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The Landau–Ginzburg–Higgs equation (LGHE) is a mathematical model used to
describe nonlinear waves that exhibit weak scattering and long-range connections
in the tropical and mid-latitude troposphere as interactions between equatorial
and mid-latitude Rossby waves. This study assessed the fractional
Landau–Ginzburg–Higgs model, previously introduced in truncated M-fractional
derivatives utilizing the (G′/G, 1/G), modified (G′/G2), and new auxiliary equation
methods. Using these techniques, different solutions, including unknown parameters,
were obtained in trigonometric, hyperbolic, and exponential functions. This study
investigated how varying values of the fractional parameter affected the deeds of the
solutions obtained for the given conditions. The predicted solutions, obtained under
restricted conditions, were visualized through 2D, 3D, and contour plots using
appropriate parameter values. The attained results were confirmed for the
aforementioned equations using symbolic soft computations. Moreover, the
outcomes confirmed that the methods used in this study were effective
mathematical tools for discovering exact solitary wave solutions to nonlinear
models encountered in various areas of science and engineering.
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1 Introduction

Non-linear partial differential equations (NLPDEs) play significant roles in physics,
mathematical engineering, and other phenomena such as heat flow, plasma physics, wave
propagation, shallow water waves, chemically dispersed electricity, quantum mechanics, fluid
dynamics, and reactive materials. NLPDEs also play substantial roles in nonlinear optical fibers
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and quantum fields, such as nonlinear wave equations, Monge–Ampere
equations, Burgers equations, Liouville equations, Fisher equations, and
Kolmogorov–Petrovskii–Piskunov equations [1–4]. These equations
assist in the implementation of essential parts of the soliton solution.
The soliton is stimulated during diffusion by eliminating the effects of
diffusion. Now, soliton assessment is very common [5]. Solitons are
solutions to large, weakly detached partial differential equations (PDEs)
for physical structures. Nowadays, many models are considered for
computing the soliton solutions (SS) [6–8]. Among these, the
Landau–Ginzburg–Higgs (LGH) model [9, 10] is one of the most
considered in recent years, as follows:

z2v

zt2
− z2v

zx2
− g2v + h2v3 � 0, (1)

where v � v(x, t) is the ion-cyclotronwave electrostatic potential g and h
are real parameters and x, t indicate the nonlinearized spatial and
temporal coordinates. Lev Davidovich Landau and Vitaly Lazarevich
Ginzburg designed the LGHE (1) to describe superconductivity and drift
cyclotron waves in radially inhomogeneous plasmas of integrated ion
cyclotrons [11]. Numerous methods have been used to determine the
distinctive SS of the integrable nonlinear evolution equation (NLEE) (1).
Bekir andUnsal [12] provided exponential function solutions by using the
first integral method for NLEE (1). Iftikhar et al. [13] utilized the
(G′/G, 1/G)-expansion method and inspected a variety of analytical
solutions for NLEE (1). They also determined general and kinked
shape soliton solutions for different parameter selections. Barman et al.
[14, 15] obtained various analytical solutions using the Kudryashov
technique comprising the undisclosed parameters of Eq. 1. In addition,
they employed the tanh function to create solutions with soliton-like
shapes, such as dark solitons, bright solitons, peakons, compactons, and
periodic solutions, among others. These solutions can be utilized to
investigate the propagation of various waves, such as tidal and
tsunami waves, ion-acoustic waves, and magneto-sound waves in
plasma. Islam and Akbar [16] used the IBSEF and presented
innumerable stable solutions. The results provided several soliton
shapes, which considered one-way wave propagation with diffuse
systems in nonlinear science.

For two centuries, fractional calculus has fascinated many
intellectuals’ curiosity. Use them to develop many nonlinear aspects,
inclosing bioprocesses, chemical processes, fluid mechanics, etc. In the
traditional integer order, the fractional-order PDEs are used to generalize
PDEs. Several definitions of the fractional derivative exist in the literature,
such as Riemann–Liouville [17], Caputo [18], Caputo–Fabrizio [19],
conformable fractional derivative (FD) [20], and beta-derivative [21] to
solve non-integer-order models. Studies have shown that these
definitions of FD do not meet some of the basic assets of derivatives,
such as product and chain rules. Sousa and Oliveira [22] developed a
novel truncated-M fractional derivative that meets numerous properties
considered to be the FD’ boundary. This derivative has interesting results
in different areas, such as chaos theory, biological modeling, circuit
analysis, optical physics, and disease analysis.

