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The nuclear excitation by electron capture (NEEC) mechanism is considered to be
one of the most effective ways to excite nuclear isomers. Despite being proposed
over 50 years ago, direct experimental evidence of NEEC is yet elusive. In this
study, we propose an experimental scheme to examine theNEEC process using an
electron beam ion trap (EBIT). In an EBIT, highly charged ions are bombarded by an
electron beam, which can result in excitation of the nuclei in the trap through
mechanisms such as NEEC and Coulomb excitation (CE), etc. Our calculations
show that the total rates of NEEC production for some nuclei can reach over 0.1/s,
which is higher than these from other mechanisms like CE. The proposed scheme
may result in the confirmation of the existence of NEEC, and can also be used to
study atomic nuclear excitation related processes.
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1 Introduction

Nuclear isomers, being meta-stable states of nuclei, have a profound impact on various
fields including nuclear structure models [1,2], nuclear astrophysics [2,3], nuclear lasers [4],
nuclear batteries [5], nuclear clocks [6], fine structure measurement [7], and more [8–10]. In
order to advance applications in the field of nuclear isomers, it is crucial to understand the
mechanisms for exciting or de-exciting them. How to effectively excite the nucleus from the
ground state to the isomeric state involves Coulomb excitation (CE) [11], photoabsorption
[12], multi-photon excitation [13], and atomic processes related to electron-nucleus
interaction. The latter includes nuclear excitation by electron capture (NEEC) [14],
nuclear excitation by electronic transition (NEET) [15] and electron bridge (EB) [16].
Some of the more in-depth studies, such as CE and direct γ-photon absorption, their
excitation probability is relatively low [17]. Therefore, the potential effective nuclear
excitation mechanism of electron coupling in atoms has been considered, especially the
NEEC process. NEEC is the inverse process of the internal conversion (IC). The concept of
NEEC was first proposed by V.I. Goldanskii et al. in 1976 [14,17]. The principle of NEEC is
shown in Figure 1A. Similar to the excitation of atoms in dielectronic recombination [18],
where an ion captures a free electron leading to the excitation of the atom, the NEEC is a
process in which an ion captures a free electron leading to the resonance excitation of atomic
nuclei, which can then be de-excited by emitting γ-ray or IC electrons. For most nuclei, their
NEEC resonance cross sections are much larger than the direct photon absorption cross
sections, which makes the NEEC to be a promising mechanism for effective nuclear
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excitation [17]. Just like the “electron captured on nuclei” process
[19,20], the NEEC process, which is an “electron captured on atoms”
process, play a significant role in the nucleosynthesis in
astrophysical environments [21–24], such as in stars like the sun,
nova, or supernova explosions.

Considerable effort has been devoted to describing the NEEC
process theoretically, as well as verifying it experimentally, which
include methods of using laser-generated plasma [14,25–30], storage
ring [17,31,32], channeling through crystals [33], beam-based
scenario [34–36], and so on. In 2018, C. J. Chiara et al. claimed
to have discovered the first experimental evidence of NEEC in the
isomer depletion of 93mMo in a beam-based scenario [34]. However,
this result was quickly called into questions by subsequent literature
for overestimating the theoretical NEEC cross section [35,37] and
underestimating the experimental backgrounds [38]. Recently, the
isomer beam experiment overturned the previous experimental
results [39], but the estimates of the upper limits of their yields
remain consistent with the results of theoretical calculations [35,37].
Consequently, the urgent need for experimental confirmation of the
NEEC process persists to this day.

In this work, we propose a new experimental scheme for
verifying the existence of the NEEC process based on electron
beam ion traps (EBIT). The EBIT is a type of ion trap that uses
electron beams to trap and confine ions. Traditionally, the EBIT has
been used in various fields, from basic atomic and molecular physics
to plasma physics [40,41]. By adding an extra electron gun, the
modified EBIT is expected to be used to study the nuclear physical
processes like the NEEC.

The remaining sections are organized as follows: Section 2
focuses on the theoretical method of calculating the NEEC cross
sections for charged ions [31,36,42]. To detect the NEEC process,
Section 3 proposes an experimental setup based on an EBIT. The

numerical simulation results are provided in Section 4,
demonstrating the possibility of NEEC detection. Section 5
presents a potential error budget based on the proposed
experimental setup. Lastly, Section 6 provides a summary of this
study.

