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The study of topological semimetals has been extended to more general
topological nodal systems such as metamaterials and artificial periodic
structures. Among various nodal structures, triply degenerate nodal line (TDNL)
is rare and, hence, has received little attention. In this work, we have proposed a
simple tight-binding (TB) model, which hosts a topological non-trivial TDNL. This
TDNL not only has the drumhead surface states (DSSs) as usual nodal line systems
but also has surface states that form a contracted-drumhead shape. The shape
and area of this contracted drumhead can be tuned by the hopping parameters of
the model. This provides an effective way to modulate surface states and their
density of states, which can be important in future applications of topological
nodal systems.
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1 Introduction

In recent years, topological semimetals have become a frontier topic in condensed
matter physics because of their promising applications in electronics, spintronics, and
optics [1–9]. According to the dimensions of the degenerate manifolds in k-space
formed by band crossings, topological semimetals are divided into nodal point
semimetals, such as Weyl [9–12], Dirac [13–17], or triple-point semimetals [18, 19];
nodal line semimetals [20–23]; and nodal surface semimetals [24–27]. Due to the non-
trivial topological band structure, Weyl (Dirac) semimetals can exhibit Fermi arc surface
states [5, 9, 10] connecting different Weyl node (Dirac node) projections on a two-
dimensional (2D) surface Brillouin zone (BZ). Nodal line semimetals can exhibit
another special surface state—drumhead surface state (DSS) [21, 22, 28–31] on a 2D
surface BZ. These non-trivial topological properties are not limited to being present in
semimetals because they originate from the nodal band structures and exist in other
systems, such as metals [32–35], optical crystals [36–38], phononic crystals [39, 40],
mechanical systems [41], and circuit systems [42–44].

For topological nodal line materials, the doubly degenerate Weyl nodal line [23, 45–47]
and quadruply degenerate Dirac nodal line [48–51] have been broadly studied, and the DSS
has been observed in these two types of materials. However, there is little research on the
triply degenerate nodal line (TDNL). The only such research we can find is [52] by Liu et al.
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in 2021. Liu et al. [52] proposed two TDNL models, of which one is
non-topological and the other is topological, according to the
existence of Fermi arc topological surface states. However, Liu
et al. did not report any DSS for the TDNL models. Accordingly,
in this work, we aim to construct a tight-binding (TB) model with
TDNL and investigate its DSS.

However, it is almost impossible to construct a TDNL model
based on real crystalline materials because real crystalline materials
are constrained by the symmetries of (magnetic) space groups, and
systematic studies on the possible emergent particles from band
crossings have shown that no TDNL exists under various (magnetic)
space groups [53–55]. Subsequently, to construct a TDNL model,
one has to get rid of the constraints by (magnetic) space groups. This
can be achieved in artificial systems, such as metamaterials, circuit
systems, and mechanical systems, because when described by TB
models, the effective hoppings in these systems can be tuned at will,
for example, adjusting the connection mode among circuit
components or changing the coupling strength through springs
[41, 43, 56].

In this work, we first constructed a three-band TBmodel hosting
TDNL by designing the hoppings. Subsequently, we calculated the
Berry phase and Zak phase to check the topological non-triviality of
the TDNL. Surface states on two different surfaces (i.e., (010) and
(110)) were studied via both semi-infinite systems and slab models.
The usual DSS was found on the (010) surface. However, on the
(110) surface, we noticed a new type of DSS, whose drumhead is not
complete but rather contracted. The tuning of this DSS with a
contracted drumhead was also studied by varying the hopping
parameters of the model.

2 Model and method

The model is constructed based on a simple cubic lattice
whose basis vectors �a, �b, and �c are equal in magnitude and
along the x, y, and z directions, respectively, as shown in
Figure 1A. Only one atom with three orbitals (here called ϕ1,
ϕ2, and ϕ3) is considered in each cell. With the hopping between
orbitals ϕi( �r) and ϕj( �r − �δ) denoted as hij( �δ), we choose the
following hoppings for the model:

h11 0( ) � t0, h22 0( ) � −t0, h33 0( ) � 2t0, (1)
h11 ± α( ) � t1

2
, h22 ± α( ) � −t1

2
, h33 ± α( ) � t1, (2)

h23 ± �b( ) � ±
t2
2
, h12 ± �di( ) � ±

t3
8

i � 1, 2, 3, 4( ), (3)

where α � �a, �b, �c and �di (i � 1, 2, 3, 4) are shown in Figure 1A. Then,
the Hamiltonian of the TB model is

H � t0 + t1 cos kx + t1 cos ky + t1 cos kz( )λ1 + t2 sin kyλ2

+ t3 sin kx sin ky sin kzλ3, (4)
where λ1, λ2, and λ3 are the following three matrices, respectively:

