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The option is an important derivative tool in financial market, and after decades
of development, the option has emerged in various forms. This paper studies
an exotic option with a proactive investment strategy. Compared with the
classic option theory, we assume that the option holders continuously trade
the underlying assets according to a predetermined investment strategy.
Taking the European call option as an example, we first give some
assumptions and define the loss function in terms of a logarithmic
investment strategy. Then, the specific pricing expression of the exotic
option is derived from the Black-Scholes option pricing formula. Next,
numerical simulations are presented to visualize the mechanism of the
exotic option in 2D and 3D forms by selecting appropriate parameters. The
results indicate that the exotic option has a significant price advantage (up to
43.9% under specific parameter settings) over the classic option. Moreover, the
empirical results illustrate a perfect fit between 50 ETF (issued by the Shanghai
Stock Exchange) and our exotic option. The new proposed exotic option
extends the Black-Scholes option theory from a no-trading condition (do
not buy or sell underlying assets during the validity period) to a dynamic
investment condition and has important practical significance in real life.
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1 Introduction

The past 50 years have witnessed the transformation of financial derivatives. In the 1970s and
1980s, investors urgently needed new financial tools to avoid risks and to acquire more returns.
Therefore, options, swaps, and forward came into being, and derivative markets have become
increasingly important in finance and investment. Financial derivatives could be defined as a
security whose price relies on the values of more basic variables, such as underlying asset prices
and interest rates. The underlying assets usually contain stocks, bonds, interest rates, foreign
exchange, etc. The option studied in this paper is a contract that gives the holder the right (not the
obligation) to buy or sell stocks at a predetermined price by a specific date. Options can be
classified as call options and put options. A call (put) option gives the holder the right to buy (sell)
stocks at the strike price or exercise price on the expiration date. Since the right is optional,
whether or not the holder will exercise it depends on whether the market conditions on the
expiration date are favorable to him. According to the time of exercise, options can also be divided
into European options andAmerican options. The former can only be exercised on the expiration
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date, while the latter can be exercised at any time before the expiration
date. Because the exercise time of American options is flexible, this
paper takes European options as the research object.

The revolution in trading and pricing derivatives began in the
early 1970s. In April 1973, the Chicago Board of Trade set up a new
exchange, the Chicago Board of Options Exchange, and started to
trade options in exchanges. In the same year, Black and Scholes of
the University of Chicago successfully deduced the complete option
pricing formula, known as the Black–Scholes or
Black–Scholes–Merton model [1, 2]. They thought that investors
could set up a riskless hedging portfolio, including the option and
underlying assets, so that its rate of return in a short time must equal
the risk-free return rate in an efficient market without riskless
arbitrage opportunity. The pricing formula of European call
options is obtained as follows:

w S, t( ) � Sϕ
ln S

Xe
( ) + r + σ2

2( ) T − t( )
σ

�����
T − t

√⎛⎝ ⎞⎠
−Xee

−r T−t( )ϕ
ln S

Xe
( ) + r − σ2

2( ) T − t( )
σ

�����
T − t

√⎛⎝ ⎞⎠. (1)

The Black–Scholes model achieved a major breakthrough in
the pricing of European options and was widely used in financial
practice areas. However, practitioners using the Black–Scholes
model realized that its assumptions base the model on the ideal
market that is quite different from the actual market. The main
issues discussed are assumptions of constant volatility and
interest rate, continuity of asset price, no transaction cost, no
tax, no dividend, and so on. So, scholars have tried to seek an
option pricing model closer to the actual market by relaxing these
assumptions. Leland (1985) considered transaction costs and
proposed a modification to the Black–Scholes model [3];
Merton (1978, 1982) developed the option pricing model to
the case where stocks pay known dividends and stochastic
interest rates [4, 5]; Ingersoll (1976) and Scholes (1976)
considered different tax rates and capital gain dividends [6, 7];
Heston (1993), Xun Li, Zhenyu Wu (1985), etc. assumed the
variance of an asset price to follow the stochastic process and
enriched the option pricing [8, 9]; Rich (1996), Yoshida (2003),
Moawia (2022), and so on developed the option pricing formula
under stochastic volatility [10–12]; Jarrow (1984), Amin (1993),
Ernesto Mordecki (2002), etc. studied the option pricing problem
of the increase in the underlying asset price [13–15]; Schroder
(1999), Korn (2002), etc. further considered the option pricing
model under the condition of unfixed dividend [16–18]. In
addition, many scholars tried to establish the option pricing
model by other methods, such as the binomial model [19] and
Monte Carlo method [20]. Recently, Cherstvy derived the reset
Geometric Brownian Motion—SGBM, which describes the
stochastic process more thoroughly and completely. In
addition, they calculated its mean-squared displacement
(MSD) and time-averaged MSD (TAMSD), which are
consistent with the computer simulation results. For SGBM,
compared with the classic GBM, the MSD increases faster in
time than the exponential growth in the real stock market, and
the TAMSD is always linear in a short lag time [21]. Importantly,
by calculating the ratio between the MSD and TAMSD, an
obvious inequality was found between them, which further

proves that SGBM is non-ergodic [22]. Moreover, with the
increasing impact of Big Data, AI, and other technological
means on the financial market, machine learning algorithms
have been applied to asset pricing in recent years [23–25]. So
far, there are many pricing formulas, each with advantages and
disadvantages. At the same time, various exotic options have also
emerged. The exotic option is the option with less standardized
contract terms and attributes, which is different from the
traditional vanilla option in terms of payment structure,
expiration date, exercise price, etc. [26]. The exotic option
mainly includes barrier option, Asian option, and lookback
option. These exotic options are flexible and diverse, starting
from customer needs, providing investors with more investment
choices [27].

Only a few works introduced additional investment strategies to
option pricing. The classic Black–Scholes pricing formula implies that
the option holder does not trade underlying assets before or after the
expiration date and only depends on the option to avoid risk.
Regardless, in the actual market, investors usually depend on various
portfolios to avoid risks rather than being limited to a specific asset.
Therefore, they would take the initiative to adjust their positions when
the price of the underlying asset changes. From this point, Wang et al.
deduced a new option pricing formula under a linear post-active
investment strategy [28]. Here, “post-active” means buying or selling
an underlying asset after it reaches the exercise price. In this model,
when the stock price reaches a certain value, the option holder starts to
trade the stock according to a pre-designed strategy. More precisely, the
option holder would buy in stock as the stock price is higher than the
exercise price for the call option, or sell out stock as the stock price is
lower than the exercise price for the put option. Qiao et al. further
proposed a non-linear post-active investment strategy [29]. Based on
the aforementioned discussions, the previous works mainly focused on
improving traditional option theory via a post-active strategy. Here, we
are struck by an interesting idea.

1) Is it appropriate to assume the investor must act after exercising
the option?

2) Are there alternative explanations for such behaviors?
3) Can we assume that investors would take action before exercising

the option?

Motivated by the aforementioned questions, we introduce a
proactive investment strategy that can be seen as a complement to
[29]. Compared with the classic option theory, we first assume that the
option holders act ahead of exercising the option since a wise investor
usually has a good sense of the market and acts before the others.
Second, we assume that the option holders continuously trade the
underlying assets according to a non-linear investment strategy. This
paper is arranged as follows: In Section 2, we put forward some basic
assumptions along with a proactive non-linear position strategy and
calculate the corresponding loss function. In Section 3, we give a
conclusive theorem to define the analytic solution of the
Black–Scholes partial differential equation, see Theorem 1. Then, the
pricing formula of the new proposed option is derived based on
Theorem 1. In Section 4 and Section 5, numerical simulations are
presented to visualize the mechanism of the exotic option in 2D and 3D
forms by selecting appropriate parameters and different investment
strategies. In Section 6, we selected Shanghai 50 ETF options as the
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research object and further analyzed and compared the actual option
price, the classic option price, and the exotic option price with a
proactive investment strategy. Section 7 summarizes the paper.

