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The exploration of real-world cooperative behavior is essential for societal
development. In real life, the surrounding social environment and past
experiences often influence individuals’ assessment of their self-fitness. Based
on this phenomenon, we propose a novel model that explores the effect of
subjective human perceptions on the evolution of cooperation, combining
temporal and spatial dimensions into individual fitness. In this model, strategy
persistence is used as a proxy for the temporal dimension. Strategy popularity, on
the other hand, is portrayed to characterize the subjective influence of the spatial
dimension. The weight distribution between the temporal perception and the
spatial perception can be controlled by the parameter α, and the intensity of the
subjective perception can be regulated by the parameter β. Numerical
experiments show that when spatial perception is fully considered, the system
tends to reach a fully cooperative state via network reciprocity. Conversely, fully
considering the temporal state allows some cooperators to maintain cooperative
behavior even under more unfavorable conditions (i.e., larger temptation).
Notably, an intermediate state α exists when both temporal and spatial
perceptions are considered, resulting in a higher level of cooperation
compared to α = 0 or 1. Micro-analysis of the evolution of cooperation in
temporal or spatial perception has been investigated to reveal the mechanism
of macroscopic phenomena. Additionally, the robustness of the mechanism is
discussed by varying the intensity of subjective perception β and the upper limit of
strategy age Amax. Similarly, we explore the validity of our work to different
network structures, the different numbers of agents, and the real social
network. Overall, this study contributes to understanding the impact of
individual subjective factors, such as temporal-spatial perception, on the
evolution of cooperation in society.
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1 Introduction

According to Darwin’s theory of natural selection, cooperative
groups may be eliminated in the iterative process, while only
betrayers will survive for an extended period [1,2]. This is
because rational selfish groups tend to maximize their
individual interests based on the fact that defection is more
profitable than cooperation [3–5]. However, despite this theory,
cooperation is widespread in the animal kingdom and human
society, playing a crucial role in the development of our society
[6–9]. This raises a conflict, and as a result, the origin of self-
interested individuals’ spontaneous participation in cooperation
has been extensively explored [10]. Evolutionary game theory was
then developed as a mathematical framework to explore the
popularity of cooperative behavior [11–13]. Using this
framework, various game strategies have evolved to study the
evolution of cooperation under pairwise interactions, such as
the prisoner’s dilemma game (PDG) [14,15], the public goods
game (PGG) [16], and the snowdrift game (SDG) [17,18].
Additionally, with the introduction of complex networks, such
as scale-free networks [19,20], square-lattice networks [21], and
small-world networks [22], related studies have demonstrated
those network topologies also profoundly influence the
emergence of cooperation. Furthermore, Nowak summarized
five typical mechanisms that increase the frequency of
cooperators, including direct reciprocity, indirect reciprocity,
kin selection, group selection, and network reciprocity [23]. To
make this approach more realistic, observable phenomena from
real life, such as rewards [24,25], punishments [26], reputation
[27,28], and others [29–33], are introduced into the mechanism to
further expand the approach of promoting cooperation.

In addition to the aforementioned mechanisms, recent research
has uncovered that herd imitation in the individual spatial state
plays a significant role in the evolutionary dynamics of human
societies [34]. Individuals often observe and imitate strategies that
are popular among their peers [35,36]. This phenomenon of
pursuing popularity, similar to the popularity of fashion trends,
is ubiquitous in daily life, reflecting the human preference for high-
popularity strategies from a spatial perspective. Thus, this
popularity-based strategy mechanism has been extensively
studied to explore the emergence of cooperation through fitness
calculations, strategy update rules, and network reciprocity. Szolnoki
et al. [37] found that an individual’s popularity strongly influences
cooperative behavior, with wider knowledge leading to defectors
being penalized. [38] introduced a parameter α to adjust the
influence of popularity and investigated its impact on individual
behavior. Their results indicated that α can accelerate the emergence
of cooperative clusters. These studies provide evidence for the
effectiveness of popularity in promoting cooperation under
specific circumstances. While the subjective perception of space
by players also leads to a biased objective evaluation of returns for
different strategies. Some researchers have incorporated popularity
into individual fitness, whereby some players adjust their utility
functions by evaluating the popularity of their strategies in the
environment. [39] incorporated popularity as a coefficient into the
calculation of individual fitness using a single parameter α, and their
findings suggest that positive α values promote the evolution of
cooperation. [40] considered local and global popularity as

components of self-fitness to provide a comprehensive
understanding of the influence of popularity.