2 NEEC resonance strengths for highly
charged ions

TheNEEC is a nuclear excitation process in which a free electron
is captured by the atom. Its Feynman diagram is shown in Figure 1B,
where the original electron e is at continuum state, and the final
electron is marked as “ⓔ” to indicate that it is atomically bounded.
By transiting the energy released from the free electron, a nuclear
isomer could be produced through this process. Because of the
energy conservation, one has Er = En − Eb, where Er is the kinetic
energy carried by the free electron, Eb is the binding energy to which
the free electron is captured, and En is the nuclear excitation energy.

It has been shown theoretically that the cross sections of the
NEEC process normally are much higher than the photon
absorption cross sections [31,36,42], which makes NEEC a good
method to produce nuclear isomers. Furthermore, the nuclear
isomer cross sections could be further enhanced if the free
electron is captured to a highly charged state. In fact, as shown
in Ref. [42], for a certain final electronic configuration αr (nlj) and
ion charge state q before the electron capture, the NEEC cross
section for a nucleus in its ground state initially is written as,

σq,αrNEEC Ee( ) � K
λ2e
2
αq,αrIC ΓγLr Ee − Er( ), (1)

where

K � 2JE + 1( ) 2jc + 1( )
2JG + 1( ) 2jf + 1( ), (2)

JE and JG are the nuclear spins of the excited and ground states,
respectively; jc and jf are the total angular momenta of the captured
and free electrons, respectively [22]. λe is the free electron
wavelength, and Γγ is the nuclear transition width of the
electromagnetic radiation. The partial IC coefficients (ICCs) αq,αrIC ,
depends on the αr and q. Lr(Ee − Er) is a Lorentzian function
centered at the resonance energy Er. The integral of the NEEC cross
section σq,αrNEEC(Ee) over the free projectile electron energy Ee is called
resonance strength Sq,αrNEEC, which can be expressed as

Sq,αrNEEC � ∫ σq,αrNEEC Ee( )dEe � K
λ2e
2
αq,αrIC Γγ. (3)

Assuming a linear scaling dependence, one can deduce the ICCs
for ionized atoms (αq,αrIC ) in Eq. 3 from the ICCs of neutral atoms
α
q�0,nlj
IC [36],

αq,αrIC � α
q�0,nlj
IC

Eq,αr
b

E
q�0,nlj
b

⎛⎝ ⎞⎠ nh
nmax

( ), (4)

where Eq,αr
b and E

q�0,nlj
b are the binding energies for ions in the

charge state q and neutral atoms, respectively. Their ratio accounts
for the increase of the ICCs with the ionization level [24,43]. The
ratio between the present nh and the maximum nmax number of

FIGURE 1
(A) The NEEC process of highly charged ions and its energy
transition scheme of the nucleus, respectively; (B) The Feynman
diagrams of the NEEC. Here, the symbol “ⓔ” indicates that the
electron is at an atomically bounded state, while “e” at a
continuum state, i.e., a free electron. “N” represents the nucleus is on
its ground state (GS), while “N*” on an excited state (En). The symbol-γ
in the diagram is to indicate the electromagnetic character of the
process.
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holes in the capture subshell nlj accounts for the decrease of the ICCs
for partially filled subshells [43,44].

The following steps are taken to calculate αq,αrIC in Eq. 4. To obtain
the ICCs of neutral atoms, α

q�0,nlj
IC , the code BrIccFO package is

employed [45], which employs the frozen orbital approximation to
take into account the effect of the hole. The binding energies E

q�0,nlj
b

for neutral atoms are taken from tables in Ref. [46], while the ones
for highly ionized atoms, Eq,αr

b , are taken from the NIST
database [47].

Isomeric states of nuclei with relatively low nuclear energy levels
are chosen as potential candidates for searching NEEC
experimentally, and their NEEC excitation resonance strengths
are calculated, as listed in Table 1. It can be seen that for most
of the longer-lived (> 1 ms) isomeric states, the NEEC excitation
resonance strengths are relatively low, about 10–6 order of magnitude
below, which may be due to the fact that the transition has a high
multi-polarity. The 181Ta59+, which has the relatively high electric
transition strength among all the nuclei considered here, has a

TABLE 1 The NEEC resonance strengths S for several selected heavy HCIs. The first column in the table represents the species of highly charged ions. The second
(Tgs

1/2) and third columns (Tex
1/2) are the half-lives of the ground state and isomeric state, respectively. The fourth column (En) lists the transition energy of the

isomeric state. The 5th column is the electromagnetic transition type. The nlj represents the quantum state of the subshell where electron capture occurs. The Er in
the 8th column represents the resonant electron beam energy corresponding to NEEC. The Γthn represents the width of the level of the isomeric state obtained via
theoretical calculations. The SNEEC is the resonance strength of NEEC.