2 Exotic option with a proactive
investment strategy

2.1 Assumptions for the option

The construction of European call option pricing formula with a
proactive investment strategy is based on the following assumptions.

1) The total amount of capital initially available to the option holder
is M = Q × Xe, where Q is the number of stocks agreed in the
contract and Xe is the exercise price of each unit of stocks.

2) The investors have a good judgment of the market and act before
exercising the option.

3) The option holders adjust their holdings by buying or selling
stocks according to a logarithmic trading strategy.

4) The stock price observes geometric Brownian motion (GBM).
5) The stock does not pay dividends.
6) The risk-free rate of interest is constant.
7) There is no transaction cost for buying and selling stocks or

options.

2.2 Establishment of the proactive
investment strategy

In the classic option pricing model, one can use the call option to
avoid the risk caused by a rise in share price or the put option to
avoid the risk caused by a drop in share price. Nevertheless, the
underlying assumption is that there is no transaction (no buying or
selling underlying assets) during the validity period. However, the
investor is still able to buy or sell the underlying asset after
purchasing the option.

Under the aforementioned assumptions, we first name δ (δ ≥ 0)
as investment sensitivity. The greater its value, the earlier the
investor acts. For example, when taking a short position in a
bear market, wise investors cannot merely depend on the option
to avoid the risk that the market will reverse. On the contrary, they
will take the initiative to buy the stocks. From this point of view, the
parameter δ indicates how early they take the actions in the bull
market before exercising the option. Moreover, S is the stock price;
Xe is the exercise price for the call option; α (α ≥ 0) is the investment
strategy index, used to represent an interval that investors would act
(buy the stocks) during such a period; βmax, βmin (0 ≤ βmax, βmin ≤ 1)
is the maximum or minimum capital utilization rate for the initial
capital M. β[S] is a general logarithmic position strategy, which is
used to describe the capital utilization rate with respect to the stock
price. The specific form of β[S] is written as follows:

β S[ ] �

0, S≤Xe − δ,

βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

S

Xe − δ( ) 1 + α( )[ ], Xe − δ < S≤ Xe − δ( ) 1 + α( ),

βmax, Xe − δ( ) 1 + α( )< S.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
.

(2)

Before the price reaches Xe − δ, the investor takes no action. When
the price reaches Xe − δ, the investor begins to take action, and initially,
spending βmin ×M to buy in stocks that correspond to Assumption Eq.
2). The investor will not stop buy-in of the stock until the price reaches (1
+ α)(Xe − δ), and the total capital of the investment is βmax × M, see
Figure 1. On the contrary, if the price decreases from (1 + α)(Xe − δ) to
Xe, the investor should sell the stock based on Eq. 2).

2.3 Definition of the loss function

For the no-trading cases (classic option theory), when the stock
price increases to S0 (S0 >Xe), the expected loss for each option contract
is L[S0] � M

Xe
× (S0 −Xe). On the other hand, for the exotic option

considered in this article, the option holder is required to buy or sell the
underlying asset according to the investment strategy Eq. 2). Therefore,
if the price increases from S to S + ΔS, the extra available capital is Δq =
Δβ × M = M × β′[S] ×ΔS. Thus, the expected return when the price
increases from S to S0 is R � M × β′[S] × ΔS

S × (S0 − S). Under the same
manner, when the underlying asset price increases fromXe − δ to S0, the
corresponding expected return is

R S0[ ] �

0,

S≤Xe − δ,

∫S0

Xe−δ
Mβ′ S[ ]

S
S0 − S( )dS + Mβmin

Xe
S0 − Xe − δ( )( ),

Xe − δ < S≤Xe,

∫S0

Xe

Mβ′ S[ ]
S

S0 − S( )dS +
M βmax +

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

1 + α( ) Xe − δ( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Xe

S0 −Xe( ),
Xe < S≤ Xe − δ( ) 1 + α( ),

∫ Xe−δ( ) 1+α( )
Xe

Mβ′ S[ ]
S

S0 − S( )dS +
M βmax +

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

1 + α( ) Xe − δ( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Xe

S0 −Xe( ),
Xe − δ( ) 1 + α( )< S,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where β′[S] is the derivative of β[S], i.e.,

β′ S[ ] �

0, S≤Xe − δ,

βmin − βmax

S ln
1

1 + α
[ ], Xe − δ < S≤ Xe − δ( ) 1 + α( ),

0, Xe − δ( ) 1 + α( )< S.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4)

FIGURE 1
Logarithmic investment strategy.
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Substituting in (Eq. 3), one has

R S0[ ] �

0, S≤Xe − δ,

M βmin − βmax( )
ln

1
1 + α

[ ]
S0

Xe − δ
+ ln

Xe − δ

S0
[ ] − 1( )

+Mβmin

Xe
S0 − Xe − δ( )( ), Xe − δ < S≤Xe,

M βmin − βmax( )
ln

1
1 + α

[ ]
Xe

S0
+ ln

S0
Xe

[ ] − 1( )

+M
Xe

βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S0 −Xe( ), Xe < S≤ Xe − δ( ) 1 + α( ),

M βmin − βmax( )
ln

1
1 + α

[ ] ln
Xe

Xe − δ( ) 1 + α( )[ ] + S0
Xe

− S0
Xe − δ( ) 1 + α( )( )

+M
Xe

βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S0 −Xe( ), Xe − δ( ) 1 + α( )< S.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Therefore, the expected loss L [S0] should be modified to

L S0[ ] � Lb S0[ ] − R S0[ ], (6)

�

M

Xe
S0 −Xe( ), S≤Xe − δ,

M

Xe
S0 −Xe( ) − M βmin − βmax( )

ln
1

1 + α
[ ]

S0
Xe − δ

+ ln
Xe − δ

S0
[ ] − 1( )

−Mβmin

Xe − δ
S0 − Xe − δ( )( ), Xe − δ < S≤Xe,

M

Xe
S0 −Xe( ) − M βmin − βmax( )

ln
1

1 + α
[ ]

S0
Xe

+ ln
Xe

S0
[ ] − 1( )

−M
Xe

βmax +
βmin − βmax

ln
1

1 + α

ln
Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S0 −Xe( ), Xe < S≤ Xe − δ( ) 1 + α( ),

M

Xe
S0 −Xe( ) − M βmin − βmax( )

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ] + S0
Xe

− S0
Xe − δ( ) 1 + α( )( )

−M
Xe

βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S0 −Xe( ), Xe − δ( ) 1 + α( )< S.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The per share loss is

Lp S0[ ] � L S0[ ]/ M

Xe
( ), (7)

�

S0 −Xe S≤Xe − δ,

S0 −Xe − Xe βmin − βmax( )
ln

1
1 + α

[ ]
S0

Xe − δ
+ ln

Xe − δ

S0
[ ] − 1( )

−Xeβmin

Xe − δ
− S0 − Xe − δ( )( ), Xe − δ < S≤Xe,

S0 −Xe − Xe βmin − βmax( )
ln

1
1 + α

[ ]
S0
Xe

+ ln
Xe

S0
[ ] − 1( )

− βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S0 −Xe( ), Xe < S≤ Xe − δ( ) 1 + α( ),

S0 −Xe − Xe βmin − βmax( )
ln

1
1 + α

[ ] ln
Xe

Xe − δ( ) 1 + α( )[ ] + S0
Xe

− S0
Xe − δ( ) 1 + α( )( )

− βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S0 −Xe( ), Xe − δ( ) 1 + α( )< S.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Next, we will compare the intrinsic value between the exotic

option and the classic option. For the exotic option, its intrinsic
value is exactly per share loss obtained aforementioned, i.e.,

VT �
VT1, S≤Xe,
VT2, Xe < S≤ Xe − δ( ) 1 + α( ),
VT3, Xe − δ( ) 1 + α( )< S.

