(ii). We then prove (ii.3).
Since v̂(m2, β2) is point-wise strictly increasing in m2 ∈ (mp

2 ,+∞)
by Lemma 3.3(i), it follows from Lemma 3.1(iii) that τ1(m1,m2, β2) is
strictly decreasing with respect to m2 in (mp

2 ,+∞). Noting that
lim

m2→(mp
2)+

v̂(m2, β2) � 0 by (3.5), we can conclude from Lemma 3.1(ii)

that

lim
m2→ mp

2( )+
τ1 m1, m2, β2( ) � μ1 m1f1 ϕ, 0( )( )> 0,

based on m1 >mp
1 (see (4.1)). Moreover, since lim

m2→+∞ v̂(m2, β2) �
ϕ(x) on [0,1] (see (3.5)), we can obtain from Lemma 3.1(ii) (iii) that

lim
m2→+∞

τ1 m1, m2, β2( ) � μ1 m1f1 ϕ − v̂ m2, β2( ), 0( )( ) � μ1 0( )< 0.

The proof is completed.
Clearly, both σ1(m1, m2, β1) and τ1(m1, m2, β2) depend on m1 and

m2. To investigate the local dynamics of system (2.2) in the m1 − m2

plane, we fix β1, β2 > 0 and denote them by σ1(m1,m2) and τ1(m1,m2).

Lemma 4.3. Supposemi >mp
i (i � 1, 2). For fixed d, β1, β2, k1, k2 >

0, there exist two continuous critical curves

Γ1: m2 � �m2 m1( ) for m1 ∈ mp
1,+∞( ),

Γ2: m2 � ~m2 m1( ) for m1 ∈ mp
1,+∞( ),

where �m2(m1) and ~m2(m1) are differentially dependent on m1 and
uniquely determined by

μ1 �m2 m1( )f2 ϕ − û, 0( )( ) � 0 and μ1 m1f1 ϕ − v̂ ·; ~m2 m1( )( ), 0( )( )
� 0,

(4.15)
respectively. Then,

(i) the semi-trivial steady state (û, 0) is locally asymptotically stable
if (m1, m2) ∈ (mp

1 ,+∞) × (mp
2 , �m2(m1)), neutrally stable if

(m1, m2) ∈ (mp
1 ,+∞) × { �m2(m1)}, and unstable if.

(ii) the semi-trivial steady state (0, v̂) is locally asymptotically stable
if (m1, m2) ∈ (mp

1 ,+∞) × { ~m2(m1),+∞}, neutrally stable if
(m1, m2) ∈ (mp

1 ,+∞) × { ~m2(m1)}, and unstable if
(m1, m2) ∈ (mp

1 ,+∞) × (mp
2 , ~m2(m1)).

Proof. (i) By Lemma 4.2(i), we conclude that for any
m1 ∈ (mp

1 ,+∞) given, there exists a unique �m2(m1)>mp
2 such that

σ1 m1, m2( )
< 0 if mp

2 <m2 < �m2 m1( ),
� 0 if m2 � �m2 m1( ),
> 0 if m2 > �m2 m1( ).

⎧⎪⎨⎪⎩
Therefore, (û, 0) is locally asymptotically stable for

mp
2 <m2 < �m2(m1), neutrally stable for m2 � �m2(m1), and

unstable for m2 > �m2(m1).
(ii) Similarly, we can conclude from Lemma 4.2(ii) that for any

m1 ∈ (mp
1 ,+∞) given, there exists a unique ~m2(m1)>mp

2 such that
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τ1 m1, m2( )
> 0 if mp

2 <m2 < ~m2 m1( ),
� 0 if m2 � ~m2 m1( ),
< 0 if m2 > ~m2 m1( ).

⎧⎪⎨⎪⎩
Therefore, (0, v̂) is unstable for mp

2 <m2 < ~m2(m1), neutrally
stable for m2 � ~m2(m1), and locally asymptotically stable for
m2 > ~m2(m1). The proof is completed.

Combining with Lemma 3.4 and Lemma 4.3, we obtain the
following results.

Theorem 4.2. Suppose mi >mp
i (i � 1, 2). For fixed d, k1, k2, β1,

β2 > 0, �m2 and ~m2 are defined by Eq. 4.15, respectively, and the
following statements hold.

(i) Suppose �m2 < ~m2. If m2 < �m2, then (û, 0) is locally
asymptotically stable, and (0, v̂) is unstable if it exists. If
m2 > ~m2, then (û, 0) is unstable, and (0, v̂) is locally
asymptotically stable. If m2 ∈ ( �m2, ~m2), then (û, 0) and
(0, v̂) are both unstable, and system (2.2) admits at least one
stable coexistence steady state.

(ii) Suppose �m2 > ~m2. Ifm2 < ~m2, then (û, 0) is locally asymptotically
stable, and (0, v̂) is unstable. If m2 > �m2, then (û, 0) is unstable,
and (0, v̂) is locally asymptotically stable. If m2 ∈ ( ~m2, �m2), then
(û, 0) and (0, v̂) are both stable, and system (2.2) admits at least
one unstable coexistence steady state.

(iii) Suppose �m2 � ~m2. If m2 < ~m2, then (û, 0) is locally
asymptotically stable, and (0, v̂) is unstable. If m2 > ~m2, then
(û, 0) is unstable, and (0, v̂) is locally asymptotically stable.