HCIs Tgs
1/2 Tex

1/2 En (keV) Transition type Subshell nlj Er (keV) Γthn (eV) SNEEC (b·eV)
154Eu63+ 8.601 y 2.2 μs 68.1702 E1 K 1s1/2 11.050 2.07 × 10−10 1.73 × 10−4

157Gd64+ Stable 0.46 μs 63.916 E1 K 1s1/2 4.850 4.62 × 10−10 2.04 × 10−3

161Dy64+ Stable 29.1 ns 25.65136 E1 L1 2s1/2 10.423 9.19 × 10−9 1.46 × 10−2

181Ta59+ Stable 6.05 μs 6.237 E1 M3 3p3/2 0.330 3.27 × 10−11 4.34 × 10−3

231Pa89+ 3.257 × 104 y 45.1 ns 84.2152 E1 L1 2s1/2 52.244 8.03 × 10−10 5.34 × 10−5

237Np91+ 2.144 × 106 y 67.2 ns 59.54092 E1 L1 2s1/2 25.819 3.68 × 10−9 5.53 × 10−4

63Ni28+ 101.2 y 1.67 μs 87.15 E2 K 1s1/2 76.375 2.70 × 10−10 1.66 × 10−4

67Zn30+ Stable 9.07 μs 93.312 E2 K 1s1/2 80.923 4.91 × 10−11 2.92 × 10−6

73Ge26+ Stable 2.91 μs 13.2845 E2 L3 2p3/2 10.710 1.57 × 10−10 4.23 × 10−4

83Kr30+ Stable 156.8 ns 9.4057 E2 L3 2p3/2 6.026 2.02 × 10−10 1.76 × 10−3

99Ru44+ Stable 20.5 ns 89.57 E2 K 1s1/2 62.536 1.86 × 10−8 3.51 × 10−3

107Pd46+ 6.5 × 106 y 0.85 μs 115.74 E2 K 1s1/2 86.117 5.36 × 10−10 2.51 × 10−5

111Cd48+ Stable 84.5 ns 245.390 E2 K 1s1/2 213.048 5.36 × 10−9 1.14 × 10−4

129I47+ 1.57 × 107 y 16.8 ns 27.793 E2 L3 2p3/2 19.749 2.93 × 10−9 5.41 × 10−3

138La56+ 1.03 × 1011 y 116 ns 72.57 E2 K 1s1/2 26.324 3.93 × 10−9 1.36 × 10−3

145Nd60+ Stable 29.4 ns 67.167 E2 K 1s1/2 15.651 1.55 × 10−8 5.49 × 10−3

152Eu63+ 13.517 y 0.94 μs 65.2969 E2 K 1s1/2 8.176 4.32 × 10−11 1.83 × 10−5

205Pb46+ 1.70 × 107 y 24.2 μs 2.329 E2 N4 4d3/2 0.037 1.89 × 10−11 4.26 × 10−4

79Br35+ Stable 4.85 s 207.61 E3 K 1s1/2 190.673 9.44 × 10−17 7.91 × 10−12

103Rh45+ Stable 56.114 m 39.753 E3 K 1s1/2 11.441 1.30 × 10−19 1.59 × 10−13

107Ag47+ Stable 44.3 s 93.125 E3 K 1s1/2 62.159 1.02 × 10−17 9.89 × 10−12

189Os70+ Stable 5.81 h 30.82 E4 L3 2p3/2 13.200 4.54 × 10−22 2.37 × 10−15

57Fe26+ Stable 98.3 ns 14.4129 M1 K 1s1/2 5.135 4.62 × 10−9 5.63 × 10−2

119Sn48+ Stable 18.03 ns 23.871 M1 L1 2s1/2 15.564 2.56 × 10−8 1.11 × 10−1

137La53+ 6 × 104 y 89 ns 10.59 M1 L2 2p1/2 0.164 5.14 × 10−9 8.19 × 10−2

201Hg35+ Stable 81 ns 1.5648 M1 N5 4d5/2 0.016 3.63 × 10−10 4.63 × 10−3

45Sc21+ Stable 325.8 ms 12.40 M2 K 1s1/2 6.366 1.40 × 10−15 3.78 × 10−9

187Re75+ 4.33 × 1010 y 555.3 ns 206.2473 M2 K 1s1/2 123.085 5.54 × 10−10 1.36 × 10−4