⎧⎪⎨⎪⎩ (8)

where
VT1 � 0,

VT2 � S −Xe − Xe βmin − βmax( )
ln

1
1 + α

[ ]
S

Xe
+ ln

Xe

S
[ ] − 1( )

− βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S −Xe( ),

VT3 � S −Xe − Xe βmin − βmax( )
ln

1
1 + α

[ ] ln
Xe

Xe − δ( ) 1 + α( )[ ] + S

Xe
− S

Xe − δ( ) 1 + α( )( )

− βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S −Xe( ).

.

In the classic European call option defined by the
Black–Scholes option pricing model, f[S] is the price of the
derivative. When t = T (T is expiration date), f(S, T) is the
intrinsic value function, i.e.,

F S, T( ) � 0, S T[ ]<Xe,
S T[ ] −Xe, S T[ ]≥Xe.

{ . (9)

To compare these two values, the parameters are set to be α =
0.8, βmin = 0.2, βmax = 0.8, Xe = 30, δ = 5. The intrinsic values of new
and classic options are shown in Figure 2. It can be found that the
intrinsic value of new options is equal to that of the classic one when
the stock price is lower than the exercise price. As the price increases,
the intrinsic value of the new option is lower than that of the
traditional option. Moreover, the gap between the options increases
gradually as the stock price increases continuously.

3 Exotic option pricing formula of
Brownian motion

3.1 Asset price behavior of Brownian motion

We recall the fractional Brownian motion with Hurst parameter
H (Gaussian processWH [t], 0 <H < 1), where t ∈ R,E[WH[t]] � 0,
with exception

E WH t[ ]WH S[ ][ ] � 1
2

|t|2H + |S|2H − |t − S|2H( ),
for all S, t ∈ R. If H = 1/2, WH[t] represents the standard Brownian
motionW [t]. Considering the fractional stochastic differential equation

dS t[ ] � μS t[ ]dt + σS t[ ]dWH t[ ], S 0[ ] � s> 0,

where μ is the expected return rate and σ is volatility. Using theWick
calculus [31], the following solution is provided

S t[ ] � s × exp σWH t[ ] + μt − 1
2
σ2t2H( ).

For two different times t1, t2 under the risk-free condition μ = r,
one has
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S t2[ ]
S t1[ ] � exp r t2 − t1( ) − 1

2
σ2 t2 − t1( ) + σ W t2[ ] −W t1[ ]( )( ),
H � 1

2
. (10)

3.2 European call option pricing formula
based on Brownian motion

In 1973, Black and Scholes pointed out that it is impossible to
make profits (risk-neutral) by creating portfolios of long and short
positions in options and underlying assets if options are correctly
priced, and thus presented a theoretical valuation formula of
options, Black–Scholes partial differential equation, i.e.,

zf

zt
+ rS

zf

zS
+ σ2

2
S2
z2f

zS2
� rf,

f|t�T � S −Xe( )+, Call option( )
Xe − S( )−, Put option( ),

⎧⎨⎩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(11)

where f is the price of the derivative, t is time, r is the risk-free
interest rate, σ is the volatility of stock price, and S is the stock
price.

Lemma 1. Let f be a function, and assuming that E[f[W[T]]] < ∞,
then, for each t < T, one has

~Et f W T[ ][ ][ ] � ∫
R

1��������
2π T − t( )√ exp − S −W t[ ]( )2

2 T − t( )( ). (12)

Proof. f̂ is the Fourier transformation of f, i.e.,

f̂ τ[ ] � ∫
R

exp −iSτ( )f S[ ]dS.

Thus, f has the form

f S[ ] � 1
2π

∫
R

exp iSτ( )f̂ τ[ ]dτ.

Substituting WH [T] into it, we have

f WH T[ ][ ] � 1
2π

∫
R

exp iWH T[ ]τ( )f̂ τ[ ]dτ,

along with

Ẽt f WH T[ ][ ][ ] � Ẽt
1
2π

∫
R

exp iτWH T[ ]f̂ τ[ ]dτ( )[ ]
� 1
2π

∫
R

Ẽt exp iτWH T[ ]( )[ ]f̂ τ[ ]dτ

� 1
2π

∫
R

exp iτWH t[ ] − τ2

2
T2H − t2H( )( )~f τ[ ]dτ

� F WH t[ ][ ],

where I denotes inverse Fourier transformation between
exp(−τ2

2 (T2H − t2H)) and f̂[τ]. Since the first expression is a
Fourier transformation of

ηt,T S[ ] � 1������������
2π T2H − t2H( )√ exp − S2

2 T2H − t2H( )( ),
it follows the fact that

F W t[ ][ ] � ∫
R

ηt,T W t[ ] − y( )f y[ ]dy,
where H = 1/2.

Theorem 1. [32] The analytic solution of the Black–Scholes partial
differential Eq. (11) has the form

V � e−r T−t( )���
2π

√ ∫+∞

−∞
f S × exp σZ

�����
T − t

√ + r − σ2

2
( ) T − t( )( )[ ]

× exp −Z
2

2
( )dZ, (13)

where T is the mature date and f[·] is the intrinsic value.

Proof. For the Black–Scholes partial differential equation

zV

zt
+ rS

zV

zS
+ σ2

2
S2
z2V

zS2
� rf,

V|t�T � f S T[ ][ ] �
S −Xe( )+, Calloption( )
Xe − S( )−, Putoption( )

⎧⎨⎩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
The Feynman–Kac formula indicates that its solution can be written
as a conditional expectation

V S, t[ ] � EQ e
−∫T

t
rdt
f S T[ ][ ][ ]. (14)

Then, substituting (Eq. 10) into (Eq. 14), and applying Lemma 1,
one has

FIGURE 2
Intrinsic values of new and classic options.

Frontiers in Physics frontiersin.org05

Wu et al. 10.3389/fphy.2023.1201383

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1201383


V � e−r T−t( )EQ f S T[ ][ ][ ]
� e−r T−t( )Ê f S × exp r T − t( ) − σ2

2
T − t( ) + σ WT −Wt( )( )[ ][ ]

� e−r T−t( )��������
2π T − t( )√ ∫+∞

−∞
exp − S −Wt( )2

2 T − t( )( )
× f S × exp r T − t( ) − σ2

2
T − t( ) + σ S −Wt( )( )[ ]dS.

Setting Z � (S −Wt)/
�����
T − t

√
, we have

V � e−r T−t( )���
2π

√ ∫+∞

−∞
f S × exp σZ

�����
T − t

√ + r − σ2

2
( ) T − t( )( )[ ]

× exp −Z
2

2
( )dZ.

3.3 Pricing formula of the exotic option
based on Brownian motion

We have previously discussed the solution’s mechanism of the
Black–Scholes partial differential equation under Brownian motion.
Next, we will derive the pricing formula of the exotic option in terms
of Theorem 1. To obtain the pricing formula of the new option, one
has to replace f [·] with Eq. 8) in Theorem 1. In this sense, the pricing
formula should have three parts

V � V1 + V2 + V3, (15)
where

V1 � e−r T−t( )���
2π

√ ∫
S<Xe

VT1 S × eσ
���
T−t√

Z+ T−t( ) r−σ2
2( ), t[ ]e−Z2

2 dZ,

V2 � e−r T−t( )���
2π

√ ∫
Xe ≤ S< Xe−δ( ) 1+α( )

VT2 S × eσ
���
T−t√

Z+ T−t( ) r−σ2
2( ), t[ ]e−Z2

2 dZ

V3 � e−r T−t( )���
2π

√ ∫
S≥ Xe−δ( ) 1+α( )

VT3 S × eσ
���
T−t√

Z+ T−t( ) r−σ2
2( ), t[ ]e−Z2

2 dZ.