The core aim of this study was to explore the space-time
fractional LGH model [23], symbolized as

D2α,β
M,t v −D2α,β

M,xv − g2v + h2v3 � 0, 0< α< 1, β> 0, (2)

where α and β are the fractional parameters representing the
fractional time derivative’s order.

The fundamental consideration of this exploration was to
take advantage of the novel indication of fractional-order
derivatives, called truncated truncated-M fractional
derivatives [22, 24, 25], for space-time fractional LGHE [23],
and to use the (G′/G, 1/G), modified (G′/G2), and new auxiliary
equation methods (NAEMs) [23, 26, 27] to obtain new inclusive
solitary solutions in the form of solutions of bright, dark, single
solitons, and periodic isolated waves. Up to now, the results have
different corporate and diverse forms, which have not been
reported previously [23].

Moreover, the planned technique has been used to solve various
models. For instance, Hafiz [28] employed the (G′/G, 1/G)-expansion
method to determine the closed-form solutions of the generalized
fractional reactionDuffingmodel and the density-dependent fractional
diffusion-reaction equation. Li et al. [29] discovered the traveling wave
solutions of the Zakharov equation, and Zayed et al. [30] established
solutions to the nonlinear Kdv–mKdv equation. Uddin [31] and
Wazwaz [32] provided general solutions for the fifth-order NLEEs
and the Burger KP-equation, respectively. Sirisubtawee [33] found
exact traveling wave solutions for nonlinear fractional evolution
equations. Traveling wave solutions for the nonlinear Schrodinger
equation with third-order dispersion were obtained using the modified
(G′/G2)-expansion model [34]. The Fokas–Lenells equations were
solved using this technique to regulate different traveling wave
solutions [35]. Aljahdaly [36] extended the NLEEs and described
the general exact traveling wave solutions. Dragon and Donmez
[37] discovered solutions in the form of traveling waves for the
Gardner equation and then used these solutions to address different
plasma-related issues. The Sharma–Tasso–Olver (STO) equations
were also solved, and exact nonlinear and super nonlinear traveling
wave solutions were obtained [38]. Jhangeer et al. [39] used the new
auxiliary equations method to find innovative soliton solutions for the
fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Raza
et al. [40] obtained the new optical solitary wave solitons of the
three-dimensional Fractional Wazwaz–Benjamin–Bona–Mahony
(WBBM) equation. Furthermore, Riaz et al. [41] scrutinized the
various forms of solitary wave solutions for the modified equal-
width wave equation.

This work is structured into six sections. Section 2 presents
the truncated M-fractional derivative and its properties, which is
the foundation of the proposed methods. The methodologies of
the three proposed approaches are discussed in Section 3, where
we explain how to use the truncated M-fractional derivative to
solve mathematical models. Section 4 involves a mathematical
examination of the models we have presented and the solutions
we have obtained using the proposed methods. We compare
them with existing methods in the literature. Section 5 provides a
graphical representation of the obtained solutions for each
analyzed model. Finally, Section 6 provides the study
conclusion by summarizing the key findings and their
implications.

2 TruncatedM-fractional derivative and
its properties

The following section will discuss the truncated M-fractional
derivative (TMFD) of order α with its properties.
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Definition 2.1. Let f: (0,∞) → R, then, the TMFD of a function
f of order α is determined as

Dα,β
M f t( ) � lim

ε→0

f t∈β εt1−α( )( ) − f t( )
ε

, for all t> 0, 0< α< 1, β> 0,

where α∈β(·) is a truncated Mittag–Leffler function of one
parameter [22].

Properties 2.2. Let α ∈ (0, 1], β> 0 and f � f(t), g � g(t) be
α-differentiable at a point t> 0, then:

1. Dα,β
M (af + bg) � aDα,β

M f + bDα,β
M g, ∀ a, b ∈ R.