Temporal perception plays a crucial role in individuals’
decision-making processes, as past experiences can guide them
toward making wiser choices. Consequently, memory has been
introduced as a vital mechanism to enhance the dynamic game
model, and numerous researchers have investigated this concept
[41–45]. In Lu et al.’s study [41], players were asked to memorize
their historical strategies and evaluate the impact of memory length
on their cooperation levels. [42] incorporated the accumulated
income into the game and tested the robustness of cooperation
following the introduction of the memory mechanism. However,
memory content does not solely consist of the payoff of each game
round but also includes strategy persistence. [46] focused on the
stability of their neighbors’ strategies and introduced the level of
strategy persistence into strategy updates to modify the probability
of learning their neighbors’ strategies. They found that their model
improved network reciprocity. Strategy persistence has a direct
effect on individuals’ confidence in their current strategies.

The previous studies have focused solely on specific aspects,
such as the popularity or persistence of a strategy. However, there is
a lack of exploration of the influence of subjective factors in both the
temporal and spatial dimensions. To address this gap, we propose
incorporating subjective perception of temporal and spatial
dimensions to regulate individual fitness, which aligns with
human behavior that involves observing the environment and
reflecting on past experiences. The most similar work to ours is a
study by [47], where they integrated memory and conformity into
the strategy update rule to address the effect of integrative effects on
the emergence of cooperation. However, the innovation in their
work, combining memory and conformity into the strategy update
rule, enforces learning behavior on players, which is unnatural and
does not reflect the self-interested and rational qualities of intelligent
agents. In our work, we focus on adjusting individual fitness based
on subjective perceptions, which are more akin to human cognition.
Thus, our study investigates the impact of individual fitness with
subjective perceptions of temporal and spatial dimensions on
cooperation in the prisoner’s dilemma.

The rest of this article is structured as follows: Section 2 outlines
our proposed model for integrating temporal and spatial
perspectives. In Section 3, we present the results of our
simulations and provide an analysis of the findings. Finally,
Section 4 offers a summary of the conclusions drawn from our
study, as well as a discussion of the potential implications.

2 Model

In this section, we focus on the game model of players based on
perception with both temporal and spatial perspectives, the
calculation of player payoff and fitness, and the strategy update rule.

2.1 The game model

A square lattice with periodic boundary conditions is considered
to construct the WPDG (weak prisoner’s dilemma game) model.
Each player in the lattice can interact with their four nearest
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neighbors with certain information. Each player has only two
strategies to choose from: cooperation and defection, and at
initialization, the player selects a strategy with equal probability.
The player’s strategy attributes can also be represented by the
following vectors:

Sx � C � 1, 0( )T or Sx � D � 0, 1( )T.
Based on previous research, we aim to explore the effects of

temporal and spatial mechanisms on cooperation by considering the
prisoner’s dilemma game. The prisoner’s dilemma game represents
an acute contradiction in society, where both players receive a
reward of R if they cooperate with each other, but they receive a
penalty of P if they betray each other. However, the different choices
give the cooperator the sucker’s payoff of S, and the defector the
temptation to defect of T. These gains satisfy T > R > P > S and 2R >
T + S. To begin from a general point of view, we consider the weak
prisoner’s dilemma to simplify the model. At this point, we have R =
1, S = P = 0, and T = b > 1. From this, we can represent it in the
following matrix:

MPD � R S
T P

( ) � 1 0
b 0

( ). (1)

2.2 Fitness evaluation

For a player x, it plays with all four of its nearest neighbors and
then calculates the cumulative payoffs Px based on Eq. 1. The Px is as
follows:

Px � ∑
y∈Ωx

SxMPDSy
T, (2)

where Ωx represents the set of neighbors of player x. Sx and Sy
represent the strategies of players x and y. Similarly, other players
have to calculate their payoffs in this way.