.

If Xe ≤ S × eσ
���
T−t√

Z+(T−t)(r−σ2
2 ) < (Xe − δ)(1 + α), one has

ln Xe
S[ ] − T − t( ) r − σ2

2( )
σ

�����
T − t

√ ≤Z<
ln Xe−δ( ) 1+α( )

S[ ] − T − t( ) r − σ2

2( )
σ

�����
T − t

√ .

If (Xe − δ)(1 + α)< S × eσ
���
T−t√

Z+(T−t)(r−σ2
2 ), one has

Z≥
ln Xe−δ( ) 1+α( )

S[ ] − T − t( ) r − σ2

2( )
σ

�����
T − t

√ .

For simplicity, we write them as

ξ � σ
�����
T − t

√
Z + T − t( ) r − σ2

2
( ),

d1 �
ln

Xe

S
[ ] − T − t( ) r − σ2

2
( )

σ
�����
T − t

√ ,

d2 �
ln

Xe − δ( ) 1 + α( )
S

[ ] − T − t( ) r − σ2

2
( )

σ
�����
T − t

√ ,

d3 � d1 − σ
�����
T − t

√
,

d4 � d2 − σ
�����
T − t

√
.

Since VT1 = 0, we start from VT2. Therefore, we have

VT2 S t[ ]eξ[ ] � S t[ ]eξ −Xe − Xe βmin − βmax( )
ln

1
1 + α

[ ]
S t[ ]eξ
Xe

+ ln
Xe

S t( )eξ[ ] − 1( )

− βmax +
βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ S t[ ]eξ −Xe( )

� S t[ ]eξ 1 − βmin − βmax

ln
1

1 + α
[ ] − βmax −

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Xe
βmin − βmax

ln
1

1 + α
[ ] − 1 + βmax +

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−Xe βmin − βmax( )
ln

1
1 + α

[ ] ln
Xe

S t[ ][ ] − ξ( )

� S t[ ]eξ 1 − βmin − βmax

ln
1

1 + α
[ ] − βmax −

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Xe
βmin − βmax

ln
1

1 + α
[ ] − 1 + βmax +

βmin − βmax

ln
1

1 + α
[ ] ln

S t[ ]
Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−Xe βmin − βmax( )
ln

1
1 + α

[ ] ln
Xe

S t[ ][ ] − σZ
�����
T − t

√ + r − σ2

2
( ) T − t( )( )( )

� 1 − βmin − βmax

ln
1

1 + α
[ ] − βmax −

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠S t[ ]eξ

+Xe βmin − βmax( )
ln

1
1 + α

[ ] T − t( ) r − σ2

2
( ) + ln

S t( )
Xe − δ( ) 1 + α( )[ ] + 1( )

+Xe βmin − βmax( )
ln

1
1 + α

[ ] σ
�����
T − t

√
Z +Xe βmax − 1( ),

that can be further expressed as

VT2 S t[ ]eξ[ ] � Aeξ +HZ + I,

where

A � S t[ ] 1 − βmin − βmax

ln
1

1 + α
[ ] − βmax −

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

H � Xe βmin − βmax( )
ln

1
1 + α

[ ] σ
�����
T − t

√
,

I � Xe βmin − βmax( )
ln

1
1 + α

[ ] T − t( ) r − σ2

2
( ) + ln

S t[ ]
Xe − δ( ) 1 + α( )[ ] + 1( ) +Xe βmax − 1( ).

Thus, one has

V2 S t[ ], t[ ] � e−r T−t( )���
2π

√ ∫
Xe ≤ S < Xe−δ( ) 1+α( )

Aeξ +HZ + I( )e−Z2
2 dZ

� e−r T−t( )���
2π

√ ∫d2

d1

Aeξe−
Z2
2 dZ + e−r T−t( )���

2π
√ ∫d2

d1

HZe−
Z2
2 dZ + e−r T−t( )���

2π
√ ∫d2

d1

Ie−
Z2
2 dZ

� A���
2π

√ ∫d2

d1

e−
Z−σ ��T−t√( )2

2 dZ − e−r T−t( )���
2π

√ H∫d2

d1

Ze−
Z2
2 dZ + e−r T−t( )���

2π
√ I∫d2

d1

e−
Z2
2 dZ

� A���
2π

√ ∫d4

d3

e−
Z′2
2 dZ′ − e−r T−t( )���

2π
√ H e−

d2
2
2 − e−

d2
1
2( ) + Ie−r T−t( ) N d2[ ] −N d1[ ]( )

� A N d4[ ] −N d3[ ]( ) − e−r T−t( )���
2π

√ H e−
d2
2
2 − e−

d2
1
2( ) + Ie−r T−t( ) N d2[ ] −N d1[ ]( ),

where Z′ � Z − σ
�����
T − t

√
.
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Similarly, VT3 has the form

VT3 S t[ ]eξ[ ] � S t[ ]eξ −Xe −Xe βmin −βmax( )
ln

1
1+α[ ] ln

Xe

Xe − δ( ) 1+α( )[ ](

+S t[ ]eξ
Xe

− S t( )eξ
Xe − δ( ) 1+α( )

⎞⎠

− βmax +
βmin − βmax

ln
1

1+α[ ] ln
Xe

Xe − δ( ) 1+α( )[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S t[ ]eξ −Xe( )

� S t[ ]eξ 1− βmin − βmax

ln
1

1+α[ ] + Xe βmin − βmax( )
Xe − δ( ) 1+α( )ln 1

1+α[ ]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−βmax −
βmin − βmax

ln
1

1+α[ ] ln
Xe

Xe − δ( ) 1+α( )[ ]⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Xe βmax − 1( ),
that can be written as

VT3 S t[ ], t[ ] � QS t[ ]eξ + G,

where

Q � 1 − βmin − βmax

ln
1

1 + α
[ ] + Xe βmin − βmax( )

Xe − δ( ) 1 + α( )ln 1
1 + α

[ ]
−βmax −

βmin − βmax

ln
1

1 + α
[ ] ln

Xe

Xe − δ( ) 1 + α( )[ ],
G � Xe βmax − 1( ).
therefore, we have

V3 S t[ ], t[ ] � e−r T−t( )���
2π

√ ∫
S≥ Xe−δ( ) 1+α( )

QS t[ ]eξ + G( )e−Z2
2 dZ

� e−r T−t( )���
2π

√ ∫+∞

d2

QS t[ ]eξe−Z2
2 dZ + e−r T−t( )���

2π
√ ∫+∞

d2

Ge−
Z2
2 dZ

� QS t[ ]���
2π

√ ∫+∞

d2

e−
Z−σ ��T−t√( )2

2 dZ − Ge−r T−t( )���
2π

√ ∫+∞

d2

e−
Z2
2 dZ

� QS t[ ]���
2π

√ ∫+∞

d4

e−
Z′2
2 dZ′ + Ge−r T−t( )���

2π
√ ∫+∞

d2

e−
Z2
2 dZ

� QS t[ ]N −d4[ ] + Ge−r T−t( )N −d2[ ],
where Z′ � Z − σ

�����
T − t

√
.