For fixed d, k1, k2, β1, β2 > 0, Lemma 4.3 and Theorem 4.2 imply
that there exist two critical curves Γ1 and Γ2 in them1 −m2 plane, which
divide the local dynamics of Eq. 2.2 into competitive exclusion, bi-
stability, and coexistence. To further characterize classification on the
dynamics of system (2.2) in the m1 − m2 plane, we next give some
properties of critical curves Γ1 and Γ2. We recall

μ1 �m2f2 ϕ − û ·;m1, β1( ), 0( )( ) � 0 and μ1 m1f1 ϕ − v̂ ·; ~m2, β2( ), 0( )( ) � 0.

Clearly, �m2 depends onm1 and β1 and ~m2 depends onm1 and β2.
To emphasize these parameters, we denote �m2 and ~m2 by
�m2(m1, β1) and ~m2(m1, β2), respectively.

Proposition 4.2.We consider d, k1, k2 > 0 fixed. The critical curve
�m2(m1, β1) has the following properties.

(i) For any β1 > 0 given, �m2(m1, β1) is strictly increasing with
respect to m1 in (mp

1 ,+∞). Moreover,

lim
m1→ mp

1( )+
�m2 m1, β1( ) � mp

2.

(ii) For any m1 >mp
1 given, �m2(m1, β1) is strictly decreasing with

respect to β1 in (0, + ∞) and

mp
2 < �m2 m1, β1( )<max

k2
k1
, 1{ }m1 and lim

β1→+∞
�m2 m1, β1( ) � mp

2.

(4.16)
Particularly,

max mp
2, min

k2
k1
, 1{ }m1{ }≤ �m2 m1, β1( )<max

k2
k1
, 1{ }

m1 provided 0< β1 ≤ β01. (4.17)

(iii) For any m1 >mp
1 given,

lim
β1→+∞

_�m2 m1, β1( ) � 0, (4.18)

where _�m2(m1, β1) is the derivative of �m2(m1, β1) with respect to m1

in (mp
1 ,+∞).

Proof. (i) For any β1 > 0 given, we can conclude from Lemma
4.2(i.1) (i.3) that μ1(m2f2(ϕ − û), 0) is strictly decreasing with
respect to m1 in (mp

1 ,+∞) and strictly increasing with respect to
m2 in (mp

2 ,+∞). Then, it follows from μ1( �m2(m1, β1)
f2(ϕ − û, 0)) � 0 and the implicit function theorem that
�m2(m1, β1) is strictly increasing with respect to m1 in (mp

1 ,+∞).
Since μ1( �m2(m1, β1)f2(ϕ − û), 0) � 0, we can obtain
lim

m1→(mp
1)+

�m2(m1, β1) � mp
2 based on μ1(mp

2f2(ϕ, 0)) � 0 and

lim
m1→(mp

1)+
û � 0 uniformly on [0,1] (see Eq. 3.5).

(ii) For anym1 >mp
1 given, it follows from Lemma 4.2(i.2) (i.3)

that μ1(m2f2(ϕ − û), 0) is strictly increasing with respect to β1 in
(0, + ∞) and strictly increasing with respect to m2 in (mp

2 ,+∞).
Then, we can obtain from μ1( �m2(m1, β1)f2(ϕ − û, 0)) � 0 and the
implicit function theorem that �m2(m1, β1) is strictly decreasing
with respect to β1 in (0, + ∞). Then,

lim
β1→+∞

�m2 m1, β1( )< �m2 m1, β1( )< lim
β1→0+

�m2 m1, β1( ) for m1 >mp
1.

Substituting β1 → 0+ in μ1( �m2(m1, β1)f2(ϕ − û, 0)) � 0, we
have μ1( �m2(m1, 0)f2(ϕ − u0, 0)) � 0 by Lemma 3.1(ii). Here, u0
satisfies

d u0( )xx + m1 ϕ − u0( )u0

k1 + ϕ − u0
� 0, x ∈ 0, 1( ),

u0( )x 0( ) � u0( )x 1( ) + γu0 1( ) � 0.

⎧⎪⎪⎨⎪⎪⎩
Then, we can deduce from [26], Theorem 2.1 that

lim
β1→0+

�m2(m1, β1)≤max {k2k1, 1}m1. Substituting β1 → +∞ in
μ1( �m2(m1, β1)f2(ϕ − û, 0)) � 0, we have lim

β1→+∞
�m2(m1, β1) � mp

2

based on μ1(mp
2f2(ϕ, 0)) � 0 and lim

β1→+∞
û � 0 uniformly on [0,1]

(see (3.6)). The estimate of �m2(m1, β1) in Eq. 4.16 is obtained.
Finally, when m1 >mp

1 , m
p
2 <m2 <min {k2k1, 1}m1, Theorem

4.1(iii.1) shows that (û, 0) is globally asymptotically stable provided
0< β1 ≤ β

0
1. Therefore, �m2(m1, β1)≥max {mp

2 , min {k2k1, 1}m1}
provided 0< β1 ≤ β

0
1. Combining with Eq. 4.16, 4.17 is obtained.

(iii) Let ψ1 > 0 with ‖ψ1‖∞ = 1 be the corresponding principal
eigenfunction of μ1( �m2f2(ϕ − û, 0)) � 0. Then, ψ1 satisfies

d ψ1( )xx + �m2f2 ϕ − û, 0( )ψ1 � 0, x ∈ 0, 1( ),
ψ1( )x 0( ) � ψ1( )x 1( ) + γψ1 1( ) � 0.