In actuality, individuals evaluate their strategies not solely on the
basis of the payoffs they receive through objective comparisons with
others’ strategies, they also adapt their strategies based on their
perceptions of the world. On the one hand, individuals assess the
strategies of nearby neighbors in order to gauge the popularity of
their strategies. On the other hand, the persistence of strategies in
their memory also influences individuals’ confidence in them. As a
result, diverse perspectives can impact a player’s level of fitness.
Then, we set the player’s perception to have two dimensions and
consider the mixed effects of spatial and temporal perceptions on
cooperative behavior.

• Spatial perspective: from a spatial perspective, players assess
their fitness based on the popularity of their strategies. The
strategy popularity, represented by ki

N, is based on the number
of people with the same strategy as player x and its neighbors,
divided by the total number of people in their cliques. Here, N
denotes the total number of players in player x’s cliques
(including player x), and ki denotes the number of people
with the same strategy as player x in those cliques. Even if all of
the player x’s neighbors have different strategies from Sx, the
strategy popularity of player x can still reach 1/5.

• Temporal perspective: from a temporal perspective, players
incorporate strategy persistence into adjusting their fitness
according to their memory. In this case, the strategy
persistence Ax

Amax
is the ratio of one’s strategy age to the

strategy age limit. Here, Amax denotes the upper limit of a
player’s strategy age, which is usually a constant. On the other
hand, Ax represents a player’s current strategy age, i.e., the
length of time that their current strategy remains unchanged.
The upper limit of Ax is Amax. After a game, if a player’s
strategy changes, its strategy age is reset to 1. Otherwise, it
increases by 1. If the strategy age reaches the upper limit Amax,
it remains unchanged unless the current strategy changes.

Algorithm 1 Monte Carlo simulation.

We integrate strategy popularity and persistence by weighted
summation [40] to obtain the overall perception formula, and then
use the index [39] to adjust its overall effect of perception on
individual fitness. Finally, we give the following fitness function:

Fx � 1 − α( ) · ki
N

+ α · Ax

Amax
[ ]

β

Px. (3)

Fx is the individual fitness of player x. Px is the objective payoff of
player x, which is calculated by Eq. 2. ki

N and Ax
Amax

represent the
strategy popularity and strategy persistence of players, respectively.
α ∈ [0, 1], denotes the intensity distribution of temporal and spatial
perspectives. β denotes the scaling index of perceptual factors, which
takes values in the range (−1, 1). It is easy to see that when β = 0, the
whole model degenerates to the conventional WPDG. And, when β

is positive, player fitness is proportional to perception. Conversely, it
is inversely proportional.

2.3 The strategy update rule

After engaging in a game with their neighbors, players often re-
evaluate their strategies. Typically, they will imitate the strategies of
the better-adapted players to put themselves at an advantage. Then
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we use the fitness considering temporal-spatial perception to
calculate the imitation probability. One of the four neighbors y is
chosen at random and if the neighbor’s strategy is different from its
own, the probability that player x imitates neighbor y can be given by
the Fermi function [21]:

W sx → sy( ) � 1

1 + e Fx−Fy( )/K, (4)

where Fx and Fy denote the current fitness of the player x and its
neighbor y, respectively, and the parameter K denotes the
uncertainty or introduced random noise. For the sake of
exploring generality, we set K to 0.1 [48].

2.4 Simulation procedure

The asynchronous Monte Carlo simulation method is adopted in
this paper. The simulations were performed on a 50 * 50 square-lattice
network, and the fraction of cooperation Fc was determined by
averaging the last 100 rounds over a total of 10,000 Monte Carlo
simulations, which were conducted 50 times to minimize randomness.