Last, substituting V1, V2, V3 into (Eq. 15), the pricing formula of
the exotic option can be expressed as

V � V1 + V2 + V3

� A N d4[ ] −N d3[ ]( ) − e−r T−t( )H���
2π

√ e−
d2
2
2 − e−

d2
1
2( )

+ e−r T−t( )I N d2[ ] −N d1[ ]( )
+ QSN −d4[ ] + Ge−r T−t( )N −d2[ ]. (16)

Next, we will discuss two special cases of (Eq. 16). The first
case is βmin = βmax = 0, δ = 0, which means the investor does not
take any action before or after exercising the option. By this
means, the new option equals the classic option. To be specific,
the parameters turn to H = 0, A = S, I = −Xe, G = −Xe, Q = 1, and
(16) translates to

V � A N d4[ ] −N d3[ ]( ) − e−r T−t( )H���
2π

√ e−
d2
2
2 − e−

d2
1
2( )

+ e−r T−t( )I N d2[ ] −N d1[ ]( ) + QSN −d4[ ] + Ge−r T−t( )N −d2[ ]
� S N d4[ ] −N d3[ ]( ) −Xee

−r T−t( ) N d2[ ] −N d1[ ]( ) + SN −d4[ ]
−Xee

−r T−t( )N −d2[ ]
� S N d4[ ] −N d3[ ]( ) −Xee

−r T−t( ) N d2[ ] −N d1[ ]( )
+ S 1 −N d4[ ]( ) −Xee

−r T−t( ) 1 −N d2[ ]( )
� S 1 −N d3[ ]( ) −Xee

−r T−t( ) 1 −N d1[ ]( )
� SN −d3[ ] −Xee

−r T−t( )N −d1[ ],
(17)

where

d1 �
ln Xe

S[ ] − T − t( ) r − σ2

2( )
σ

�����
T − t

√ , d3 � d1 − σ
�����
T − t

√
.

On the other hand, if we set βmin = βmax = 1, δ = 0 and α to be a
sufficiently small positive constant, the option holders will spend all
their capital to buy stocks as soon as the price reaches Xe, which
means this action will completely cover the risk of the underlying
asset. To be specific, the parameters turn toH = 0, A = 0, I = 0,G = 0,
Q = 0, d1 = d2, d3 = d4 and (Eq. 16) equals 0.

Compared with the Black–Scholes option pricing formula, the
new option formula has a significant price advantage. The
Black–Scholes option theory is obtained under the no-trading
condition (do not buy or sell underlying assets during the
holding period), while the formula proposed in this paper
assumes that the holder will continuously trade the underlying
assets during the holding period. Specifically, when the stock
price reaches the set buying point, investors begin to buy the
stock according to the pre-designed non-linear strategy. When
the price increases, the profits earned by investors can
compensate for the losses incurred during the holding period,
resulting in a total loss lower than that of classic options.
Therefore, the value of exotic options is lower than that of classic
options, allowing investors to obtain options at a lower price.

Importantly, we can also improve this formula by relaxing
other assumptions of the Black–Scholes model. For example, we
can start with the transaction costs that investors are more
concerned about. In the real capital market, option trading is
accompanied by a considerable amount of transaction costs that
cannot be ignored. Many scholars have proposed various
methods to address this issue, such as Leland. Leland divided
the entire holding period into countless small time intervals,
dispersing transaction costs into time intervals so that the
corresponding transaction costs are proportional to the value
of the underlying asset [3]. In other words, the cost is represented
by κ|ξ|S, where ξ is the amount of the underlying asset sold at the
stock price S and κ is the proportionality coefficient related to the
investor’s preference. We can also adopt this idea to improve the
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formula and obtain the differential equation with transaction
costs. In addition, the volatility of the underlying asset price is
also a hot topic for scholars to study. In most articles, volatility is
considered to be a constant in order to simplify the model and
improve its computability. However, a large number of actual
data show that implied volatility varies with changes in execution
price and expiration time [32]. Therefore, we can improve the
model by assuming that volatility is also a stochastic process and
non-constant, that is, the volatility should follow the stochastic
process: dσ2 = μσ2dt + ]σ2dz, where μ and ] depend on σ and t, but
not on S, and Wiener processes dz and dw have a correlation ρ.
Similarly, we can also consider further modifications to the
formula in situations such as stock dividends and taxes. These
can make the pricing formula better describe market behavior
and increase the difficulty of pricing, which requires further
research in the future.

4 Sensitivity analysis of exotic and
classic option

In this section, we will systematically analyze the mechanism
of each parameter contained in the exotic option (Eq. 16). Briefly
speaking, we intend to investigate what will happen to the exotic
option if one of the parameters changes while the others remain
fixed. Based on the aforementioned discussions, there are two
types of factors influencing the option price. One is the basic
parameters: 1) exercise price Xe, 2) current stock price S, 3) time
to expiration T, 4) risk-free rate of interest r, and 5) volatility of
stock price σ; the second type is investment strategy parameters:
6) initial capital utilization rate βmin, 7) highest capital utilization
rate βmax, 8) investment strategy index α, and 9) investment
sensitivity δ. The determination of initial parameter values is
crucial for numerical simulation. Improper selection of
parameter values can make the results deviate from reality,
and they are not conducive to draw correct conclusions. So,
before sensitivity analysis, the important question we need to
address is how to choose parameter values.

For some basic parameters, such as the underlying asset price S,
exercise price Xe, and time to expiration T, their values do not affect
the analysis results, but it should be noted that only when the
exercise price is less than or equal to the price of the underlying asset,
the option is valuable. For volatility, regardless of the type of asset, its
price volatility is generally between 0.15 and 0.5. The value of the
risk-free rate of interest depends on the length of the holding period.
In China, Shibor (Shanghai Interbank Offered Rate) is generally
used to measure the risk-free rate of interest. The longer the holding
period, the higher the risk-free rate of interest. For example, this
paper assumes that the duration of the option holding period is
6 months, and the corresponding risk-free rate of interest is the
arithmetic mean value of Shibor with a validity period of 6 months,
which is 2.5% according to the query on China Money Online.
Compared to basic parameters, what is more important is how to
determine the value of parameters related to the investment strategy.
We draw a large number of two-dimensional graphs to examine the
impact of different values of a certain parameter on the sensitivity of
other single parameters, in order to determine the initial value of the
parameter. Due to space limitations and the removal of some

graphics with no significant changes, only four sectional plots are
shown here.

First, we drew the sectional plot in investment sensitivity and
the exotic option price under two scenarios: α < 1 and α > 1, as
shown in Figure 3. Obviously, no matter what value α takes, there
will always be extreme points on the curve. Before the extreme
point, the exotic option price decreases with increasing investment
sensitivity, and after the extreme point, the option price shows
exponential growth. Moreover, the larger the investment strategy
coefficient, the earlier the extreme point appears. The reason for
this is that the range of stock price fluctuations is limited within a
certain period of time, and the investment strategy index gives
investors the range to take action. If the value is too high, the price
of the underlying asset cannot arrive at this standard, and if the
value is too small, it limits the trading behavior of investors.
Considering the low possibility of the stock price doubling
within 6 months, the value of the investment strategy index
should be less than 1, and the value of investment sensitivity
should be less than 20. Subsequently, as shown in Figure 4, this
paper examines the relationship between the exotic option price
and the exercise prices when δ = 5 and δ = 10. It can be seen that
regardless of the value of investment sensitivity δ, the price of the
exotic option always changes in the opposite direction to the
exercise price. It is worth noting that when the investment
sensitivity δ = 10 and the strike price Xe is less than 15, the so-
called “un-physical” structure appears, that is, some images display
extremely high or low amplitudes at few points, which is also
known as the singularity. In Figure 4, the un-physical structure is
represented as the infinite option price. Similarly, in Figures 5, 6,
un-physical structures also appear. Specifically, in Figure 5, we
plotted the curves between the exotic option price and the
investment strategy index when βmax = 0.5, 0.8. It can be seen
that both curves have a turning point when the investment strategy
index α = 0.2. Moreover, when the investment strategy index
approaches 0, the price of the exotic option approaches infinity.
Therefore, the value range of the investment strategy index is [0.2,
1]. As shown in Figure 6, when the investment sensitivity is δ >
13.3, the price of exotic options shows exponential growth. So, the
range of investment sensitivity values is [0, 13.3]. As for the highest
and initial capital utilization rates, it can be seen from Figures 5, 6
that their values do not affect the trend of the curve, but only
change the range of the option price. However, it should also be
noted that the initial capital utilization rate must be less than the
highest capital utilization rate, i.e., βmin < βmax. In short, the range
of values for each parameter of the investment strategy is 0.2 ≤ α ≤
1, 0 ≤ δ ≤ 13.3, 0 ≤ βmin ≤ βmax ≤ 1.