2. Dα,β
M (c) � 0,wheref(t) � c, is a constant.

3. Dα,β
M (f · g) � Dα,β

M f +Dα,β
M g.

4. Dα,β
M (fg) � gDα,β

M f−fDα,β
M g

g2 .
5. If f is differentiable, then

Dα,β
M f t( ) � t1−α

Γ β + 1( ) dfdt . (3)

6. Dα,β
M (f+g)(t) � f′(g(t))Dα,β

M g(t), for f dif ferentiable atg(t).

3 General form of the methods

3.1 (G′/G, 1/G)-expansion method

The core steps of the (G′/G, 1/G)-expansion model [24, 28] for
discovering traveling wave solutions to nonlinear evolution
equations are outlined in this section. We begin by examining
the second-order linear ordinary differential equation (ODE):

G″ η( ) + λG η( ) � μ, (4)
where ϕ � G′/G andψ � 1/G, then

ϕ´ � −ϕ2 + μψ − λ,ψ´ � −ϕψ. (5)

Case 1: When λ< 0, the general solutions of Eq. 4 is given as

G η( ) � A1 sinh
���−λ√

η( ) + A2 cosh
���−λ√

η( ) + μ

λ
, (6)

and we have

ψ2 � −λ
λ2σ + μ2

ϕ2 − 2μψ + λ( ), (7)

where A1 andA2 are arbitrary integration constants
and σ � A1

2 − A2
2.

Case 2: When λ> 0, the general solution of Eq. 4 is clearly

G η( ) � A1 sin
�
λ

√
η( ) + A2 cos

�
λ

√
η( ) + μ

λ
, (8)

and we have

ψ2 � λ

λ2σ − μ2
ϕ2 − 2μψ + λ( ), (9)

whereA1 andA2 are arbitrary integration constants and σ � A1
2 + A2

2.

Case 3: When λ � 0, the general solutions of Eq. 4 is

G η( ) � μ

2
η2 + A1η + A2, (10)

and we have

ψ2 � 1

A1
2 − 2μA2

ϕ2 − 2μψ( ), (11)

where A1 and A2 are arbitrary integration constants.
Consider the NLPDE, such as

Q u, ut, ux, utt, uxt, uxx, . . .( ) � 0. (12)
The unfamiliar function u � u(x, t) is represented by a Q

polynomial of the variable and its partial derivatives. The key
phases involved in the (G′/G, 1/G)-expansion model are as follows:

Step 1: By coordinate transformation

η � x − ct, u x, t( ) � v η( ). (13)
where c is the speed of the traveling wave.
The wave variable allows us to reduce Eq. 12 into a nonlinear

ODE for v � v(η):
R v, v′, v″, v‴, . . .( ) � 0, (14)

where R is a polynomial of v(η) and its total derivatives
concerning η.

Step 2: Assume that a polynomial can express the solutions of Eq.
14 in two variables ϕ and ψ as

v η( ) � ∑m
i�0
aiϕ

i +∑m
i�0
biϕ

i−1ψ. (15)

To determine the values of the constants ai(i �
0, 1, . . . , m) and bi(i � 1, . . . , m) and the positive integer m, a
homogenous imbalance is used among the highest-order
derivatives and the nonlinear terms in the given ODE Eq. 14.

Step 3: Substitute Eq. 15 into Eq. 14 along with Eqs 5 and 7, reducing
the left-hand side of the ODE into a polynomial in terms of ϕ and ψ,
with a maximum degree of 1 for ψ. A system of algebraic equations is
obtained by setting each coefficient of the polynomial to zero, which
can be solved with the aid of Mathematica software to obtain the values
for ai(i � 0, 1, . . . ,m), bi(i � 1, . . . ,m), c, μ, λ(λ< 0), A1andA2.

Step 4: Substitute the values obtained for ai (i = 0, 1, . . .,m), bi (i = 1,
. . .,m), c, μ, λ(λ<0),A1 andA2 in Eq. 15 to determine the traveling wave
solutions in terms of hyperbolic functions, as expressed in Eq. 14.