158Tb65+ 180 y 10.70 s 110.3 M3 K 1s1/2 49.250 4.31 × 10−17 2.19 × 10−12
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strength of 4.34 × 10−3 b·eV. It is mainly due to its very low γ

transition multipolarity (E1), as well as its large ICC
(αq�0,3p3/2

IC � 6.72). In fact, we have conducted a detailed study of
the resonance strengths of NEEC in 181Ta across various charged
states and subshells under the ground state assumption (NEEC-
GSA) [42]. Figure 2 shows resonance strengths of NEEC for 181Ta’s
M, N, O, and P subshells, calculated as a function of the projectile
electron energy Ee and the charge states q (1 ≤ q ≤ 59) of 181mTa ions.
It can be founded that the maximum value of the resonance strength
is 6 orders of magnitude larger than the minimum one. The
maximum resonance strength is typically observed in the inner
shell, which corresponds to a higher charged state. This is due to the
fact that the electrons in the inner shell are closer to the nucleus,
which increases the likelihood of exciting them, as long as the energy
conservation principle is satisfied.

Our calculations show that highly charged ions (HCIs),
including 157Gd, 161Dy, 181Ta, 83Kr, 99Ru, 129I, 138La, 145Nd, 57Fe,
119Sn, 137La, 201Hg, etc., may be very promising in searching for
the NEEC process. If they are ionized to HCIs, they are relatively
easy to be excited to isomeric states due to their high NEEC
resonance strengths, which are further discussed in detail in the
subsequent sections.

3 Proposed experimental setup

As shown in the preceding section, the calculation results
indicate that the NEEC resonance strengths can be enhanced
significantly if HCIs are used, suggesting their potential in NEEC
search experiments. An EBIT is a device that utilizes a
monoenergetic, high-current-density electron beam to generate

and then confine HCIs. With appropriate modifications, the
EBITs have the potential to be valuable instruments for
investigating NEEC.

The principle we propose for investigating NEEC utilizing an
EBIT is illustrated in Figure 3. In contrast to conventional EBIT
configurations that employ only one electron gun, our design
incorporates two electron guns with varying energies. The
electron beams are extracted from the electron guns and
accelerated to designed energies, from tens to hundreds keV.
Then the electron beams fly into the drift tubes, bombard, and
then ionize the atoms there. The product ions undergo triple
confinements. Firstly, they are radially confined by the spatial
charge of a dense electron beam. The superconducting magnetic
field provides further radial and longitudinal confinements. Further
longitudinal confinement is achieved by the static electric field of
three electrodes in the drift tubes. As the atoms/ions are
continuously bombarded by electron beams, they can be stripped
to HCIs. If the energy of the electrons matches the NEEC resonance
conditions for the electron-HCI, the nuclei can be excited to their
isomeric state. By placing a photon detector, such as a High-purity
germanium detector, in close proximity, one can monitor the
gamma photons emitted by the excited nuclei.

An electron gun can provide a beam density over 1013 electrons
·s−1cm−2, with energy fluctuation of tens of eV today. The HCIs can
be confined in the trap with a diameter of tens of micrometers, a
length of a few centimeters, and a density in the order of 108 cm−3.
With the help of an EBIT device, HCIs of almost any element in the
periodic table can now be produced.