In summary, the specific Monte Carlo process of the
evolutionary game model is shown by Algorithm 1.

3 Result and discussion

To investigate the impact of individual fitness, as influenced by
the perception in both temporal and spatial dimensions, on bursts of
cooperation, this section presents the findings of our simulation and
corresponding explanations. Our main parameters, α and b, were
investigated to determine how different allocations of temporal and
spatial dimensions in the model influenced the promotion of
cooperation. Additionally, the robustness analysis explored the

effects of parameters Amax and β on cooperation. The effect of
network structure and the number of agents on cooperation are also
discussed. In addition, the real network structure is also considered
in the discussion.

To comprehensively elucidate the influences of α and b on
cooperation, we constructed a heat map representing the fraction
of cooperators in the α-b plane, with β set to 1, as depicted in
Figure 1A. In the left region of the plot, roughly confined within
the bounds of α = 0.4, the colour spectrum predominantly exhibits
shades of dark blue and dark yellow, denoting a prevailing state of
complete cooperation or complete defection within the system.
Furthermore, the critical value for transitioning from full
cooperation to partial cooperation, denoted as br, exhibits a
declining trend followed by an increase as α increases, peaking
at approximately α = 0 and α = 0.4. This indicates that these
specific values of α (0 and 0.4) endow cooperators in the system
with enhanced resistance to temptation. In the right region of the
graph, as α increases, the distinct boundary between full
cooperation and full defection becomes blurred, and the color
spectrum shifts from the aforementioned dark blue and dark
yellow to green, indicating a greater prevalence of coexistence
between cooperators and defectors. To delve into the influence of
the distribution of temporal and spatial perceptions, represented
by the parameter α, on cooperation within the system, we
specifically selected several α values (0, 0.2, 0.4, 0.6, 0.8, 1) for
analysis and plotted Figure 1B. This figure illustrates the variation
in the proportion of cooperation with respect to the temptation
value b, for different α values. Evidently, distinct disparities in the
shape of the curves emerge between smaller and larger values of α,
and an intermediate value of α (0.4) demonstrates heightened
resistance to temptation. For the purpose of comprehensive
comprehension, we initially discuss the impact of solely
considering spatial or temporal perceptual dimensions on
cooperation, subsequently exploring their underlying

FIGURE 1
For the case of β= 1, the heatmap (A)with parameter b and α shows the change in the percentage of collaborators. Graph (B) presents the change in
the fraction of cooperators Fc as b increases from 1 to 1.6 for different α, where α is set to 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively. α = 0 means that
perception is completely dependent on the spatial perspective, and α = 1 means that perception is entirely dependent on the temporal perspective.
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microscopic mechanisms. Finally, we revert to investigating the
effect resulting from the combination of both spatial and temporal
dimensions on cooperation, aiming to provide a more
comprehensive analysis.

3.1 Effect of temporal or spatial dimension
on the cooperation level

To investigate the impact of temporal or spatial dimension on
cooperative behavior, we first investigate the relationship between
the fraction of cooperators Fc and the betrayal temptation b under
the conditions of α = 0 and α = 1. To ensure that the perception,
including both dimensions, is proportional to individual fitness, we
set β to 1. A higher level of individual strategy persistence or
popularity corresponds to greater individual fitness, consistent
with most reality. In addition, we set the maximum age that a
strategy can achieve, Amax, to 50.

As shown in Figure 1B, we can observe that as the value of
defection temptation b increases, for α = 0, i.e., fully considering
the spatial perspective, the system rapidly turns from a state of
complete cooperation at the beginning to a state of complete
defection (when b increases to about 1.41). The curve takes on
a radical state. However, for α = 1, which fully considers the
temporal perspective, the curve for the cooperators’ fraction
declines steadily (from approximately 0.6 to 0.1) as b increases,
yet still maintains a coexistence between cooperators and
defectors. The curve for the cooperators’ fraction remains flat.
Thus, for lower b values, the α = 0 strategy leads to a higher degree
of cooperation, since it induces all players to cooperate. However,
as b increases to about 1.4, the α = 1 strategy promotes better
cooperation than α = 0 does. Although defectors exist, some
cooperators remain steadfast in their strategy, thereby enabling
the cooperators to maintain a certain proportion.