Step 5: Similarly, substitute Eq. 15 into Eq. 14 along with Eq. 5 and
either Eq. 9 or Eq. 11 to obtain exact traveling wave solutions
expressed in terms of trigonometric or rational functions, respectively.

3.2 Themodified (G′/G2)-expansionmethod

We outline the fundamental steps of the modified
(G′/G2)-expansion method [24, 29] as follows:
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Step 1: Start by considering Eqs 12–14.

Step 2: Extend the solutions to Eq. 14 as follows:

v η( ) � ∑m
i�0
ai

G′
G2

( )i

, (16)

where ai(i � 0, 1, 2, 3, . . . , m) are constants and found later. It is
important that ai ≠ 0.

The function G � G(η) satisfies the following Riccati equation:

G′
G2

( )′ � λ1
G′
G2

( )2

+ λ0, (17)

where λ0 and λ1 are constants.
We can obtain the following solutions to Eq. 17 under different

conditions λ0:
When λ0λ1 < 0,

G′
G2

( ) � −
�����
λ0λ1| |√
λ1

+
�����
λ0λ1| |√
2

C1 sinh
����
λ0λ1

√
η( ) + C2 cosh

����
λ0λ1

√
η( )

C1 cosh
����
λ0λ1

√
η( ) + C2 sinh

����
λ0λ1

√
η( )⎡⎢⎣ ⎤⎥⎦. (18)

When λ0λ1 > 0,

G′
G2

( ) �
���
λ0
λ1

√
C1 cos

����
λ0λ1

√
η( ) + C2 sin

����
λ0λ1

√
η( )

C1 sin
����
λ0λ1

√
η( ) − C2 sin

����
λ0λ1

√
η( )⎡⎢⎣ ⎤⎥⎦. (19)

When λ0 � 0 and λ1 ≠ 0,

G′
G2

( ) � − C1

λ1 C1η + C2( ), (20)

where C1 and C2 are arbitrary constants.

Step 3: If we substitute Eq. 16 and Eq. 17 into Eq. 14 and equate the
coefficients of each power of (G′G2)i to zero, a set of algebraic equations
can be obtained. These equations can then be solved to determine
the values of ai, λ0, λ1, c, and other parameters.

Step 4: Replacing Eq. 16 of which αi, c, and other parameters are
found in step 3 in Eq. 13, we obtain the solutions for Eq. 12.

3.3 The new auxiliary equation method

Now, we will designate the elementary steps of the new auxiliary
equation method [39, 40].

Step 1: Consider Eqs 12–14.

Step 2: Subsequently determine the solutions of Eq. 14:

v η( ) � ∑m
i�0
aiγ

if η( ), (21)

which satisfies the auxiliary equation:

f′ η( ) � 1
ln γ( ) μγ−f η( ) + λ + ζγf η( )( ), (22)

where a0, a1, a2, . . . , am are coefficients to be solved such that
am ≠ 0. We then utilized the balancing principle to obtain the
value of m, which states that we can find m by equating the
nonlinear term of Eq. 14 with the highest-order derivative.

For Eq. 22, the family of solutions can be attained as follows:
Family-1 When λ2 − 4μζ < 0 and ζ ≠ 0,

γf η( ) � −λ
2ζ

+
�������
4μζ − λ2

√
2ζ

tan

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2ζ

−
�������
4μζ − λ2

√
2ζ

cot

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-2 When λ2 − 4μζ > 0 and ζ ≠ 0,

γf η( ) � −λ
2ζ

−
�������
λ2 − 4μζ

√
2ζ

tanh

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2ζ

−
�������
λ2 − 4μζ

√
2ζ

coth

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-3 When λ2 + 4μ2 < 0, ζ ≠ 0 and ζ � −μ,

γf η( ) � λ

2μ
−

��������
−4μ2 − λ2

√
2μ

tan

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � λ

2μ
+

��������
−4μ2 − λ2

√
2μ

cot

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-4 When λ2 + 4μ2 > 0, ζ ≠ 0 and ζ � −μ,