However, the energy required for stripping does not necessarily
match that for the resonance. Therefore, to address this issue, in our
proposed setup, we use two electron guns. One gun is tuned to strip

FIGURE 2
NEEC resonance strengths Sq,αrNEEC for captures into M, N, O, and P subshells as a function of the kinetic energy Ee and charge state q of 181mTa ions
under the NEEC-GSA.
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the atoms to HCIs, while the other is tuned to match the resonance
conditions of the NEEC. As shown in Figure 3, the two electron
beams from the two electron guns can be deflected by a dipole
magnet, converge to be co-axial, and then pass through the confined
HCIs area. As an example, for isotope 181Ta, by tuning the first
electron gun to 17.721 keV, one can stripe it to 181Ta59+ [48]. If
tuning the second electron gun to 0.33 keV, the 0.33 keV electrons
from the 2nd gun can excite 181Ta59+ to their isomeric state of (9/2−,
6.237 keV) with the cross section of 4.34 × 10−3 b·eV.

4 Estimation of NEEC reaction rates

Consider HCIs that are trapped in an EBIT, as shown in
Figure 3. It is assumed that the ions are confined within a
cylindrical volume with a radius of R and a length of L cm.
Additionally, it is assumed that the electron energy spectrum
follows a Gaussian distribution with a width of ϵe. The spatial
spreading of the electron beam is also assumed to be Gaussian
with a width of σb. The rate of nuclear isomers generated by the
NEEC process for a given electron beam in EBIT can be written
using the resonance strength Eq. 3 as

RNEEC Ee( ) � ∫ j

e
f Ee − Er( )niσNEEC Ee( )LdE

� j

e
f Ee − Er( )niSNEECL,

(5)

where j represents the electron beam current intensity, e is the charge
of an electron, ni represents the density of ion trapped in an EBIT, L
is the length of the ion cluster in the trap, Ee is the energy of the
electron beam, and f (Ee − Er) represents the energy distribution of
the electron beam.

To ensure practicality, we initially screened candidate nuclei for
NEEC studies based on certain criteria. Ideally, we looked for stable
isotopes or isotopes with a long lifetime (more than 1 year) to avoid
the need for a radioactive ion source. Additionally, we preferred
isotopes with relatively lower transition energy (less than 300 keV)
since it is hard for typical EBITs to provide electron energies larger

than that. We also considered the lifetime of the isomeric state,
which should be relatively long but not too long (in the range of tens
of nanoseconds to microseconds). A longer lifetime results in a
narrower resonance width and smaller reaction yield. However, if
the lifetime is too short, it may overlap with the radioactive
recombination (RR) process [49,50], which is an atomic process
with a short lifetime, typically in order of 10–14 s [49]. The RR can be
a significant background for NEEC studies.

Taking 181Ta as an example, it can be stripped to the 59+ valence
state, which corresponds to a binding energy of Eb = 5.907 keV. To
achieve the highest ratio of expected charge state to all ions, the
stripping electron beam energy Ees should be tuned to be 2 ~ 3 times
the ion binding energy Eb, i.e., Ees ≈ (2 ~ 3)Eb [48]. Ta ions can
capture an electron to the 3p3/2 atomic level (58+ charge state)
through the NEEC process while being excited from the ground
state (Jπ = 7/2+, stable) to a 6.237 keV isomeric state
(Jπ � 9/2−, Tex

1/2 � 6.05 μs). Therefore, for the beam serving as
the NEEC resonance beam to match the nuclear excitation
resonance condition, its beam energy Eer can be tuned to be
0.33 keV.

Consider that 181Ta ions are trapped in a typical EBIT, and the
trapped ions fill a cylindrical volume with a radius of 50 μm and a
length of 3 cm.We assume that ni is 10

8 cm−3 in the ion trap and that
a resonant electron beam with a current of 200 mA is incident. The
electron beamwith an energy spread of under 50 eV (ϵe) and a radius
of about 50 μm (σb) is achievable today. Normally the nuclear energy
level width Γthn � Γγ + ΓIC is very narrow compared with the beam
energy spread, where ΓIC represents the IC decay width. For
instance, the 181Ta isotope’s total nuclear transition width is
approximately Γthn � 3.27 × 10−11 eV, compared with the electron
beam energy spread of 50 eV. Therefore, we also need to consider
the influence of resonance strength. The value of the resonance
strength is calculated to be SNEEC = 4.34 × 10−3 b·eV at the resonance
energy Er = 0.33 keV.