3.2 Analyses of evolutionary strategy when
α = 0 and 1

To investigate the mechanism of cooperative evolution, we focus
on the microprocesses from a temporal or spatial perspective.
Specifically, the effect of space on individual fitness is considered
when α = 0. The formation of cooperative clusters is facilitated by the
popularity of the strategy space, which is a typical network
reciprocity process. The core view of network reciprocity is
introduced, dividing the time evolution process of cooperation
into two periods: the END period and the EXP period [49].
During the END period (presented to the left of the dotted line),
cooperators must endure the invasion of defectors, which leads to a
rapid decrease in the number of cooperators. If some cooperators
manage to survive, they expand their clusters during the EXP period
to reach the final full cooperation. As illustrated in Figure 2 (blue
curve), the percentage of cooperators initially falls to a certain level
before rapidly rising to reach the fully cooperative state. Moreover,
from the snapshot plot in Figure 3 with α = 0, the number of
cooperators rapidly decreases and clumps together to form a cluster
of cooperators. During the EXP period (presented on the right side
of the dotted line), the cluster expands to ultimately reach the
cooperative state. In contrast, when α = 1, the proportion of the
cooperative population first decreases, and cooperators eventually
reach a steady state of coexistence with defectors, where the defector
population dominates, as indicated by the yellow curve in Figure 2.
In the snapshot plot of α = 1 in Figure 3, it can be seen that the
cooperative clusters are smaller and scattered in the steady state, but
they are still not easily destroyed by defectors.

With α = 0 in cooperative evolution, the generation of
cooperative clusters serves as the foundation for cooperative
expansion. To understand the formation of cooperative clusters
from an individual perspective, we present a micro-level diagram of
the game in Figure 4, which consists of two sides: the cooperator C′
and the defector D′. In Figure 4A, when a cooperator is surrounded
by multiple defectors, the fitness of C′ is 0, while the fitness of D′ is
0.8 × b. Therefore, D′ has greater fitness, resulting in the
disappearance of cooperation. In Figure 4B, when two
cooperators stick together, the fitness of C′ is 0.4 × 1, while the
fitness of D′ is still 0.8 × b. Consequently, the cooperator changes its
strategy. However, when the number of cooperators increases to
three (as shown in Figure 4C), the fitness of C′ (0.6 × 2 = 1.2) exceeds
the fitness of D′ for b < 1.5, enabling the cooperative cluster to
expand. For values of b between 1.5 and 3, at least four cooperators
are required to form a cluster for cooperative expansion (as shown in
Figure 4D). Notably, when the temptation value b is small, cases that
reach the cooperative state of Figure 4C easily transition to the state
of Figure 4D, leading to the formation of larger cooperative clusters
and the prosperity of cooperation. However, for sufficiently large
values of b, only a few cases (e.g., Figure 4D) can achieve cooperative
expansion, and most cases of defectors invading cooperative clusters
are highly likely to result in the extinction of cooperation. The value
of b = 1.5 serves as the demarcation point that produces the cases in
Figures 4C, D, and to some extent, it verifies the turning point of b =
1.4 where cooperation completely dies out when α = 0 in Figure 1.
This reflects a degree of consistency between the microevolution of
cooperation and the macroscopic simulation.

FIGURE 2
When b = 1.34, time evolution of the proportion of cooperators
Pc for α = 0 and α = 1. Based on the nature of network reciprocity, the
left side of the dotted line is roughly the END period and the right side
is the EXP period.
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FIGURE 3
For α = 0 [panel (A–E)] and 1 [panel (F–J)], the panel depicts the characteristic snapshots of cooperators (blue) and defectors (yellow) at different
time steps, which are obtained for fixed b = 1.34. From left to right, the time steps are 200, 400, 1,000, and 2,500, respectively, and from the top row to
bottom, the value of α is 0, 1.