γf η( ) � λ

2μ
+

�������
4μ2 + λ2

√
2μ

tanh

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � λ

2μ
+

�������
4μ2 + λ2

√
2μ

coth

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-5 When λ2 − 4μ2 < 0 and ζ � μ,

γf η( ) � −λ
2μ

+
�������
4μ2 − λ2

√
2μ

tan

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2μ

−
�������
4μ2 − λ2

√
2μ

cot

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-6 When λ2 − 4μ2 > 0 and ζ � μ,

γf η( ) � −λ
2μ

−
��������
−4μ2 + λ2

√
2μ

tanh

��������
−4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2μ

−
��������
−4μ2 + λ2

√
2μ

coth

��������
−4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-7 When λ2 � 4μζ ,

γf η( ) � −2 + λη

2ζη
.
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Family-8 When μζ < 0, λ � 0 and ζ ≠ 0,

γf η( ) � −
���−μ
ζ

√
tanh

����
−μζ

√
η( ),

γf η( ) � −
���−μ
ζ

√
coth

����
−μζ

√
η( ).

Family-9 When λ � 0 and μ � −ζ ,

γf η( ) � 1 + e−2ζη

−1 + e−2ζη
.

Family-10 When μ � ζ � 0,

γf η( ) � cosh λη( ) + sinh λη( ).
Family-11 When μ � λ � K and ζ � 0,

γf η( ) � eKη − 1.

Family-12 When ζ � λ � K and μ � 0,

γf η( ) � eKη

1 − eKη
.

Family-13 When λ � μ + ζ ,

γf η( ) � −1 − μe μ−ζ( )η
1 − ζe μ−ζ( )η .

Family-14 When λ � −(μ + ζ),

γf η( ) � μ − e μ−ζ( )η
ζ − e μ−ζ( )η .

Family-15 When μ � 0,

γf η( ) � λeλη

1 − ζeλη
.

Family-16 When λ � μ � ζ ≠ 0,

γf η( ) � 1
2

�
3

√
tan

�
3

√
2

μη( ) − 1[ ].
Family-17 When λ � ζ � 0,

γf η( ) � μη.

Family-18 When λ � μ � 0,

γf η( ) � − 1
ζη
.

Family-19 When μ � ζ and λ � 0,

γf η( ) � tan μη( ).
Family-20 When ζ � 0,

γf η( ) � eλη − m

n
.

4 Mathematical analyses of the models
and their solutions

Assuming the transformations:

v x, t( ) � v η( ), η � Γ β + 1( )
α

kxα − ctα( ), (23)

where k and c are constants. Using Eq. 8 in Eq. 2, we acquire the
subsequent ODE

c2 − k2( )v″ − g2v + h2v3 � 0. (24)
The subsequent sections employ the planned techniques to

obtain the desired solutions.

4.1 Solutions with the (G′/G, 1/G)-expansion
method

Using the homogenous balance technique to the highest-order
derivative with the nonlinear term in Eq. 24, we get m � 1. For m �
1, Eq. 15 has the form:

v η( ) � a0 + a1ϕ η( ) + b1ψ η( ), (25)
where a0, a1 and b1 are unknown parameters.

Case 1: The obtained Eq. 25 is substituted into Eq. 24 with the use of
Eqs 5 and 7 to result in a polynomial equation. A system of algebraic
equations is obtained by setting each polynomial coefficient to zero
a0, a1, b1, μ, σ, λ, c, and k. This system of algebraic equations can be
solved using symbolic computation software such as
MATHEMATICA, which provides the following results:

a0 � 0, a1 �
������
k2 − c2

√ �
2

√
h

, b1 �
������
k2 − c2

√ �
λ

√ ��
σ

√�
2

√
h

, g �
������
c2 − k2

√ �
λ

√�
2

√ , μ � 0.

(26)
The hyperbolic traveling wave solutions of Eq. 24 can be

obtained by substituting Eq. 26 into Eq. 25:

v x, t( ) �
������
k2 − c2

√ �
2

√
h

A1

���−λ√
cosh

���−λ√
η( ) + A2

���−λ√
sinh

���−λ√
η( )

A1 sinh
���−λ√

η( ) + A2 cosh
���−λ√

η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

+
������
k2 − c2

√ ���
λσ

√�
2

√
h

1

A1 sinh
���−λ√

η( ) + A2 cosh
���−λ√

η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

(27)
where σ � A1

2 − A2
2.