The calculated rates based on the above assumptions are listed in
Table 2. As an order of magnitude estimation, the distribution of
charge states is not considered. Here only one charge state is
considered and other charge states are ignored. For 181Ta59+, the

FIGURE 3
The proposed schematic experimental setup. The deflecting dipole magnet is used to converge two electron beams with different energies into a
single beam for incidence. When the incident electron beam interacts with atoms in the trap, the atoms can be stripped to form HCIs. The NEEC may
occur during the process.
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reaction rate is 1.3 × 10−2/s for the electron beam with the energy of
0.33 keV, while for the beam of 17.721 keV, the reaction rate can be
negligible due to the production rate being below the order of
magnitude of 10–30/s. Therefore, the total reaction rate of NEEC,
i.e., RNEEC = RNEEC (Eer) + RNEEC (Ees), is approximately equal to
RNEEC (Eer).

The reaction rates of CE, i.e., RCE (Ee) = IniσCE (Ee)L, I = j/e, are
also considered, where CE cross sections were calculated using semi-
classical theory [51]. The total reaction rates of CE, i.e., RCE = RCE

(Eer) + RCE (Ees) are listed in Table 2 too. For the 0.33 keV beam, the
energy is too low and the reaction is forbidden; for the 17.721 keV
beam, the CE rate and the NEEC rate are in the same order of 10–2/s.
This nucleus has a relatively high isomer generation rate Rtot = RCE +
RNEEC in all the nuclei considered in this work. Indeed, some nuclei,
such as 57Fe, 119Sn, and 137La, can be produced at rates greater
than 0.1/s.

For other HCIs considered in this work, such as 154Eu63+,
157Gd62+, 237Np91+, 63Ni28+, 111Cd48+, 119Sn48+, 137La53+, and 187Re75+,
their NEEC excitation rates are much greater than the CE, which is
very beneficial to prove the existence of the NEEC process. In
particular, for 63Ni28+, 73Ge26+, 99Ru44+, 111Cd48+, and 129I47+ ions,
the resonant and stripping electron beam energies are both less than
the nuclear excitation energy. This means that the CE excitation is
energetically forbidden, and only the NEEC excitation is present.

5 Discussion

The decay of the isomers [52] are mainly through gamma
transition and IC (collectively referred to as isomeric transition
or IT decay); partly through beta decay such as β −, β +, orbital
electron capture on nuclei; and a small amount through alpha decay,
neutron emission, neutrino-nucleus processes, etc. However, all of
our selected nuclei are stable, and their excited state decay is only IT
decay.

The major backgrounds for NEEC searching come from RR and
CE processes [50,53,54]. However, it should be noted that the NEEC
is a resonance process, while CE processes are not resonance
processes. This difference in resonance properties allows for the
possibility of distinguishing the resonance peak from the flat
background in the NEEC search. We have calculated the
excitation rates of the possible CE and NEEC processes for
different HCIs separately, as an example shown in Table 2. For
most cases where both the electron beams are taken into account and
the energies of the beams are smaller than 300 keV, cross sections
due to CE are much smaller than the corresponding NEEC process
cross sections.

The search for NEEC faces significant interference from the RR
process, which is another major background. However, as a broad-
resonant process, the RR process has anisotropic angular

TABLE 2 In a typical EBIT with a length of 3 cm, the ion density ni is assumed to be 108 cm−3. The current of the incident electron beam with an energy broadening
of 50 eV is 200 mA. The reaction rates RNEEC∕CE for NEEC and CE processes at two different electron beam energies of some HCIs in Table 1. Here the contribution to
RNEEC∕CE comes from the both electron beams, Eer and Ees, and Rtot = RNEEC + RCE.

HCIs En (keV) Transition type Eer (keV) Ees (keV) RNEEC (s−1) RCE (s−1) Rtot (s−1) Dominated by