{ (4.19)

By differentiating Eq. 4.19 with respect to m1, denoting ∂
∂m1

� _,
we have
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d _ψ1( )xx + _�m2f2 ϕ − û, 0( )ψ1 + �m2

f2 ϕ − û, 0( ) _ψ1 −
k2

k2 + ϕ − û( )2 ·
∂û m1, β1( )

∂m1
ψ1[ ] � 0, x ∈ 0, 1( ),

_ψ1( )x 0( ) � _ψ1( )x 1( ) + γ _ψ1 1( ) � 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4.20)

where ∂û(m1 ,β1)
∂m1

is the derivative of û(m1, β1) with respect to m1 in
(mp

1 ,+∞). Multiplying Eq. 4.19 by _ψ1 and Eq. 4.20 by ψ1, integrating
over (0,1), and then, subtracting the two resulting equations,

_�m2 m1, β1( ) � �m2∫1

0
k2

k2+ϕ−û( )2 ·
∂û m1 ,β1( )

∂m1
ψ2
1dx

∫1

0
f2 ϕ − û, 0( )ψ2

1dx
. (4.21)

We next show that lim
β1→+∞

∂û(m1 ,β1)
∂m1

� ∂
∂m1

lim
β1→+∞

û(m1, β1) � 0.

We choose an increasing sequence {β1,n} with lim
n→+∞ β1,n � +∞.

Then, ûn ≔ û(m1, β1,n) is the unique positive solution of

d ûn( )xx +m1f
n( )

1 ϕ − ûn, ûn( )ûn � 0, x ∈ 0, 1( ),
ûn( )x 0( ) � ûn( )x 1( ) + γ ûn( ) 1( ) � 0,

{ (4.22)

where f(n)
1 (ϕ − ûn, ûn) � ϕ−ûn

k1+ϕ+(β1,n−1)ûn. Note that 0< ûn <ϕ and
f(n)
1 (ϕ − ûn, ûn) is uniformly bounded on [0,1]. By Lp estimates

for p ∈ (1, + ∞) and the Sobolev embedding theorem, we may
assume that lim

n→+∞ ûn � U1(x) in C1[0, 1] by passing to a
subsequence if necessary. Since ûn is continuously differentiable
with respect to m1 in (mp

1 ,+∞) (see Lemma 3.3(i)), we differentiate
(4.22) with respect to m1, denote ∂

∂m1
� _, and obtain

d _̂un( )
xx
+m1

f n( )
1 ϕ − ûn, ûn( ) − k1 + β1,nϕ( )ûn

k1 + ϕ + β1,n − 1( )ûn[ ]2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ _̂un � −f n( )
1 ϕ − ûn, ûn( )ûn, x ∈ 0, 1( ),

_̂un( )
x
0( ) � _̂un( )

x
1( ) + γ _̂un 1( ) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4.23)

Since 0< ûn < ϕ, f(n)
1 (ϕ − ûn, ûn)ûn, and f(n)

1 (ϕ − ûn, ûn) −(k1+β1,nϕ)ûn
[k1+ϕ+(β1,n−1)ûn]2 are uniformly bounded on [0,1], we can use Lp

estimates for p ∈ (1, + ∞) and the Sobolev embedding theorem
again to assume that lim

n→+∞
_̂un � U2(x) in C1[0, 1] by passing to a

subsequence if necessary. Therefore, lim
β1→+∞

∂û(m1 ,β1)
∂m1

�
∂

∂m1
lim

β1→+∞
û(m1, β1) � 0 based on lim

β1→+∞
û(m1, β1) � 0 uniformly

on [0,1] (see Lemma 3.3(ii)). Finally, taking β1 → +∞ in (4.21) and
noting that lim

β1→+∞
�m2(m1, β1) � mp

2 (see (4.16)), we have

lim
β1→+∞

_�m2(m1, β1) � 0. The proof is completed.

Proposition 4.3. We consider d, k1, k2 > 0 fixed. The critical curve
~m2(m1, β2) has the following properties:

(i) For any β2 > 0 given, ~m2(m1, β2) is strictly increasing with respect
to m1 in (mp

1 ,+∞). Moreover,

lim
m1→ mp

1( )+
~m2 m1, β2( ) � mp

2.

(ii) For any m1 >mp
1 given, ~m2(m1, β2) is strictly increasing with

respect to β2 in (0, + ∞) and

max mp
2, min

k2
k1
, 1{ }m1{ }< ~m2 m1, β2( )< +∞ . (4.24)

Particularly,

max mp
2, min

k2
k1
, 1{ }m1{ }< ~m2 m1, β2( )≤max

k2
k1
, 1{ }m1

provided 0< β2 ≤ β02. (4.25)

(iii) For any m1 >mp
1 given,

lim
β2→+∞

_~m2 m1, β2( ) � +∞, (4.26)
where _~m2(m1, β2) is the derivative of ~m2(m1, β2) with respect to m1

in (mp
1,+∞).

Proof. (i) For any β2 > 0 given, we can conclude from Lemma 4.2(ii.1)
(ii.3) that μ1(m1f1(ϕ − v̂(·;m2, β2), 0)) is strictly increasing with
respect to m1 in (mp

1 ,+∞) and strictly decreasing with respect to
m2 in (mp

2 ,+∞). Then, ~m2(m1, β2) is strictly increasing with respect to
m1 in (mp

1 ,+∞) by μ1(m1f1(ϕ − v̂(·; ~m2, β2), 0)) � 0 and the
implicit function theorem. Substituting m1 → (mp

1)+ in
μ1(m1f1(ϕ − v̂(·; ~m2, β2), 0)) � 0, we have lim

m1→(mp
1)+

v̂(·; ~m2, β2) � 0

based on μ1(mp
1f1(ϕ, 0)) � 0. Therefore, lim

m1→(mp
1)+

~m2(m1, β2) � mp
2

by lim
~m2→(mp

2)+
v̂(·; ~m2, β2) � 0 uniformly on [0,1] (Eq. 3.5).