Family 1.1: IfA1 � 0, A2 ≠ 0, and μ � 0 in Eq. 27, then we obtain
the subsequent hyperbolic traveling wave solution:

v x, t( ) � −
������
c2 − k2

√ �
λ

√�
2

√
h

tanh
���−λ√

η( ) − ��
σ

√ 1
A2

sech
���−λ√

η( )( ).
(28)
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Family 1.2: If A1 ≠ 0, A2 � 0and μ � 0 in Eq. 27, we obtain the
following hyperbolic traveling wave solution:

v x, t( ) � −
������
c2 − k2

√ �
λ

√�
2

√
h

coth
���−λ√

η( ) − ��
σ

√ 1
A1

cosech
���−λ√

η( )( ).
(29)

Case 2: By substituting Eq. 25 into Eq. 24 along with Eqs 5 and 9 for
λ> 0, we can obtain a polynomial equation. Setting each polynomial
coefficient to zero generates a system of algebraic equations for
a0, a1, b1, μ, σ, λ, c, and k. By solving this system of algebraic
equations using software such as Mathematica, we can obtain the
following outcomes:

a0 � 0, a1 �
������
k2 − c2

√ �
2

√
h

, b1 � −
������
k2 − c2

√ �
λ

√ ��
σ

√�
2

√
h

, g �
������
c2 − k2

√ �
λ

√�
2

√ ,

μ � 0. (30)
The periodic trigonometric traveling wave solution of Eq. 24 can

be obtained by substituting Eq. 30 into Eq. 25, as follows:

v x, t( ) �
������
k2 − c2

√ �
2

√
h

A1

�
λ

√
cos

�
λ

√
η( ) − A2

�
λ

√
sin

�
λ

√
η( )

A1 sin
�
λ

√
η( ) + A2 cos

�
λ

√
η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

−
������
k2 − c2

√ ���
λσ

√�
2

√
h

1

A1 sin
�
λ

√
η( ) + A2 cos

�
λ

√
η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

(31)
where σ � A1

2 + A2
2.

Family 2.1: If A1 � 0, A2 ≠ 0, and μ � 0 in Eq. 31, we obtain the
following trigonometric traveling wave solution:

v x, t( ) � −
������
k2 − c2

√ �
λ

√�
2

√
h

tan
�
λ

√
η( ) − ��

σ
√ 1

A2
sec

�
λ

√
η( )( ), (32)

v x, t( ) �
������
k2 − c2

√ �
λ

√�
2

√
h

cot
�
λ

√
η( ) − ��

σ
√ 1

A1
cos ec

�
λ

√
η( )( ). (33)

4.2 Solutions with the modified
(G′/G2)-expansion method

Using the homogenous balance technique to the highest order
derivatives with the nonlinear term in Eq. 24, we get m � 1. For
m � 1, Eq. 16 has the form:

v η( ) � a0 + a1
G′
G2

( ), (34)

where a0 and a1 are unknown parameters. We can then substitute
Eq. 34 and Eq. 17 into Eq. 24 and sum all coefficients of the same
order. (G′/G2) yields a set of algebraic equations involving a0, a1,
and other parameters. The set of algebraic equations is then solved
using the symbolic computation software Mathematica, resulting in
specific values for the unknown parameters:

a0 � 0, a1 � ±
ig

��
λ1

√
h

��
λ0

√ , k � ±

�����������−g2 + 2c2λ0λ1
√ �����

2λ0λ1
√ . (35)

By substituting Eqs 35, 18, and 19 into Eq. 34 and considering
the following cases, if λ1 < 0, then

v1 x, t( ) � −ig
�����
λ0λ1| |√

h
����
λ0λ1

√
1 − λ1

2

C1 sinh
����
λ0λ1

√
η( ) + C2 cosh

����
λ0λ1

√
η( )