FIGURE 4
Diagram of cooperative expansion. Light and dark yellow circles represent cooperators. The light blue and dark blue circles represent defectors.
Dark blue and dark yellow represent both sides of the game. Panels (A-D) show the situation where the cooperator's neighbors have four defectors, three
defectors, two defectors, and one defector.

FIGURE 5
Zoomed-in image of the same area in the characteristic snapshots when α = 1 and b = 1.34, from panel (A-D), with time steps of 200, 400, 1,000 and
2,500. The numbers on the squares indicate the age of the players. The yellow and blue areas represent defectors and cooperators, respectively.
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To elucidate the coexistence of cooperators and defectors under
the condition of α = 1, we present Figure 5, which captures the
dynamic characteristics of cooperators during stable evolution (as
demonstrated by the convergence of the proportion of cooperators
in Figure 2). Figure 5 provides an enlarged view of the same region
depicted in Figure 3 for α = 1, where defectors are represented by
yellow squares, cooperators by blue squares, and the numbers on the
squares indicate the current strategic age of the players. The figure
illustrates an unfavorable scenario for the survival of cooperators,
where they form a back-to-back cluster, relying solely on each other.
As the evolutionary process reaches stability, an observation can be
made from Figures 5A–D: the two middle committed cooperators,
characterized by a maximum strategy age, remain steadfast,
maintaining their strategies for an extended duration, while the
surrounding six players, possessing younger strategy ages, continue
to modify their own strategies. The area between the cluster of
committed cooperators and the cluster of committed defectors,
comprising several players of younger strategic age, is referred to
as the swing zone. Players in this zone are highly susceptible to
changing their strategies and are easily attracted by the committed
cooperators to become cooperators of younger strategic age, while
they are also easily tempted by the surrounding cluster of defectors
to become defectors. Thus, they are constantly wavering in their
choice of strategy. The swing zone acts as a barrier, preventing the
cluster of committed cooperators from reaching out to the cluster of
committed defectors and from being attracted to the lure of the
committed defectors. With the support of their partners and trust in
their strategies, the committed cooperator clusters can achieve
greater fitness and always win when playing against the
uncommitted swing zone. Therefore, even with only one partner,
committed cooperators can maintain their cluster in the event of a
defector siege.

3.3 Effect of the different ratios of temporal
and spatial dimension on the cooperation
level

In our study, we are particularly interested in how the
combination of temporal and spatial perspectives affects
cooperative bursts within our model. Therefore, we pay attention
to the change in cooperator fraction Pcwith changes in the value of b
under various intermediate states α. The results are shown in
Figure 1B. As α increases, we observe a shift in the curve from a
radical to a flat state. To assess the overall effectiveness of the curve,
we define the cooperator area S as the area enclosed by the curve and
the x- and y-axes in Figure 1B. A larger cooperator area S indicates
that more players can reach a cooperative state within the range of b
from 1 to 1.6. Using this definition, we calculated the cooperator area
S for the curve at different values of α, specifically 0, 0.2, 0.4, 0.6, 0.8,
and 1, resulting in values of 0.3742, 0.3464, 0.3897, 0.3677, 0.2507,
and 0.1720, respectively. It can be seen that with the increase of α, the
cooperator area S first decreases, then increases, and then decreases
again, indicating that α has a nonlinear relationship with the
cooperator area S of the curve. In addition, for these
intermediate states α, there exists an optimal α (around 0.4) that
maximizes the cumulative cooperative occupancy when b is in the
range of 1–1.6. In a way, this shows that comprehensive

consideration of temporal-spatial perception can enhance the
prevalence of cooperation more than single consideration, which
explains the reality that the overall consideration is more conducive
to success.

3.4 Robustness analysis of the model

After discussing the impact of the parameter α on cooperation,
we conduct a robustness analysis of the parameters Amax, β, the
number of agents, network structures, and the real network.