(ii) For any m1 >mp
1 given, it follows from Lemma 4.2(ii.2) (ii.3)

that μ1(m1f1(ϕ − v̂(·;m2, β2), 0)) is strictly increasing with respect to
β2 in (0, +∞) and strictly decreasing with respect tom2 in (mp

2 ,+∞).
Then, we can conclude from μ1(m1f1(ϕ − v̂(·; ~m2, β2), 0)) � 0 and
the implicit function theorem that ~m2(m1, β2) is strictly increasing with
respect to β2 in (0, + ∞). Therefore,

lim
β2→0+

~m2 m1, β2( )< ~m2 m1, β2( )< lim
β2→+∞

~m2 m1, β2( ) for m1 >mp
1.

Similarly, substituting β2 → 0+ in μ1(m1f1(ϕ − v̂(·; ~m2, β2),
0)) � 0, we can deduce from [8], Theorem 2.1 again that
max {mp

2 , min {k2k1, 1}m1}≤ lim
β2→0+

~m2(m1, β2). Moreover, lim
β2→+∞

~m2

(m1, β2) � +∞. Hence, the inequality about ~m2(m1, β2) in Eq.

4.24 is obtained.

When m1 >mp
1, m2 >max {mp

2 , max {k2k1, 1}m1}, Theorem
4.1(ii.1) implies that (0, v̂) is globally asymptotically stable
provided 0< β2 ≤ β02. Therefore, ~m2(m1, β2)≤max {k2k1, 1}m1

provided 0< β2 ≤ β
0
2. Combining with 4.24, 4.25 holds.

(iii) Let φ1 with ‖φ1‖∞ = 1 be the corresponding principal
eigenfunction of μ1(m1f1(ϕ − v̂( ~m2, β2), 0)) � 0. Then, φ1 satisfies

d φ1( )xx +m1f1 ϕ − v̂ ~m2, β2( ), 0( )φ1 � 0, x ∈ 0, 1( ),
φ1( )x 0( ) � φ1( )x 1( ) + γφ1 1( ) � 0.

{ (4.27)

By differentiating Eq. 4.27 with respect to m1 and denoting
∂

∂m1
� _, we have

d _φ1( )xx + f1 ϕ − v̂, 0( )φ1 +m1

f1 ϕ − v̂, 0( ) _φ1 −
k1

k1 + ϕ − v̂( )2 ·
∂v̂ ~m2, β2( )

∂m2
× _~m2 m1( )φ1[ ] � 0, x ∈ 0, 1( ),

_φ1( )x 0( ) � _φ1( )x 1( ) + γ _φ1 1( ) � 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4.28)

where ∂v̂( ~m2 ,β2)
∂m2

is the derivative of v̂ with respect to m2 at m2 � ~m2.
Multiplying (4.27) by _φ1 and (4.28) by φ1, integrating over (0,1), and
then, subtracting the two resulting equations,
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_~m2 m1, β2( ) � ∫1

0
f1 ϕ − v̂, 0( )φ2

1dx

m1∫1

0
k1

k1+ϕ−v̂( )2 ·
∂v̂ ~m2 ,β2( )

∂m2
φ2
1dx

. (4.29)

Similar to Proposition 4.2(iii), we can show lim
β2→+∞

∂v̂( ~m2 ,β2)
∂m2

�
∂

∂m2
limβ2→+∞v̂( ~m2, β2) � 0 based on lim

β2→+∞
v̂( ~m2, β2) � 0 uniformly

on [0,1] (see Lemma 3.3(ii)). Substituting β2 → +∞ in (4.29), it is

easy to obtain lim
β2→+∞

_~m2(m1, β2) � +∞.

We assume k1 > k2 > 0 without loss of generality. Then, there
exist six critical curves: m1 � mp

1 , m2 � mp
2,

L1: m2 � k2
k1
m1, L2: m1 � m2, Γ1: m2 � �m2 m1( ), Γ2: m2

� ~m2 m1( ),
in the m1 − m2 plane (Figure 2), which classify the dynamics of
system (2.2) into extinction of both species, competitive exclusion
and coexistence. Clearly, it follows from Proposition 4.1(i) that line
m2 � mp

2
mp

1
m1 is located above line L1 and below line L2 under the

assumption k1 > k2 > 0. Propositions 4.2(i) and 4.3(i) suggest that Γ1
and Γ2 are increasing with respect to m1 ∈ (mp

1 ,+∞), respectively.
Moreover, lim

m1→(mp
1)+

�m2(m1) � lim
m1→(mp

1)+
~m2(m1) � mp

2, which

implies that Γ1 and Γ2 intersect at point (mp
1 , m

p
2). In addition,

due to the effect of β1 and β2, Propositions 4.2(ii) (iii) and 4.3(ii) (iii)
indicate that the locations of Γ1 and Γ2 in them1 −m2 plane have the
following four occasions shown in Figures 2A–D. Here, we assume
that Γ2 is always located above Γ1 in this region (Figure 2). We set

Π0 ≔ 0, mp
1( ] × 0, mp

2( ]; Π1 ≔ mp
1 ,+∞( ) × 0, mp

2( ]; Π2 ≔ 0, mp
1( ] × mp

2 ,+∞( ).
Now, we are ready to illustrate the dynamical classification of

system (2.2) in them1 −m2 plane under the assumption k1 > k2 > 0,
by dividing the following four cases.