After clarifying the range of parameter values, we will conduct
numerical simulations of option prices under different investment
strategy parameters in the next section to verify the effectiveness of
the proactive investment strategy.

5 Comparison of exotic and classic
option under different investment
strategies

Previously, we studied the mechanism of each parameter
contained in the exotic option (Eq. 16). In this section, we focus
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on the difference between the exotic and the classic option under
different investment strategies. Briefly speaking, we select several
different values of α, βmin, βmax, δ to analyze and compare the price
difference between the option price calculated by the Black–Scholes
option pricing formula and the new option pricing formula when t =
0, Xe = 30, S = 30, T = 0.5, r = 0.025 (see Table 1).

The results in Table 1 indicate:

1) Regardless of the value of the parameter, the theoretical price of
the option under the logarithmic investment strategy is lower
than that of the classic option. This result means that actively
trading stocks can effectively reduce risks and losses, thus

FIGURE 3
Sectional plot when α =0.5 or 1.

FIGURE 4
Sectional plot when δ =5 or 10.

FIGURE 5
Sectional plot when βmax =0.5 or 0.8.

FIGURE 6
Sectional plot when βmin =0.2 or 0.5.
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TABLE 1 Option prices under different investment strategies.

Strategy parameters σ = 0.15 σ = 0.2 σ = 0.5

α βmin βmax δ B–S Logarithmic B–S Logarithmic B–S Logarithmic

0.5 0.3 0.6 0 1.7430 1.1284 2.1468 1.3573 4.6054 2.5850

0.5 0.3 0.6 5 1.7430 0.8944 2.1468 1.0731 4.6054 2.1110

0.5 0.3 0.6 10 1.7430 0.6972 2.1468 0.8587 4.6054 1.8422

0.5 0.3 0.8 0 1.7430 1.0673 2.1468 1.2604 4.6054 2.1591

0.5 0.3 0.8 5 1.7430 0.6772 2.1468 0.7876 4.6054 1.3692

0.5 0.3 0.8 10 1.7430 0.3486 2.1468 0.4294 4.6054 0.9211

0.5 0.5 0.6 0 1.7430 0.8410 2.1468 1.0249 4.6054 2.0898

0.5 0.5 0.6 5 1.7430 0.7629 2.1468 0.9304 4.6054 1.9318

0.5 0.5 0.6 10 1.7430 0.6972 2.1468 0.8587 4.6054 1.8422

0.5 0.5 0.8 0 1.7430 0.7798 2.1468 0.9280 4.6054 1.6639

0.5 0.5 0.8 5 1.7430 0.5457 2.1468 0.6444 4.6054 1.1899

0.5 0.5 0.8 10 1.7430 0.3486 2.1468 0.4294 4.6054 0.9211

1 0.3 0.6 0 1.7430 1.1665 2.1468 1.4176 4.6054 2.8149

1 0.3 0.6 5 1.7430 1.0870 2.1468 1.3197 4.6054 2.6109

1 0.3 0.6 10 1.7430 0.8607 2.1468 1.0419 4.6054 2.0875

1 0.3 0.8 0 1.7430 1.1307 2.1468 1.3608 4.6054 2.5423

1 0.3 0.8 5 1.7430 0.9015 2.1468 1.0785 4.6054 1.9605

1 0.3 0.8 10 1.7430 0.6211 2.1468 0.7347 4.6054 1.3300

1 0.5 0.6 0 1.7430 0.8536 2.1468 1.0450 4.6054 2.1664

1 0.5 0.6 5 1.7430 0.8078 2.1468 0.9885 4.6054 2.0500

1 0.5 0.6 10 1.7430 0.7517 2.1468 0.9198 4.6054 1.9239

1 0.5 0.8 0 1.7430 0.8179 2.1468 0.9883 4.6054 1.8938

1 0.5 0.8 5 1.7430 0.6803 2.1468 0.8189 4.6054 1.5447

1 0.5 0.8 10 1.7430 0.5121 2.1468 0.6126 4.6054 1.1665

2 0.3 0.6 0 1.7430 1.1863 2.1468 1.4490 4.6054 2.9631

2 0.3 0.6 5 1.7430 1.0995 2.1468 1.3422 4.6054 2.7341

2 0.3 0.6 10 1.7430 0.9933 2.1468 1.2113 4.6054 2.4559

2 0.3 0.8 0 1.7430 1.1637 2.1468 1.4132 4.6054 2.7893

2 0.3 0.8 5 1.7430 1.0191 2.1468 1.2351 4.6054 2.4077

2 0.3 0.8 10 1.7430 0.8421 2.1468 1.0171 4.6054 1.9440

2 0.5 0.6 0 1.7430 0.8602 2.1468 1.0555 4.6054 2.2158

2 0.5 0.6 5 1.7430 0.8313 2.1468 1.0199 4.6054 2.1395

2 0.5 0.6 10 1.7430 0.7959 2.1468 0.9763 4.6054 2.0467

2 0.5 0.8 0 1.7430 0.8377 2.1468 1.0197 4.6054 2.0420

2 0.5 0.8 5 1.7430 0.7509 2.1468 0.9128 4.6054 1.8130

2 0.5 0.8 10 1.7430 0.6447 2.1468 0.7820 4.6054 1.5348
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reducing the value of options. In this way, the European call
option with the logarithmic investment strategy would likely be
more attractive to investors in the financial market.

2) The price difference between the new and classic options is not
invariant but varies with the change of investment strategy. For
example, when the other variables are the same, the smaller the
value of α(α ≥ 0), or the larger the values of βmin, βmax (0 ≤ βmin ≤
βmax ≤ 1) and δ(δ ≥ 0), the lower the price of the new option, and
the larger the price difference. Specifically, when α = 0.5, βmin =
0.3, βmax = 0.6, δ = 0, σ = 0.15, the new option price is 1.1284;
when δ = 5, the price is 0.8944, and when δ increases to 10, the
price becomes 0.6972.

3) The volatility of stock price has a significant impact on the price
difference between the new and classic options. From Table 1, we
can see that when α = 0.5, βmin = 0.3, βmax = 0.6, δ = 0, and σ =
0.15, the new option is 64.7% of the classic option. When σ = 0.2,
it becomes 63.2%, and when σ increases to 0.5, the proportion
decreases to 56.1%. It is clear that the higher the volatility, the
higher the value of the new option, and the smaller the price
difference between the new and the classic option.

The aforementioned results show that no matter how the four
investment strategy parameters vary, the new option is always
lower than the classic option, which verifies the effectiveness of
the policy.

Next, we will examine these effects in three-dimension plots.
Specifically, we combine the parameters in pairs and draw three-
dimensional pictures of the options. According to the proactive
investment strategy (Eq. 2) (also see Figure 1), there are five free
parameters βmax, βmin, Xe, α, δ in total, and ten pairs if we pair them.
In order to save space, we only select four conditions here.

When drawing 3D plots, we found that the prices of exotic
options in certain regions are inconsistent with the assumptions.
First, based on our hypothesis, the option price should be greater
than or at least equal to 0, but there is a situation where the option
price is negative in the image. Second, the returns obtained by
investors buying stocks in advance can compensate for more
losses, making the total loss of the exotic option lower or equal to
that of the classic option. Therefore, the price of exotic options
should be lower or at least equal to that of classic options.
However, in certain regions of the image, the price of the
exotic option is higher than that of the classic option, which is
apparently unreasonable. In addition, there are some implicit
conditions, for example, the option is valuable only when the
exercise price is lower than the underlying asset price, and the
initial capital utilization rate is lower than the highest utilization
capital rate. In summary, in order to make the graphics more
reasonable, we have added the following constraints: 1) the exotic
option should be less than or equal to the classic option, 2) the
exotic option should be positive or at least equal to 0, 3) 0 ≤ βmin ≤
βmax ≤ 1, and 4) the underlying price should be greater than or
equal to the strike price.