C1 cosh
����
λ0λ1

√
η( ) + C2 sinh

����
λ0λ1

√
η( )⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠, (36)

v2 x, t( ) � ig

h

C1 sinh
����
λ0λ1

√
η( ) + C2 cosh

����
λ0λ1

√
η( )

C1 cosh
����
λ0λ1

√
η( ) + C2 sinh

����
λ0λ1

√
η( )⎛⎝ ⎞⎠. (37)

4.3 Solutions with the new auxiliary equation
method

Using the homogenous balance technique to the highest order
derivative with the nonlinear term in Eq. 24, we obtain m � 1. For
m � 1, Eq. 24 has the form:

v η( ) � a0 + a1γ
f η( ), (38)

where a0 and a1 are unknown parameters.
Switching Eq. 10 into Eq. 24 with Eq. 22, we obtain the algebraic

equations involving a0, a1, and other parameters by equating all
coefficients of different powers γf(η) to zero:

f0 η( ): − a0g
2 + a0

3h2 − a1k
2λμ + a1c

2λμ � 0,
f1 η( ): − a1g

2 + 3a0
2a1h

2 − a1k
2λ2 + a1c

2λ2 − 2a1k
2ζμ + 2a1c

2ζμ � 0,
f2 η( ): 3a0a12h2 − 3a1k

2ζλ + 3a1c
2ζλ � 0,

f3 η( ): a13h2 − 2a1k
2ζ2 + 2a1c

2v2 � 0.

(39)
Using mathematical software (Mathematica) to solve the

aforementioned system of algebraic equations, we obtain the
subsequent solution:

a0 � λΛ, a1 � 2ζ Λ, g � −
������
k2 − c2

√ �������
λ2 − 4vμ

√�
2

√ , (40)

where Λ �
����
k2−c2√ �
2

√
h
.

Substituting the attained solution Eq. 40 into Eq. 38, we obtain
the following:

v η( ) � Λ λ + 2ζγf η( ){ }. (41)

Substituting the solution stated by Eq. 22 into Eq. 41, the
solutions regained are:

For Family 1: When λ2 − 4μζ < 0 and ζ ≠ 0,

v1,1 x, t( ) � Λ
�������
4μζ − λ2

√
tan

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (42)

v1,2 x, t( ) � −Λ
�������
4μζ − λ2

√
cot

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (43)

For Family 2: When λ2 − 4μζ > 0 and ζ ≠ 0,
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FIGURE 1
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 32 for k � 2,h � 0.6, λ � 0.3, β � 0.5,A2 � 2, σ � 4, c � 0.05, t � 1. Family
2.2: If A1 ≠ 0,A2 � 0andμ � 0 in Eq. 31, we obtain the following trigonometric traveling wave solution.
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FIGURE 2
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 36 for k � 2,h � 0.6, λ0 � 0.4, λ1 � −0.2, β � 0.5, c � 0.05, t � 1. If λ0λ1 >0,
then
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FIGURE 3
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 42 for k � 2,h � 0.6, λ � 0.5, β � 0.5,μ � 0.8, ζ � 1, c � 0.05, t � 1.
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v2,1 x, t( ) � −Λ
�������
λ2 − 4μζ

√
tanh

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (44)

v2,2 x, t( ) � −Λ
�������
λ2 − 4μζ

√
coth

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (45)

For Family 3: When λ2 + 4μ2 < 0, ζ ≠ 0 and ζ � −μ,

v3,1 x, t( ) � Λ
��������
−4μ2 − λ2

√
tan

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (46)

v3,2 x, t( ) � −Λ
��������
−4μ2 − λ2

√
cot

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (47)

For Family 4: When λ2 + 4μ2 > 0, ζ ≠ 0 and ζ � −μ,

v4,1 x, t( ) � −Λ
�������
4μ2 + λ2

√
tanh

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (48)

v4,2 x, t( ) � −Λ
�������
4μ2 + λ2

√
coth

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (49)

