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Non-local fractional derivatives are generally more effective in mimicking real-
world phenomena and offer more precise representations of physical entities,
such as the oscillation of earthquakes and the behavior of polymers. This study
aims to solve the 2D fractional-order diffusion-wave equation using the
Riemann–Liouville time-fractional derivative. The fractional-order diffusion-
wave equation is solved using the modified implicit approach based on the
Riemann–Liouville integral sense. The theoretical analysis is investigated for the
suggested scheme, such as stability, consistency, and convergence, by using
Fourier series analysis. The scheme is shown to be unconditionally stable, and the
approximate solution is consistent and convergent to the exact result. A numerical
example is provided to demonstrate that the technique is more workable and
feasible.
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1 Introduction

Fractional calculus is the non-integer or fractional-order differentiation and integration
that has received significant attention over the last two decades for its application in
describing real-world problems. Non-linear fractional-order differential equations (NL-
FDEs) play a major role in applied sciences and social sciences, such as material science,
signal processing, control theory, finance, and food supplements [1–3]. Recently, many
advanced and reliable approaches have been discussed by the researchers. For example, Shen
et al. [4] discussed the analytical and numerical solutions for a 2Dmulti-term time-fractional
DWE. They used the approach of the variable of separation to drive analytical solutions, as
well as the properties of Mittag–Leffler functions, and showed that stability and convergence
analyses were studied. Ruzhansky et al. [5] considered the multi-term DWE and used the
Caputo derivative, a non-local initial problem, and the Mittag–Leffler function in this study.
Fan et al. [6] investigated the inverse problem to recognize the initial value for the space–time
FDWE. They utilized the Landweber iterative regularization method for the time–space
FDWE and calculated the error between validity and stability. The approximate solutions for
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1D and 2D multi-term time-fractional sub-diffusion and DWEs
with smooth and non-smooth solutions have been discussed by
Rashidinia et al. [7]. They applied the Legendre collocation method
and the Caputo derivative for solving the proposed equation.
Moreover, they found the convergence analysis and concluded
that this method has the benefit of using limited Legendre
polynomials to obtain accurate and acceptable results. Feng et al.
[8] researched a novel approach based on the finite element method
(FEM) 2D diffusion type non-integer order equation. The utilized
scheme is approximated for three different types of equations. The
matrix form of the scheme is generated using the FEM, and the
formulation of the equation is determined. The theoretical analysis,
such as stability and convergence, is established. The suggested
technique is versatile and resilient and may be used to solve various
multi-term time-fractional diffusion problems directly. The Caputo
derivative is in the temporal direction of the 2D time-dependent
FDWE, as studied by Yang et al [9]. They used the finite difference
method (FDM) to discretize the fractional-order derivative and
provide a meshless approximation in spatial directions using
moving least squares (MLS), which may be used to solve more
complicated problem domains. The study also investigated the time-
related convergence and stability properties of the semi-discretized
scheme. In another study, Yang et al. [9] considered a 2D non-linear
time-fractional DWE solved using a Crank–Nicolson Legendre
spectral technique. The time-stepping is performed using the
Crank–Nicolson difference method, while the spatial
discretization is performed using the Legendre spectral approach.
Lyu et al. [10] suggested a fast and linearized FDM for solving the
non-linear multi-term FDWE. The suggested technique is based on
a weighted approach, fast L2 − 1σ discretization, and multi-term
L2 − 1σ-type discretization. The obtained truncation error in the
suggested weighted discretization to the multi-term Caputo
derivative rigorously proved unconditional convergence by
demonstrating certain crucial aspects of the refined coefficients of
full discretization. Salehi [11] investigated multi-term FDWS in 2D
and solved it using a meshless collocation approach. The shape
functions for spatial approximation are constructed using the
moving least squares reproducing kernel particle approximation.