Case I: 0< β1 ≤ β01, 0< β2 ≤ β
0
2 (Figure 2A). Then, (4.17) holds

provided 0< β1 ≤ β01; that is, k2
k1
m1 < �m2(m1, β1)<m1 under the

assumption k1 > k2 > 0. Similarly, (4.25) holds provided
0< β2 ≤ β

0
2, which means k2

k1
m1 < ~m2(m1, β1)<m1. These suggest

that both Γ1 and Γ2 lie between lines L1 and L2 (Figure 2A). It
follows from Theorem 4.1(i.1) that (0,0) is g.a.s in region (m1,m2)
∈ Π0. In particular, the phase portrait graph of system (2.2) with
(m1, m2) = (0.2, 0.1) ∈ Π0 is illustrated in Figure 1A, which shows
that (0,0) is g.a.s in this case. Then, (û, 0) is g.a.s when (m1, m2) ∈
Π1 ∪ Π3 by Theorem 4.1(i.3), (iii.1). Particularly, the phase
portrait graph of system (2.2) with (m1, m2) = (1, 0.1) ∈ Π1 ∪
Π3 is shown in Figure 1B. (0, v̂) is g.a.s in region (m1, m2) ∈ Π2 ∪
Π4 by Theorem 4.1(i.2) and (ii.1). Moreover, the specific phase
portrait graph with (m1, m2) = (0.2, 1) ∈ Π2 ∪ Π4 is displayed in
Figure 1C. Furthermore, by Lemma 4.3, (û, 0) is locally
asymptotically stable in region Π5 and unstable in region Π6 ∪
Π7; (0, v̂) is locally asymptotically stable in region Π6 and
unstable in region Π5 ∪ Π7. Then, we can conclude from
Theorem 4.2(i) that there exist stable coexistence steady states
in Π7, and the specific phase portrait graph with (m1, m2) = (1,
0.545) ∈ Π7 is presented in Figure 1D.

Case II: 0< β1 ≤ β
0
1, β2 > βp2 (Figure 2B). Then, (4.17) holds and

Γ1 still lies between lines L1 and L2 when 0< β1 ≤ β01. Moreover,
(4.24) holds when β2 > βp2; that is, ~m2(m1, β2)>max {mp

2 ,
k2
k1
m1}

under the assumption k1 > k2 > 0. This implies that Γ2 lies above
lines L1 and m2 � mp

2. Note that lim
m1→(mp

1)+
~m2(m1, β2) � mp

2 by
Proposition 4.3(i) and mp

1 >mp
2 if k1 > k2 > 0 (see Proposition

4.1). Then, ~m2(m1, β2)<m1 when m1 is near mp
1, which means that

there exists sufficiently small ϵ > 0 such that Γ2 lies below line L2 for
m1 ∈ (mp

1 , m
p
1 + ϵ).

Next, we illustrate two-fold that Γ2 will first intersect L2 and
then lie above L2 as m1 increases (Figure 2B). On one hand,
Theorem 4.1(ii) indicates that when m1 >mp

1 and
m2 >max {mp

2 , m1}, there exists a unique βp2 such that (0, v̂) is
unstable when β2 > βp2. This means that there exist regions above
L2 such that (0, v̂) is unstable when β2 > βp2. Note that Γ2 is strictly
increasing with respect to β2 in (0, + ∞) by Proposition 4.3(ii).
Hence, when β2 > βp2, we can conclude from Lemma 4.3(ii) that
the critical curve Γ2 for the stability change of (0, v̂) must
intersect L2 and then lie above L2 as m1 is suitably large. This
implies that there exist regions above line L2 and below Γ2 such
that (0, v̂) is unstable when β2 > βp2. On the other hand,
Proposition 4.3(iii) implies lim

β2→+∞
_~m2(m1, β2) � +∞, which

means that the slope of Γ2 will be bigger than 1 for suitably
large β2. This, in turn, suggests that for large β2, there exists
�mp
1 >mp

1 such that Γ2 must intersect L2 and then locates above L2

for all m1 > �mp
1. Therefore, the region Π1

7 occurs for large β
2. This

region is denoted as Π1
7 in Figure 2B. Then, we deduce from

Theorem 4.2(i) that there exist stable coexistence steady states in
Π7 � Π0

7 ∪ Π1
7. The other regions Π0 − Π6 can be similarly defined

as in Case I.

Case III: β1 > βp1, 0< β2 ≤ β
0
2 (see Figure 2C). Similar to Case II,

(4.25) holds provided 0< β2 ≤ β02; that is, line Γ2 lies between lines L1
and L2 when 0< β2 ≤ β02. Moreover, (4.16) holds when β1 > βp1; that
is, mp

2 < �m2(m1, β1)<m1 under the assumption k1 > k2 > 0. This
implies that Γ1 lies below line L2 and above line m2 � mp

2.
Furthermore, note that lim

m1→(mp
1)+

�m2(m1, β1) � mp
2 by Proposition

4.2(i) and mp
2 > k2

k1
mp

1 if k1 > k2 > 0 by Proposition 4.1. Then,
�m2(m1, β1)> k2

k1
m1, when m1 is near mp

1, which means that there
exists sufficiently small ε > 0 such that Γ1 lies above L1 for
m1 ∈ (mp

1 , m
p
1 + ε).