1 0 0
0 −1 0
0 0 2

⎛⎜⎝ ⎞⎟⎠,
0 0 0
0 0 i
0 −i 0

⎛⎜⎝ ⎞⎟⎠,
0 i 0
−i 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠. (5)

One can easily see that when ky = 0, Eq. 4 becomes a diagonal matrix
whose diagonal elements can be null simultaneously. This implies
that a TDNL can exist in the plane ky = 0 under suitable values of t0
and t1. The key feature of the hoppings that results in this TDNL is
that hii (0)/hii (±α) keeps constant for i = 1, 2, 3. This is a special
request that cannot be derived from symmetries of the (magnetic)
space group.

The surface density of state (SDOS) was obtained by calculating
the surface Green’s function of the semi-infinite system using the
WannierTools package [57]. The input data for WannierTools were
prepared using the MagneticTB package [58]. To investigate the
surface states, we also constructed TB slab models of 80 layers using
the PythTB package [59]. To judge whether a state is a surface state,
we first define the topmost five layers on each side, A or B, of the slab
model as “surface layers” and then define the following quantity η to
characterize the degree to which a state is a surface state:

η �
wA + wB − 1

8
[ ]/7

8
, wA + wB >

1
8
,

0, wA + wB ≤
1
8
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

where wA ∕ B represents the wavefunction weight within the surface
layers of side A/B of the slab. A bulk state wavefunction is periodic,
and its weights are equally distributed within all the 80 layers, in

FIGURE 1
(A) Unit cell (black frame and blue balls) and hopping vectors [ �a, �b, �c, and �di (i = 1, 2, 3, 4)] of the model. (B) Bulk BZ and its projections to the (010)
surface (red) and (110) surface (green).
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which case wA = wB = 5/80 and η = 0. For a perfect surface state, the
wavefunction is totally localized within the surface layers, leading to
wA = wB = 1/2 and η = 1. By means of η, a state can be determined as
a strong (or typical) surface state if its η is greater than a critical value
ηc, and in this paper, ηc = 0.5 is adopted.

3 Results

If not otherwise stated, the parameters t0 = 2, t1 = −1, and t2 =
t3 = 1 are used for the model, and the unit is eV for all energies. The
bulk energy bands are shown in Figure 2A, in which the k-points are
defined in Figure 1B. In this model, the TDNL is actually an
approximately circular nodal ring in the ky = 0 plane, as shown
in Figure 2B. To check the topological properties of the TDNL, we
first calculated the Berry phase defined on a closed k-point loop
enclosing the TDNL, with fully gapped energies, as shown by the
small orange loop in Figure 2B. The Berry phase is calculated using
the Wilson loop approach [60], and the result is π, which shows the
topological non-triviality of the TDNL.

Furthermore, we calculated the Zak phase [61, 62], which is the
Berry phase defined in a one-dimensional BZ along a certain direction.
Two Zak phases are investigated here. The first one γ1 (kx) is defined
along the line from (kx,−1

2, 0) to (kx, 12, 0), with the kx = 0 case shown
by the red dashed line in Figure 2B, in which the k-point coordinates are
in unit of 2π/a. The second one γ2 (kz) is defined along the line from

(12,−1
2, kz) to (−1

2,
1
2, kz), with the kz = 0 case shown by the green dashed

line in Figure 2B. The calculated Zak phase γ1 (kx) (γ2 (kz)) is shown in
the top (right) panel of Figure 2C (Figure 2D), whose kx (kz) axis
corresponds to the red (green) thick line in the 2D projective BZ of
(010) (110) surface shown in the corresponding bottom (left) panel.We
can see that, for both γ1 and γ2, the non-trivial πZak phase emerges only
when the integral path of the Zak phase traverses the nodal ring (i.e., the
TDNL here). Otherwise, the Zak phase is zero. According to the bulk-
edge correspondence [63], this change of topological properties from
inside to outside the nodal ring implies the existence of topological
surface states inside the projected nodal ring on both (010) and (110)
surfaces.