154Eu63+ 68.1702 E1 11.050 171.362 5.17 × 10−4 1.33 × 10−8 5.17 × 10−4 NEEC

157Gd62+ 63.916 E1 4.850 177.197 6.10 × 10−3 1.56 × 10−7 6.10 × 10−3 NEEC

161Dy64+ 25.65136 E1 10.423 45.684 4.36 × 10−2 9.89 × 10−5 4.37 × 10−2 NEEC

181Ta59+ 6.237 E1 0.330 17.721 1.30 × 10−2 1.07 × 10−2 2.36 × 10−2 NEEC and CE

237Np91+ 59.54092 E1 25.819 101.167 1.65 × 10−3 1.55 × 10−7 1.65 × 10−3 NEEC

63Ni28+ 87.15 E2 76.375 32.326 4.96 × 10−4 0 4.96 × 10−4 NEEC

73Ge26+ 13.2845 E2 10.710 7.725 1.26 × 10−3 0 1.26 × 10−3 NEEC

83Kr30+ 9.4057 E2 6.026 10.140 5.26 × 10−3 1.95 × 10−3 7.21 × 10−3 NEEC and CE

99Ru44+ 89.57 E2 62.536 81.101 1.05 × 10−2 0 1.05 × 10−2 NEEC

111Cd48+ 245.390 E2 213.048 97.025 3.41 × 10−4 0 3.41 × 10−4 NEEC

129I47+ 27.793 E2 19.749 24.132 1.62 × 10−2 0 1.62 × 10−2 NEEC

138La56+ 72.57 E2 26.324 138.737 4.06 × 10−3 2.76 × 10−6 4.07 × 10−3 NEEC

145Nd60+ 67.167 E2 15.651 154.547 1.64 × 10−2 1.50 × 10−5 1.64 × 10−2 NEEC

205Pb46+ 2.329 E2 0.037 6.876 1.27 × 10−3 6.74 × 10−3 8.01 × 10−3 NEEC and CE

57Fe26+ 14.4129 M1 5.135 27.833 1.68 × 10−1 5.43 × 10−2 2.23 × 10−1 NEEC and CE

119Sn48+ 23.871 M1 15.564 24.921 3.32 × 10−1 3.58 × 10−10 3.32 × 10−1 NEEC

137La53+ 10.59 M1 0.164 31.278 2.45 × 10−1 5.54 × 10−7 2.45 × 10−1 NEEC

201Hg35+ 1.5648 M1 0.016 4.647 1.38 × 10−2 1.26 × 10−2 2.64 × 10−2 NEEC and CE

187Re75+ 1.5648 M2 123.085 249.487 4.06 × 10−4 1.90 × 10−13 4.06 × 10−4 NEEC
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distributions [50], whereas the distribution of NEEC is isotropic.
The combination of an isotropic distribution and a resonance peak
can help distinguish the NEEC from the RR process. In addition,
since the selected isomers are long-lived, they can be extracted from
the ion trap to a clean environment for observation like [39,54] to
avoid the interference of other background processes.

There may be competition between the NEEC and stripping
processes. The former process involves adding an electron to a HCI,
while the latter involves removing one. However, the time scale of
nuclear excitation process is much shorter than the time scale
required to strip electrons from outside the nucleus at high
energies [55,56]. Therefore, the interference between the two
processes can be negligible.

The expected thermal motion of ions in the trap is in the order of
< 10 eV, which is smaller than the energy spread of the resonance
electron beam at around 50 eV. As a result, the Doppler effect resulting
from the ions’ thermal motion in the trap can be considered negligible
[57]. Furthermore, other factors may cause changes in nuclear energy
levels and their widths, such as the confinement magnet. The Zeeman
effect causes energy levels of nuclei and atoms to split, with the energy
splits (ΔE∝B) typically being small due to limited confinementmagnetic
fields [58]. Therefore, given the electron beam’s energy spread of about
50 eV, the Zeeman effect can also be considered negligible.

Based on the estimated NEEC rates listed in Table 2 which are
practically measurable and the controllable background noise
signals discussed above, it is promising to search for the NEEC
process using the proposed setup.

6 Summary

In summary, we propose an experimental scheme to study
NEEC by utilizing an EBIT with two electron beams. The first
electron beam strips atoms in the EBIT to high charge states, while
the second electron beammatches the energy required for the NEEC
process. Our calculations show that this approach yields high cross
sections and sufficient reaction products. A resonance strength in
the order of magnitude of 10–3 b·eV is achievable by using nuclei like
181Ta59+, 137La53+, 119Sn48+, etc. The proposed scheme can be
implemented with minimal modifications to existing EBIT setups,
requiring only an additional electron gun and photon detectors. We
are confident that our proposed scheme will stimulate additional
research on NEEC processes and potentially confirm the existence of
this phenomenon, which has been extensively investigated for over
50 years but has yet to be confirmed. Furthermore, we anticipate that

our proposed scheme could be adapted to investigate other exotic
processes (e.g., the NEET or EB process after further modifications)
and potentially contribute to further advances in our understanding
of nuclear physics.
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