Similarly, we next illustrate that Γ1 will first intersect L1 and then lie
below L1 asm1 increases (see Figure 2C). On one hand, Theorem 4.1(iii)
suggests that whenm1 >mp

1 andm
p
2 <m2 < k2

k1
m1, there exists a unique

βp1 such that (û, 0) is unstable when β1 > βp1. This means that there exist
regions below L1 such that (û, 0) is unstable when β1 > βp1. Note that Γ1
is strictly decreasingwith respect to β1 in (0, +∞) by Proposition 4.2(ii).
Hence, when β1 > βp1, we can deduce from Lemma 4.3(i) that the critical
curve Γ1 for the stability change of (û, 0)must intersect L1 and then lie
below L1 as m1 is suitably large. This implies that there exist regions
below L1 and above Γ1 such that (û, 0) is unstable when β1 > βp1.

On the other hand, Proposition 4.2(iii) gives
lim

β1→+∞
_�m2(m1, β1) � 0, which implies that the slope of Γ1 will be

smaller than k2
k1
for suitably large β1. This, in turn, suggests that, for

large β1, there exists �mpp
1 >mp

1 such that Γ1 must intersect L1 and
then lie below L1 for all m1 > �mpp

1 . Therefore, the region Π2
7 occurs

for large β1. This region is denoted as Π2
7 in Figure 2C. Then, we

obtain from Theorem 4.2(i) that there exist stable coexistence steady
states in Π7 � Π0

7 ∪ Π2
7. The other regions Π0 − Π6 can be similarly

illustrated as in Case I.
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Case IV: β1 > βp1, β2 > βp2 (Figure 2D). Combining the analysis
of β1 > βp1 in Case II and β2 > βp2 in Case III, we know that both the
regions Π1

7 and Π2
7 exist. It follows from Theorem 4.2(i) that there

exist stable coexistence steady states in Π7 � Π0
7 ∪ Π1

7 ∪ Π2
7. The

other regions Π0 − Π6 can be similarly illustrated as in Case I.
We next make a comparison with the results in [8]. When the

intraspecific competition is relatively weak (i.e., for the case of
0< β1 ≤ β

0
1 and 0< β2 ≤ β02), the competitive dynamics of system

(2.2) (Figure 2A) are similar to the unstirred chemostat model
with Holling type II functional response (see [8], Theorems 2.1,
2.4] and Figure 1 in [8]), which suggests that the weak
intraspecific competition has little effect on the competition
outcomes of species.

However, when the intraspecific competition becomes
strong, some new phenomena may occur. For instance, for
the standard unstirred chemostat models, competition
exclusion always happens for the weak–strong competition of
two species (see [26], Theorem 2.1), while coexistence may
occur in the unstirred chemostat model with B.–D.
functional response with the increase of intraspecific
competition, under the weak–strong competition cases (see
Theorem 4.1 and Figures 2B–D). More precisely, under the
weak–strong competition case m2 >max {k2k1, 1}m1 (i.e., species v
has a stronger growth ability compared to species u), the
competitive ability of species v becomes weak with the
increase of β2, which may result in the coexistence of the two
species (see Theorem 4.1(ii.2) and Figure 2B). Similarly, under
the weak–strong competition case m2 <min {k2k1, 1}m1

(i.e., species u has a stronger growth ability compared to
species v), the competitive ability of species u becomes weak
with the increase of β1, which may cause the coexistence of the
two species (see Theorem 4.1(iii.2) and Figure 2C). In
particular, Theorem 4.1(ii.2), (iii.2) and Figure 2D suggest
that coexistence is more likely to happen, when the
intraspecific competition of two species is strong.

In summary, these theoretical results indicate that for the
weak–strong competition cases, if the intraspecific competition
parameter of the species with stronger growth ability is suitably
large, we can observe different results from [8] that coexistence may
occur. This new phenomenon suggests that the intraspecific
competition parameters β1 and β2 have a great influence on the
competitive outcomes of two species.

5 Positive solution branches of
system (2.2)

We define X = W2,p(0, 1) × W2,p(0, 1) and Y = Lp(0, 1) × Lp(0,
1), where p > 1. For fixed d, k1, k2, β1, β2 > 0 and m1 >mp

1, system
(2.2) admits three branches of trivial or semi-trivial solutions in
the space R+ × X: Γ0 � {(m2, 0, 0): m2 > 0}, Γu � {(m2, û, 0):
m2 > 0} and Γv � {(m2, 0, v̂): m2 >mp

2}, where û � ωp(·;m1, β1)
and v̂ � ωp(·;m2, β2). In this section, we will regard m2 as the
bifurcation parameter and study separately positive solutions
bifurcating from the semi-trivial branches Γu and Γv by the
Crandall–Rabinowitz bifurcation theorem in [31].

We first show that there exists a positive solution branch that
bifurcates from the semi-trivial solution (û, 0). Moreover, the

bifurcation of positive solutions from (û, 0) can only occur at m2 �
�m2 by Lemma 4.3.