The semi-infinite system terminated with that surface should be
constructed to explore the topological surface states of a certain
surface. Two surfaces (010) and (110) are studied here, where the
(010) surface is parallel to the nodal ring, but the (110) surface is not.
Figure 3A shows the SDOS of the (010) surface system, whose
surface states all have a constant energy (zero) and form a flat
drumhead shape. This typical DSS is clearly demonstrated by the
SDOS with a constant energy slice at E = 0, as shown in Figure 3C.
The green ring in Figure 3C represents the front projection of the
TDNL, and its interior is full of surface states. We call this type of
DSS “full DSS.” From the result that both the Zak phases γ1 and γ2
equal π inside the TDNL projections, one may expect that full DSS
also exists in the (110) surface system. However, the SDOS of the
(110) surface system shown in Figures 3B, D demonstrates results

FIGURE 2
(A) Bulk band structure of the model. (B) TDNL (thick blue nodal ring) and the k-point path (small orange loop) for calculating the Berry phase. The
red (green) dashed line is the integral path for Zak phase γ1 at kx = 0 (γ2 at kz = 0). (C, D) TDNL projections onto (C) (010) and (D) (110) surface BZs and the
Zak phases (C) γ1 (kx) and (D) γ2 (kz).
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different from the expectation. In particular, the leftmost panel of
Figure 3D shows the “contracted-drumhead surface state (CDSS),”
in which the surface states do not fill completely the interior of the
TDNL oblique projection (the green ellipse). The weak surface state
feature at other energies, as shown in other panels of Figure 3D, also
supports this result.

In order to further explore the CDSS in the (110) surface system,
a slab model of 80 layers terminated with (110) surface is studied. Its
energy bands are shown in Figure 4B, in which the degree of surface
state η defined in Eq. 6 is also shown by both the point size and color
for each state. In addition, Figure 4A shows the distribution of η for
all states within the energy range [−0.5, 0.5] in the whole surface BZ
and the projection of η onto the surface BZ. Figure 4B corresponds

to Figure 3B, but here we can access the wavefunction of any state of
the slab model. The wavefunctions of the five states marked in
Figure 4B have descending η from 0.73 to 0, and the distributions of
their weights with respect to layer number are given in Figure 4C.
We can see that state 1 with η = 0.73 is a strong surface state with
most wavefunctions localized within the surface layers. At the other
extreme, state 5 with η = 0 distributes periodically; hence, it is a bulk
state. As for states 2–4, they have non-zero but small η. Although
they contain surface state components or may be called weak surface
states, they are more like bulk states. Figures 4A, B show that strong
surface states exist only near zero energy. Consequently, even if the
projection of η in Figure 4A selects the largest η for each k-point
within the energy range [−0.5, 0.5], it is not much different from the

FIGURE 3
Topological surface states given by SDOS for the semi-infinite systems terminated with (A, C) (010) and (B, D) (110) surfaces. (A, B) Continuous
energy resolved SDOS. (C) Constant energy slice at E = 0 for the (010) surface system. (D) Constant energy slices at E = 0, −0.1, −0.2, −0.3 for the (110)
surface system, in which the cutting lines 1–4 correspond to those in (B). The green lines in (C, D) are the projections of the TDNL.

FIGURE 4
(110) slabmodel. (A)Distribution of η (the degree of surface state) represented by color for all states with energy in the range [−0.5, 0.5]. The largest η
at each k-point is also projected onto the surface BZ. (B) Energy bands with η represented by both color and point size. (C) Squared wavefunctions with
respect to the layer number (only 20 out of the total 80 layers are shown) for the five states marked in (B).
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case considering only zero energy, and it exhibits a similar shape to
the E = 0 panel in Figure 3D.

Because the weak surface states are much like bulk states, they
are not efficient in most applications, which require large SDOS.
Thus, only strong surface states need to be considered, and the shape
of the CDSS can be revealed by the distribution of the k-points at
which strong surface states exist. Figure 5 shows the distribution of
the k-points of strong surface states (i.e., the shape of CDSS) under
different model parameters. We can see that the shape of CDSS for
the (110) surface can be tuned by the hoppings t2 and t3 efficiently.
Namely, increasing t3 makes the surface states change from a full
DSS to a CDSS with smaller areas (Figure 5A), and inversely,
increasing t2 will increase the area of CDSS from zero
(Figure 5B). This provides an effective route to tune the SDOS
and the shape of the surface state in topological nodal systems.

4 Conclusion

We have proposed a simple TB model hosting TDNL and studied
its topological properties. Both the Berry phase and Zak phase
demonstrate that the TDNL is topological non-trivial. This TDNL
model not only has a full DSS as usual topological nodal line systems,
but also has a CDSS, which we first noticed. The CDSS exists on the
(110) surface, and its area can be tuned efficiently by both model
parameters t2 and t3. Our model demonstrates an effective way to tune
the amount and density of the surface states, which will expand the
potential applications of topological nodal line systems.
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FIGURE 5
k-point distribution (orange area) of the CDSS for the (110) slab model with different parameters. (A) t3 = 0, 0.5, 1.0, 1.5, 2.0 with t2 = 1.0. (B) t2 = 0,
0.5, 1.0, 1.5, 2.0 with t3 = 1.0. The green ellipse denotes the projection of the TDNL. The other two parameters are t0 = 2 and t1 = −1 for all cases.
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