First, we plot the exotic option (Eq. 16) and the classic option
(Eq. 17) in the (βmax, βmin)-plane, where Xe = 20, S = 20, t = 0, T =
0.5, r = 0.025, σ = 0.3, α = 0.8, δ = 5. As shown in Figure 7, the
classic option demonstrates as a plain wave since Eq. 16 does not
contain βmax, βmin, and the exotic option displays as an inclined
plane. It is obvious that the new option is always lower (equal at

only one point) than the classic option. When βmin = βmax = 0, the
classic option equals the exotic option; it is 2.07. This condition
means the investor does not take any action before or after
exercising the option, which exactly accords with the
assumption of the classic option theory. Moreover, the reader
may find that the new option possesses a wired appearance and
looks like a triangle. This is because of the existence of the
constraint 0 ≤ βmin ≤ βmax < 1. Actually, there are also other
constraints that should be considered while studying the
relevance between the two options. Above all, the new option
should at least be equal to the classic option or lower than the
classic option. The exotic option proposed in this paper is based
on a dynamic investment strategy. This strategy makes people
initiatively buy or sell the underlying asset, which reduces the
risk. Therefore, the new option should be lower than the classic
option or at least be equal to it. The second constraint is the exotic
option should be positive or at least equal to 0. It should be noted
that the prices of the exotic option might be negative under some
parametric selections, which means it is only valid for a small
parametric range. This property has been omitted in some related
works. As we have stated previously, in order to make the new
option positive, one has to narrow the range of the parameter,
which also narrows the range of application. On the contrary, we
can solve it from the source, such as choosing an appropriate
investment strategy. The third constraint is 0 ≤ βmin ≤ βmax ≤ 1.
The last one is when calculating the option price through the
Black–Scholes formula; the stock price should be above the
exercise price. We conclude the aforementioned constraints in
the following section. Second, we plot the exotic option (Eq. 16)
and the classic option (Eq. 17) in the (Xe, α)-planes separately,
where S = 20, t = 0, T = 0.5, r = 0.025, σ = 0.9, βmin = 0.1, βmax =
0.8, δ = 5 for Figure 8. Similar to the last case, the classic option in
Figure 8 displays as a plain wave, and the exotic option displays as
an inclined plane. Moreover, it only possesses one tendency with
respect to α and Xe: the option value increases (decreases) as α
and Xe decreases (increases). It should be noted that there were
positive parts in both pictures but were removed by the
constraints.

Next, we plot the exotic option (16) and the classic option (17) in the
(βmax, δ)- and (βmax, α)- planes separately, where Xe = 20, S = 20, t = 0,

FIGURE 7
Option price in (βmax, βmin)-plane.
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T = 0.5, r = 0.025, σ = 0.3, α = 0.8, βmin = 0.1 for Figure 9 andXe = 20, S =
20, t = 0,T = 0.5, r = 0.025, σ = 0.3, α= 0.8, βmin= 0.1, δ = 5 for Figure 10.
As we can see in Figure 9, the classic option displays a constant wave that
equals 2.07, and the exotic option is lower than the classic option. With
the increase of δ, the new option gets a smaller value. Regardless, the
minimum value does not locate at (1, 10). Actually, it locates at (1, 8.88).
However, it looks like such a result does not comply with the assumption
“the greater its value, the earlier the investor acts” in Section 2. For the
dynamic investment strategy proposed, here is an elaborate non-linear
function composed of logarithmic and linear functions. In particular, the
variable of logarithmic function has a more complex structure, which
may easily result in singularity and unexpected outcomes. Therefore, the
numerical results may not be consistent with the assumptions. So, when
we set to function in future research, we should fully consider the
advantages and disadvantages of combining functions of different types.
As shown in Figure 10, the classic option is a constant wave that equals
2.07 and the exotic option displays as a twisted wave. Actually, there is a
part of the image of the exotic option above the classic option near the
area α = 0. Such a part is removed by the constraint we mentioned
previously. Moreover, except for the constraints applied to the exotic
option, we should also pay attention to the so-called “un-physical”
structure, that is, some images display extremely high or low amplitudes
at a few points, which is also known as the singularity, and at these
points, the exotic option deviates from reality. Therefore, in this section,
we mainly discuss four examples that contrast to ten cases in total. In
addition, from these four examples, we can see that the price of the exotic
option with a proactive investment strategy is always lower than or equal
to that of the classic option, which is the advantage of the exotic option.
Adopting a proactive investment strategy can enable investors to obtain
the same level of risk protection at a lower price, making them more
likely to be favored by investors.

6 Empirical test

6.1 Source and description of data

In order to verify the price advantage of the new option pricing
formula, we select the 50EFT option of Shanghai Stock Exchange as
research object, because it is one of the most actively traded options.
Specifically, the 50 ETF option contract (1004944) with an exercise

price of 2.70 and expiring in February 2023 is taken as an example.
The relevant parameters are obtained through the following
methods.

1) The underlying asset price S: The underlying asset of this option
contract is the Huaxia Shanghai Stock Exchange 50 Trading
Open End Index Securities Investment Fund (code: 510050),
whose price is obtained through the official website of the
Shanghai Stock Exchange.

2) Exercise priceXe: The exercise price of the option contract is 2.80.
3) Time to expiration T: We assume that investors will purchase this

option contract on 9 January 2023, with 45 days remaining until
the expiration date of February 22.

4) Risk-free rate of interest r: The risk-free rate of interest in the
Chinese capital market is usually measured in Shibor
(Shanghai Interbank Offered Rate). Therefore, this paper
selects the arithmetic average of 2.25% of the monthly
Shibor quotation during the holding period as the risk-free
rate of interest, which is sourced from the China Currency
Network.

5) The volatility of the underlying asset returns σ: The volatility is
based on the historical volatility of 0.1850, which is provided by
the stock trading platform.

FIGURE 8
Option price in (Xe, α)-plane.

FIGURE 9
Option price in (βmax, δ)-plane.

FIGURE 10
Option price in (βmax, α)-plane.
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6.2 Setting investment strategy

This article assumes that investors believed that the Shanghai
Stock Exchange 50 ETF price would decrease in April based on
the price trend in March, so they sold all 50 ETF on 9 January
2023. At the same time, to avoid the loss caused by the rise in
stock price, investors bought the call option contract expiring in
April. Furthermore, based on the sensitivity analysis mentioned
previously, this paper sets the highest capital utilization rate
βmax = 0.8, the initial capital occupancy utilization rate βmin = 0.2,
and the investment strategy index α = 0.8. The determination of
investment sensitivity δ is the key to the feasibility of investment

strategies, as high investment sensitivity will exceed the
fluctuation range of the underlying asset price, and small
investment sensitivity will bring a large number of transaction
costs to investors. Therefore, this paper determines investment
sensitivity according to the following formula

δ � pmax ,i − pmin ,j

N
, i, j ∈ t0 − T, t0[ ], (18)

where T is the time to expiration; pmax,i, pmin,j is the highest and
lowest prices of the underlying asset, respectively; and N is the
pre-designed number of stock transactions. In this example, the
highest price of the Shanghai Stock Exchange 50 ETF fund from

TABLE 2 Comparison of option price.