Theorem 5.1. For fixed d, k1, k2, β1, β2 > 0 and m1 >mp
1, there is a

smooth non-constant solutions curve Γ1 = {(m2(s), u(s), v(s)): s ∈ (−ϵ, ϵ)}
such that (m2(s), u(s), v(s)) is a positive solution of system (2.2) for s ∈ (0,
ϵ) and satisfies m2(0) � �m2, u(s) � û + sφ0 + o(s), and v(s) = sψ0 +
o(s). Here, ψ0 > 0 is the principal eigenfunction corresponding to the
eigenvalue μ1( �m2f2(ϕ − û, 0)) � 0, which satisfies

B2 �m2( )ψ0 � 0, x ∈ 0, 1( ),
ψ0′ 0( ) � ψ0′ 1( ) + γψ0 1( ) � 0,

{ (5.1)

and φ0 < 0 satisfies

B1 m1( )φ0 � −m1ûf
v
1 ϕ − û, û( )ψ0, x ∈ 0, 1( ),

φ0′ 0( ) � φ0′ 1( ) + γφ0 1( ) � 0.
{ (5.2)

Moreover,

m2′ 0( ) � −∫
1

0
�m2 fu

2 ϕ − û, 0( )φ0 + fv
2 ϕ − û, 0( )ψ0[ ]ψ2

0dx

∫1

0
f2 ϕ − û, 0( )ψ2

0dx
, (5.3)

where fu
2(ϕ − û, 0) � − k2+β2 û

(k2+ϕ−û)2 and fv
2(ϕ − û, 0) � − k2+β2ϕ

(k2+ϕ−v̂)2.
Theorem 5.1. can be proved by the similar arguments as in [35],

Theorem 6.2. For completeness, we defer the proof of Theorem
5.1 to the Supplementary Appendix.

Theorem 5.2. For fixed d, k1, k2, β1, β2 > 0 and m2 >mp
2, there is a

smooth non-constant solutions curve Γ2 = {(m2(s), u(s), v(s)): s ∈ (−ϵ,
ϵ)} such that (m2(s), u(s), v(s)) is a positive solution of (2.2) for s ∈ (0,
ϵ) and satisfies m2(0) � ~m2, u(s) � s~φ0 + o(s), and v(s) � v̂ + s~ψ0

+o(s) (v̂ � v̂(·; ~m2, β2)). Here, ~φ0 > 0 is the principal eigenfunction
corresponding to μ1(m1f1(ϕ − v̂(·; ~m2, β2), 0)) � 0, which satisfies

B3 ~m2( )~φ0 � 0, x ∈ 0, 1( ),
~φ0′ 0( ) � ~φ0′ 1( ) + γ~φ0 1( ) � 0,

{ (5.4)

and ~ψ0 < 0 satisfies

B4 ~m2( )~ψ0 � − ~m2v̂f
u
2 ϕ − v̂, v̂( )~φ0, x ∈ 0, 1( ),

~ψ′ 0( ) � ~ψ′ 1( ) + γ~ψ 1( ) � 0.
{ (5.5)

Moreover,

m2′ 0( ) � −∫
1

0
fu
1 ϕ − v̂, 0( )~φ0 + fv

1 ϕ − v̂, 0( )~ψ0[ ]~φ2
0dx

∫1

0
v̂′fv

1 ϕ − v̂, 0( )~ψ2
0dx

, (5.6)

where fu
1(ϕ − v̂, 0) � − k1+β1ϕ

(k1+ϕ−v̂)2, f
v
1(ϕ − v̂, 0) � − k1+β1 v̂

(k1+ϕ−v̂)2, and v̂′ is
the derivative of v̂ with respect to m2 at m2 � ~m2.

The proof of Theorem 5.2 is similar to the arguments in
Theorem 5.1, and we omit it here.

We define Ω � {(m2, u, v) ∈ R+ × X: u> 0, v> 0,
(m2, u, v) satisfies system (2.3)}. The following results show that the
two bifurcation continua Γ1 and Γ2 in Theorems 5.1 and 5.2 are connected.

Theorem 5.3. We consider d, k1, k2, β1, β2 > 0 and m1 >mp
1 fixed.

Then, there exists a connected component Γ of Ω, which bifurcates
from the semi-trivial solution branch Γu at ( �m2, û, 0) and meets the
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other semi-trivial solution branch Γv at ( ~m2, 0, v̂). In particular,
system (2.3) admits a positive solution (u, v) if m2 lies between �m2

and ~m2.
The proof is motivated by the methods in [13], Theorem 6.4 (see

also [8], Theorem 4.10]). For readability, the proof is given in
Supplementary Appendix.

6 Numerical descriptions

In this section, we will study the effect of diffusion rates d on
the dynamics of system (2.2). It follows from Eqs 4.1, 4.15 that the
threshold valuesmp

1,m
p
2, �m2, and ~m2 depend on the diffusion rates

d. Since these threshold values are dependent on d and they are
non-monotone in d, we cannot theoretically establish
the threshold dynamics of system (2.2) in terms of d. In order
to explore the effect of d on the dynamics of system (2.2), in
this subsection, we resort to numerical approaches. We fix L = 1,
S0 = 1, γ = 0.5, k1 = 1, k2 = 0.4, and m1 = 1 as mentioned before.
Then, by presenting the bifurcation diagrams of positive
equilibrium solution of system (2.2) with the bifurcation
parameter d increasing, the results are divided into the
following three cases.

Case I: m2 >max {k2k1, 1}m1. We take m2 = 2 such that
m2
k2

� 5> m1
k1

� 1, which means that species v has a stronger growth
ability compared to species u. We can call this case the weak–strong
competition [13]. To identify the effect of intraspecific competition,
we fix β1 = 0.01 and let β2 change from β2 = 0.01 to β2 = 1.

First, if β1 = 0.01, β2 = 0.01, there is no coexistence and the
competitive exclusion principle holds (species v with a
stronger growth ability will win the competition) when d is
sufficiently small (Figure 3A). As d increases, both species go
extinct, which is consistent with our biological intuition that the
sufficiently large diffusion rates will put species at a disadvantage.
These numerical observations in Figure 3A coincide with [26],
Theorem 5.4.