For Family 5: When λ2 − 4μ2 < 0 and ζ � μ,

v5,1 x, t( ) � Λ
�������
4μ2 − λ2

√
tan

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (50)

v5,2 x, t( ) � −Λ
�������
4μ2 − λ2

√
cot

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (51)

For Family 6: When λ2 − 4μ2 > 0 and ζ � μ,

FIGURE 4
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 57 for k � 2,h � 0.6, λ � 0.5, β � 0.5,μ � 0.8, ζ � 1,c � 0.05, t � 1. For
Family 12: When ζ � λ � K and μ � 0,
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v6,1 x, t( ) � −Λ
�������
λ2 − 4μ2

√
tanh

�������
λ2 − 4μ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (52)

v6,2 x, t( ) � −Λ
�������
λ2 − 4μ2

√
coth

�������
λ2 − 4μ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (53)

For Family 7: When λ2 � 4μζ ,

v7 x, t( ) � −2Λ
η

. (54)

For Family 8: When μζ < 0, λ � 0 and ζ ≠ 0,

v8,1 x, t( ) � −Λ 2
����
−μζ

√
tanh

����
−μζ

√
η( )[ ], (55)

v8,2 x, t( ) � −Λ 2ζ
����
−μζ

√
coth

����
−μζ

√
η( )[ ]. (56)

For Family 9: When λ � 0 and μ � −ζ ,

v9 x, t( ) � Λ 2ζ
e−2ζη + 1
e−2ζη − 1

( )[ ], (57)

v12 x, t( ) � Λ K + 2K
eKη

1 − eKη
( )[ ]. (58)

For Family 13: When λ � μ + ζ ,

v13 x, t( ) � Λ μ + ζ − 2ζ
1 − μe μ−ζ( )η
1 − ζe μ−ζ( )η( )[ ]. (59)

For Family 14: When λ � −(μ + ζ),

v14 x, t( ) � −Λ μ + ζ − 2ζ
μ − e μ−ζ( )η
ζ − e μ−ζ( )η( )[ ]. (60)

For Family 15: When μ � 0,

v15 x, t( ) � Λ λ + 2ζ
λeλη

1 − ζeλη
( )[ ]. (61)

For Family 16: When λ � μ � ζ ≠ 0,

v16 x, t( ) � Λ λ + ζ
�
3

√
tan

�
3

√
2

μη( ) − 1( )[ ]. (62)

For Family 18: When λ � μ � 0,

v18 x, t( ) � −2Λ
η
. (63)

For Family 19: When μ � ζ and λ � 0,

v19 x, t( ) � 2ζΛ tan μη( ). (64)

5 Graphical demonstration and
explanation

To demonstrate the dynamics and behavior of our solutions, we used
Eqs 32, 36, 42, and 17 to graphically represent the solutions in 3D, 2D, and
contour graphs, which are shown in Figures 1–4. To illustrate the variation
over time or to compare multiple wave items, 3D plots are often used. In
this study, the wave points were arranged in a series with evenly spaced
breaks and connected by a line to emphasize their relationships. In
contrast, 2D line plots demonstrate very high and low frequency and

amplitude. The authors note that the plots show the different natures of the
solutions, such as periodic, singular-kink type, singular-bell shaped, and
bright singular wave solutions. Furthermore, the authors emphasize that
the correct physical description of the solutions can be generated by
choosing distinct values for the fractional parameter α.

6 Conclusion

In this work, we applied the (G′/G, 1/G)-expansion, modified the
(G′/G2)-expansion, and provided new auxiliary equations methods in a
satisfactory way to determine the novel soliton solutions of the space-time
fractional LGHE by considering the truncated M-fractional derivative.
These methods restored the periodic, singular-kink type, singular-bell
shaped, and bright singular wave solutions dark, bright-singular,
exponential, trigonometric, and rational solitons. Mathematica was
utilized to perform the algebraic computations and generate graphical
representations of the obtained solutions at different parameter values.
Comparedwith otherworks [10, 23], our solutions have not been reported
in the previous literature. These techniques are highly effective and robust
for discovering soliton solutions for nonlinear fractional differential
equations. Furthermore, the solutions obtained can provide deeper
insights into the nonlinear dynamics of optical soliton propagation.
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