Date Stock price Actual price Classic option Exotic option

δ = 0.1 δ = 0.05 δ = 0.2

2023.1.9 2.750 0.1049 0.1021 0.0731 0.0751 0.0690

2023.1.10 2.742 0.0990 0.0962 0.0690 0.0709 0.0652

2023.1.11 2.748 0.1008 0.0991 0.0710 0.0730 0.0671

2023.1.12 2.754 0.1010 0.1021 0.0732 0.0752 0.0691

2023.1.13 2.799 0.1329 0.1327 0.0947 0.0973 0.0894

2023.1.16 2.847 0.1704 0.1684 0.1196 0.1229 0.1129

2023.1.17 2.838 0.1653 0.1602 0.1140 0.1171 0.1076

2023.1.18 2.819 0.1490 0.1441 0.1029 0.1057 0.0971

2023.1.19 2.829 0.1565 0.1514 0.1080 0.1110 0.1020

2023.1.20 2.848 0.1636 0.1664 0.1185 0.1217 0.1118

2023.1.30 2.849 0.1596 0.1602 0.1149 0.1181 0.1085

2023.1.31 2.819 0.1402 0.1335 0.0963 0.0989 0.0909

2023.2.1 2.830 0.1451 0.1421 0.1024 0.1052 0.0967

2023.2.2 2.824 0.1356 0.1361 0.0983 0.1009 0.0928

2023.2.3 2.783 0.1013 0.1015 0.0738 0.0757 0.0697

2023.2.6 2.739 0.0690 0.0661 0.0485 0.0497 0.0458

2023.2.7 2.747 0.0734 0.0702 0.0515 0.0528 0.0487

2023.2.8 2.740 0.0655 0.0640 0.0471 0.0483 0.0445

2023.2.9 2.769 0.0860 0.0838 0.0614 0.0630 0.0580

2023.2.10 2.757 0.0724 0.0733 0.0539 0.0553 0.0510

2023.2.13 2.775 0.0845 0.0836 0.0615 0.0631 0.0582

2023.2.14 2.786 0.0934 0.0919 0.0676 0.0694 0.0639

2023.2.15 2.760 0.0670 0.0685 0.0507 0.0520 0.0479

2023.2.16 2.750 0.0568 0.0589 0.0437 0.0448 0.0413

2023.2.17 2.721 0.0329 0.0359 0.0268 0.0275 0.0254

2023.2.20 2.798 0.0986 0.0984 0.0729 0.0748 0.0689

2023.2.21 2.821 0.1118 0.1212 0.0894 0.0918 0.0846

2023.2.22 2.775 0.0711 0.0724 0.0487 0.0512 0.0419
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26 November 2022 to 9 January 2023, was 2.7250, and the lowest
price was 2.5250. The pre-designed number of stock transactions
is set to 2, so the investment sensitivity calculated by Eq. 18 is 0.1,
that is, when the stock price reaches S1 = Xe − δ = 2.60 and S2 =
Xe = 2.70, the investor uses 20% of their capital to buy the stock.
In addition, when investors purchase options, they sign
investment agreements with them or entrust a third party to
implement strategies, stipulating that investors can only buy or
sell stocks once a day.

6.3 Comparative analysis of exotic option
price

According to previous assumptions, we selected the option
contract data from January 9 to February 22, calculated the
theoretical price of options according to the call option pricing
model with a proactive investment strategy and the classic
Black–Scholes call option pricing model, and compared them
with the actual price to verify the effectiveness of the strategy.
Meanwhile, in order to compare the impact of investment
sensitivity on option prices, this paper selects different
investment sensitivities. The calculation results are shown in the
table as follows.

According to the data in Table 2, by comparing the theoretical
price and the actual price of the option contract, it can be found
that the theoretical price of the call option calculated according to
the classic Black–Scholes pricing model is somewhat different
from the actual price, but the maximum difference between the
two is 0.0094, which is caused by the large fluctuation of the stock
price on the day before the expiration date (21 February 2023).
The minimum value of the difference is only 0.0002. At the same
time, the option price under the proactive non-linear investment
strategy is always lower than the B–S theoretical price and actual
price. In addition, investment sensitivity is an important factor
affecting option prices. For example, on 9 January 2023, when

investment sensitivity δ = 0.05, the theoretical price of the exotic
option is 0.0751; when investment sensitivity δ = 0.1, the
theoretical price of the exotic option is 0.0731; and when
investment sensitivity δ = 0.2, the theoretical price of the
option is 0.0690. It can be seen that under the same other
conditions, the theoretical price of exotic options under the
proactive non-linear investment strategy shows a reverse
change in investment sensitivity, that is, the higher the
investment sensitivity, the lower the price of the exotic option,
which is consistent with the previous analysis.

In order to compare and analyze option prices more intuitively,
we have drawn the five groups of option prices into a line chart (see
Figure 11). We can infer that the theoretical price of the classic
option has been fluctuating around the actual price. In addition,
both the actual price and the theoretical price calculated according to
the Black–Scholes pricing model are higher than the exotic option
price with the proactive investment strategy, which once again
verifies the effectiveness of the investment strategy formulated in
this paper. Furthermore, by comparing the prices of exotic options
under different investment sensitivities, it can be found that exotic
option prices with higher investment spacing sensitivity are lower,
while exotic option prices with lower investment sensitivity are
higher. According to the definition of investment sensitivity, the
more sensitive investors are to market conditions, the earlier they
take action, and the more losses they can compensate for, and the
lower the value of options.

7 Summary

This paper systematically discussed the construction of an
exotic option with a proactive non-linear position strategy that
presumes investors would trade the underlying asset ahead of
exercising the option to avoid risk. Compared with the classic
option, the newly proposed exotic option extends the
Black–Scholes option theory from a static form of the no-

FIGURE 11
Logarithmic investment strategy.
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trading case (no trading of the underlying asset during the life of
the option) to a dynamic investment case, where the investor is
assumed to buy or sell the underlying asset even before the option
expires. According to the exotic option setting, when the stock
price continues to increase and reaches the buy point (less than
the strike price), the investor begins to buy and sell the stock
according to a pre-designed investment strategy, and the gains
from holding the stock make up for more losses, making the value
of the exotic option lower than the classic option.

Except for the theoretical analysis, numerical simulations were
also employed to visualize the mechanism of the exotic option in 2D
and 3D forms. According to the sensitivity analysis in Section 4,
investment strategy index α, investment sensitivity δ, and maximum
and minimum capital utilization rates βmax, βmin all have a distinct
influence on the option price. Importantly, our numerical results
indicated that the exotic option has a significant price advantage
over the classic option. With all other remaining parameters
constant, the price of the exotic option can reach 43.9% of that
of the classic option. In other words, investors can obtain the same
amount of hedge as classic options at half the price of the classic
option under the condition that they follow a pre-designed non-
linear position strategy, which has important practical implications
in real life. Furthermore, this paper takes the Shanghai Stock
Exchange 50 ETF option contract in China as the research
object, which compares its actual price with the theoretical price,
and concludes that the price of the exotic option with a proactive
investment strategy is lower than that of the classic option, which is
consistent with the theoretical analysis results of this paper.

Additionally, when comparing them with different
investment strategies, the parameters should observe certain
constraints, meaning it is only valid for a small parametric
range. On one hand, our option has a price advantage over
the classic one. On the other hand, our position strategy narrows
the range of applications. Just as the saying goes, “There are both
advantages and disadvantages.” However, our new option was
shown to be positive in most domains, while some other
constructed options might be negative under certain
parametric selections. The negative parts further narrow the
range of applications. After all, our option still has broadened
application ranges. In the future, we will make further
improvements to the options and consider incorporating

more features of interest to investors to expand the scope of
application of the new options. Moreover, since the price of the
underlying asset observes geometric Brownian motion, and the
Schrödinger equation also models the random walk of particles
in quantum mechanics, it is natural to use the Schrödinger
equation to predict the option price. Our future work focuses
on giving rigorous proof of the connection between those
equations and other analytic solutions.
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