3.4.1 Effect of the parameter Amax on the
cooperation frequency

Here, Amax represents the upper limit of an individual’s strategy
age, and the ratio of an individual’s strategy age to Amax directly
reflects the persistence of individual strategies and the degree of trust
that players have in their strategies. To investigate the effect of Amax

on the intermediate state of α, we plot the heat maps of cooperators
in b—Amax panel when α = 0.2, 0.4, and 0.8, as shown in Figure 6. For
smaller values of α (specifically, α = 0.2), the heat map is divided by
the line b = 1.34 into two parts, dark yellow on the upper side and
dark blue on the lower side. We found that the variation in the value
of Amax had little effect on change in cooperative population with b.
This may be due to the fact thatAmax primarily affects the perception
of time, but time perception plays a smaller role in the model when
α = 0.2. For the intermediate state (α = 0.4), there is also a less volatile
splitting boundary between full cooperation and full defection, but
around Amax = 25 the cooperative population is significantly more
resistant to temptation than the smaller and larger Amax, suggesting
that a moderate Amax strengthens the cooperative population’s
resistance to temptation. For larger values of α (α = 0.8), it can
be seen that as the Amax increases, the cooperative population
becomes more resistant to temptation, although full cooperation
cannot be achieved, it can maintain the coexistence of cooperators
and defectors for larger temptation values. Since smaller values of
Amax lower the upper age limit of the strategy, making even the most
committed cooperators vulnerable to invasion by the fringe. At
larger b, cooperative clusters become vulnerable to invasion by
defectors, leading to the complete disappearance of cooperation.

3.4.2 Effect of the parameter β on the cooperation
frequency

There is another parameter β, which represents the intensity of
the subjective perception of individual fitness. Above we set the
value of β to 1 and analyze the impact of other parameters on the
model. Now we fix the intermediate state of α and vary the value of β
to investigate its effect on the model dynamics. Figure 7 shows that
the proportion of the cooperative population decreases as the
temptation b increases for either β curve. When β = 0, the model
reduces to the conventional prisoner’s dilemma game on a lattice
network, without considering the subjective perception of individual
fitness. Figure 7 indicates that cooperation disappears when b > 1.04,
and cooperators struggle to resist defectors. For a positive value of β
(β = 1), players with higher temporal-spatial scores will receive
higher fitness and cooperation becomes more advantageous. With
smaller b, the system can reach a fully cooperative state. However, at
b > 1.35, there is also a rapid decline in the percentage of
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cooperators. For negative values of β (β = −1), the temporal score is
inversely proportional to the player’s fitness, meaning that
individuals with higher popularity and persistence in a specific
strategy have a lower chance of achieving higher fitness. Under
this condition, cooperation and defection coexist, but cooperators
can still survive even in challenging situations (i.e., high values of b).

3.4.3 Effect of the number of agents and network
structures on the cooperation frequency

In the above argumentation, we only talk about exploring the
effect of the temporal-spatial fitness mechanism on cooperation in a
50*50 square-lattice network. Then we apply this mechanism to
different numbers of agents and network structures for robustness
verification. Heat maps of the corresponding cooperation levels are
provided under different α and b cooperative behaviors in the
square-lattice network (Figure 8A), the scale-free network
(Figure 8B) and the small-world network (Figure 8C),
respectively, and give the results under different numbers of

agents in each network structure. When considering the square-
lattice network (Figure 8A) and the small-world network
(Figure 8C), it becomes evident that variations in the number of
agents have minimal impact on the proportion of cooperation.
Consequently, the number of agents exhibits negligible influence
on the resulting characteristics. However, for the scale-free network,
an increase in the number of agents results in a larger scope of
cooperation and an enhanced degree of cooperation within the
network. This phenomenon can be attributed to the inherent
network properties of scale-free networks, which amplify the
influence of the high number of nodes, thus establishing
cooperative behavior as the dominant feature [3].