Second, if β1 = 0.01, β2 = 1. Clearly, under this weak–strong
competition case, though species v has stronger growth ability
compared to species u, the increase of β2 makes the competitive
ability of v weaker. This is consistent with our biological intuition
that the stronger intraspecific competition will put species at a
disadvantage. Moreover, coexistence may occur when d is sufficiently
small (Figure 3B), which is different from [8], Theorem 5.4. As d
increases, species v wins the competition. As d further increases, the
sufficiently large diffusion rates drive both species to extinction.

Case II: m1 >max {k1k2, 1}m2. We take m2 = 0.2 such that
m1 � 1>max {k1k2, 1}m2 � 0.5, which implies that species u has a
stronger growth ability compared to species v. Similarly, we call
this case the weak–strong competition case [13]. We fix β2 = 0.01
and let β1 change from β1 = 0.01 to β1 = 1. Similar to Case I, when
β1 = 0.01, β2 = 0.01, results similar to those in Figure 3A
are shown in Figure 4A. When β1 = 1, β2 = 0.01, the increase
of β1 makes the competitive ability of u weaker. Then, we
can observe that coexistence may occur when d is sufficiently
small (see Figure 4B), which is quite different from [26],
Theorem 5.4.

Case III: k2
k1
m1 <m2 <m1. We take m2 = 0.6 such that

k2
k1
m1 � 0.4<m2 � 0.6<m1 � 1. We call this case the evenly

matched competition [13]. Moreover, the fact of m1
k1
< m2

k2
suggests

that though the growth ability of the two species is evenly matched,
the competitive ability of species v is still slightly better than that of
species u. Then, for this evenly matched competition case, we fix β1 =
0.01 and let β2 change from β2 = 0.01 to β2 = 1.

For β1 = 0.01, β2 = 0.01, as shown in Figure 5A, the diffusion
rates have a significant effect on the dynamics of system (2.2). More
precisely, the dynamics of system (2.2) shift between four scenarios
with the bifurcation parameter d increasing; that is, 1) competitive
exclusion occurs and species v wins the competition, when d is
sufficiently small; 2) coexistence occurs as d increases; 3) competitive
exclusion occurs again and species u wins the competition, as d
further increases; and 4) both species are washed out as d continues
to increase. These suggest that system (2.2) may show a trade-off
among extinction, exclusion, and coexistence as d increases.
Particularly, coexistence occurs at the intermediate diffusion
rates, which is in line with the theoretical results in [8].

For β1 = 0.01, β2 = 1, as stated before, the increase of β2 will make
the competitive ability of v weaker. Then, we can observe from
Figure 5B that both species can coexist when d is sufficiently small.
As d increases, competitive exclusion happens and species u wins the
competition. As d further increases, the large diffusion rates drive two
species to extinction.

In shorts, for different competition Cases (I)–(III), we
investigate the effect of diffusion on the dynamics of system
(2.2) by taking different intraspecific competition parameters β1,
β2. As shown in Figures 3–5, the impacts of diffusion and
intraspecific competition on the competitive outcomes of
species are complex, which further suggests that diffusion and
intraspecific competition play a key role in determining the
dynamics of system (2.2).

7 Discussion

In this paper, we investigate an unstirred chemostat model with
the Beddington–DeAngelis functional response (see system (2.2)).
The analytical and numerical results show that the intraspecific
competition and diffusion have an important biological effect on the
dynamics of system (2.2).

Theoretically, we first adopt a basic strategy regarding the growth
rates as variable/bifurcation parameters to study the effect of growth
rates on system (2.2). The results show that there exist six critical curves

m1 � mp
1 , m2 � mp

2 , L1: m2 � k2
k1
m1, L2: m1 � m2, Γ1: m2

� �m2 m1( ), Γ2: m2 � ~m2 m1( )
in the m1 − m2 plane, which may classify the dynamics of system (2.2)
into extinction of both species, competitive exclusion and coexistence
(see Theorems 4.1, 4.2). To further understand the effect of βi, (i = 1, 2)
on the dynamics of (2.2), we explore the properties of critical curves Γ1
and Γ2 (see Propositions 4.2 and 4.3) and get a relatively clear dynamics
classification of system (2.2) in the m1 − m2 plane (Figure 2).

Numerically, since diffusion plays a key role in determining the
competition outcomes of two species, we study the effect of diffusion on
the dynamics of system (2.2). More precisely, for two weak–strong
competition cases, due to the effect of intraspecific competition
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parameters β1 and β2, the coexistence may occur at sufficiently small
diffusion rates (Figures 3B, 4B), while for the evenlymatched competition
case, the dynamics of system (2.2) shift between different scenarios
(competitive exclusion, coexistence, and extinction) when β1 and β2
are small and the coexistence only occurs at the intermediate diffusion
rates (Figure 5A). When β2 is larger than β1, we observe from Figure 5B
that coexistence may occur at sufficiently small diffusion rates.

In conclusion, in this paper, the dynamics classification of system
(2.2) in them1 −m2 plane is established by the linear eigenvalue theory
and themonotone dynamical system theory (Figure 2). Due to the effect
of intraspecific competition parameters β1 and β2, the dynamics of
system (2.2) are more complex than that of the unstirred chemostat
model with Holling type II functional response (see Figure 1 of [8]).
Numerically, we study the effect of diffusion on system (2.2) and obtain
rich numerical results (Figures 3–5). These numerical observations
reveal that, under different competition cases, the effects of diffusion
and intraspecific competition on the dynamics of system (2.2) are
complex. This, in turn, suggests that the B.–D. functional response is
more biologically realistic and superior to the well-known Holling type
II functional response in modeling the resource uptake of species.
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