In terms of network structure, the heat map of the scale-free
network (Figure 8B) reveals a higher level of cooperation compared
to the other two networks when the number of agents is fixed at 4900.
However, when solely considering either the temporal state or the
spatial state, the system tends towards complete extinction under higher
temptation levels. Nevertheless, when an intermediate value of α is
employed, the system exhibits significantly stronger cooperation,
indicating that the combination of temporal and spatial mechanisms
is more effective in promoting cooperation. Regarding the small-world
network (Figure 8C), an increase in α leads to a progressive reduction in
the br value, which represents the threshold for transitioning from full
cooperation to partial cooperation. This shift enables a higher
coexistence state within the system and empowers the partial
cooperators to withstand the invasion of defections at higher
temptation values b. The introduction of temporal-spatial
mechanisms seems to reconcile the system’s ability to reach high
cooperation proportions and resist high temptations.

3.4.4 Applicability in the real social network
To validate our model with real data, we introduce the real

Facebook social network [50] as our network structure to explore the
effect of temporal-spatial mechanisms on facilitating cooperative
behavior. In this network, each user and his friends are considered as
nodes, and the connections between friends constitute edges. The
specific results are presented in Figure 9. The proportion of the
cooperators is not as significantly influenced by α. However, at the
same temptation (b > 1.3), it presents a higher level of cooperation at
the moderate α value (about 0.45). It is somewhat similar to the

FIGURE 6
The heat map of the fraction of cooperators in the b—Amax panel with β = 1. In panels (A–C), parameter α = 0.2, 0.4, and 0.8, respectively.

FIGURE 7
The graphs of the cooperator proportion with increasing b for
three intermediate states of α = 0.2, 0.4, and 0.8 are discussed
separately for different Amax cases.
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results presented by the scale-free network but with an overall
decrease in the resistance of the cooperative population to high
temptations. However, it is still evident from this real network that a
combination of temporal and spatial mechanisms would promote
the prevalence of cooperation better than a single mechanism.

4 Conclusion

In this work, we propose to adjust individual fitness from a
temporal-spatial perspective to explore the evolution of cooperation
in networks. In ourmodel, each player has two dimensions of subjective
perception: the temporal and spatial dimensions. They can observe their
neighbors’ strategy states in spatial dimension to assess their strategy
popularity and to memorize the current length of their strategy
persistence in the temporal dimension. When players perform the
strategy update at the current game round, they refer to both strategy
popularity and strategy persistence to adjust their fitness based on
objective payoffs. Numerous simulations show that when the perceptual
impact β on objective payoff is 1 (i.e., perception and individual fitness
are proportional), the system can achieve full cooperation under the
perceptual impact of fully considering space at b approximately less

FIGURE 8
Different network structures and the number of agents act on the heat map. Each heat map represents the number of cooperators under the
influence of different α and temptations b with fixed β = 1. From (A-C), they are the square-lattice network, the scale-free network, and the small-world
network. From left to right, the number of agents is 900, 2,500, and 4,900, respectively.

FIGURE 9
The social network among users on Facebook was selected, with
a total number of 4,039 nodes and 88,233 edges. Based on this
network structure, a cooperative population heat map is constructed
to portray the cooperation in the system with different α and
temptation b. Also fix β as 1.
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than 1.4, which is corroborated by further inquiry. However, fully
considering temporal perception allows cooperators to survive in more
difficult situations. We also explain several of these phenomena from
the microevolution diagram. It is worth noting that the existence of an
optimal trade-off point makes the cooperative state optimal when
spatial and temporal perceptions are combined. This coincides with
the realistic situation where humans tend to consider temporal-spatial
factors comprehensively before making a better choice. Finally, we
perform a sensitivity analysis in terms of both perceptual impact β and
maximum strategy ageAmax. Robustness analysis regarding the network
structure and the number of agents is also further investigated. Finally,
we use the Facebook social network structure to check the applicability
of our work in real situations.

We hope that the findings of this paper will provide new insights
into the evolution of cooperation from individual fitness. Of course,
from a realistic perspective, the perception that humans are subjected to
in temporal space is not limited to strategy persistence and strategy
popularity. Related experiments based on other human behaviors are
also worth further investigation in the future.
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