They also created a semi-discrete technique by discretizing Caputo’s
time derivatives using a finite difference approximation. The
obtained difference schemes demonstrated unconditional stability
and convergence. Ghafoor et al. [12] developed a technique based on
the approximations of finite difference and Haar wavelets. The
approach is used to numerically solve (1 + 1)-D and (1 + 2)-D
time fractional PDEs. Zhuang and Liua [13] worked on a finite
domain and the 2D temporal fractional diffusion equation (2D-
TFDE). The 2D-TFDE is modeled using an implicit difference
approximation. The mathematical induction approach is used to
assess the stability and convergence analysis. Heydari et al. [14]
investigated the approximate solution to the variable-order (VO)
space–time fractional non-linear diffusion-wave problem. The
established approach combines the collocation and tau methods
with the Chebyshev cardinal functions and their operational matrix
of VO-FDs. A resilient and reliable numerical approach for solving a
2D VO non-linear FDWE on arbitrary domains was suggested by
Shekari et al. [15] using the MLS meshless procedure for the space
domain and the FDS for the time domain . The method was devised
in such a way that it is independent of the uniformity of the domain
in consideration and the solution of the algebraic system of
equations. The proposed method was tested using a variety of
space domains, including quadrilateral, rounded, triangular, and
polar domains, as well as different types of non-linearity. Kumar
et al. [16]provided the local collocation method that depends on
radial basis functions to investigate the solution of time-fractional
non-linear DWEs. They demonstrated the numerical schemes that
are unconditionally stable and converge in semi-discrete. Ding [17]
researched the creation of a high-order numerical approach for the
2D time-space FDWEs. A new approach with orderO (τ2 + h4 + h4)
is derived based on the fourth-order fractional-compact difference
operator, where the temporal step size\tau and h1 and h2 are the
spatial step sizes, respectively. The energy approach is used to analyze
the algorithm’s stability and convergence, and a numerical experiment
is conducted to confirm the numerical algorithm’s viability. Li et al.
[18] analyzed a 2D non-linear FDWE in both time and space. The
spatial component is discretized using the Galerkin FEM, while the
temporal part is discretized using the new ADI method,” which also
proved stability and convergence. They presented a 2D FDWE with
the fractional derivative of order α (1< α< 2). Li et. al. [19]
considered the ADI analysis based on the Crank–Nicolson
method and the Galerkin FEM, both of which are analyzed. The
ADI scheme is unconditionally stable, and L2 norm convergence is
rigorously illustrated. Datsko et al. [20] proposed that the TFDE
with mass absorption in a sphere is observed under the harmonic
impact on the surface of a sphere. The TFD of “Caputo” is
implemented. The Mittag–Leffler function is also used to express
the Laplace transform with respect to time and the finite sin-Fourier
transform with respect to the spatial coordinates. Ren and Sun [21]

TABLE 1 Numerical results of the proposed scheme for various values of
fractional order α, space steps Δx andΔy, and time step Δt sizes at T = 1.0.

τ Δx � Δy q � 0.25 q � 0.5 q � 0.75 q � 0.95

1\4 1\2 1.588 E-03 3.338 E-03 4.815 E-03 6.271 E-03

1\16 1\4 1.050 E-03 1.734 E-03 2.370 E-03 2.143 E-03

1\64 1\8 4.620 E-04 6.780 E-04 9.03 E-04 1.144 E-03

1\100 1\10 3.431 E-04 4.910 E-04 6.522 E-04 8.240 E-04

TABLE 2 Numerical results of the proposed scheme for various values of τ,Δx, andΔy and a fixed value of q � 0.25.

N Δx � Δy � 1
5 Δx � Δy � 1

10 Δx � Δy � 1
15 Δx � Δy � 1

20

20 1.927 E-03 9.539 E-04 7.670 E-04 7.014 E-04

40 1.746 E-03 1.606 E-03 5.798 E-04 4.302 E-04

60 1.650 E-03 6.685 E-04 5.453 E-04 3.295 E-04
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discussed the fourth-order compact algorithm for solving the
TFDWE with Neumann boundary conditions. For the time-
fractional derivative, L1 discretization is used, whereas the
compact difference methodology is used for spatial discretization.
The compact difference scheme is unconditionally stable, and global
convergence is carefully shown. In addition, the Crank–Nicolson
scheme with second-order spatial precision is described and perhaps
an error estimate as well. The 2D case is solved using the compact
ADI difference algorithm with Robin boundary conditions. Yang
et al. [22] considered the initial value problem with mixed initial
conditions of TFDWEs. They used the truncated regularization
method and investigated conditional stability and error
approximations, as well as some acceptable numerical examples,
to establish the method’s validity. The convergence estimates in this
publication are not saturated when compared with other authors’
works, and the non-homogeneous factors are correlated. Ali and
Abdullah [23] discussed the FDWEs of arbitrary order.” They
explain efficiency and fruitfulness through numerical test
examples. There are many related studies available in the
literature discussing different types of fractional-order models.
For instance, Nawaz et al. [24] considered two numerical
approaches, found the solution for two fractional-order models,
and compared their solution with classical solutions. The fractional-

order operator is in the Caputo sense, and we obtained the results
numerically and graphically. They claimed that the methods are
quickly convergent and yield encouraging results. Farid et al. [25]
examined the Laplace transform with an iterative method for the
space–time fractional-order models. They compared the obtained
results with other existing schemes in the literature, which are more
feasible and effective. Sayevand and Jafari [26] introduced the
fractional-order KdV model in a fractal domain and applied the
transformation to convert the fractional order into an ordinary-
order derivative. They analyzed the theoretical analyses and
presented many numerical examples to confirm the accuracy of
the suggested approach. Li et al. [27] studied the significant
properties of the Caputo fractional derivative in the real line
and further developed it in the complex plane, which is used in
signal processing. Guariglia [28] derived the functional equation
for the fractional-order derivative Hurwitz function and proved
the relation between the fractional-order zeta function and
Bernoulli numbers. In another study, Guariglia [29] presented
the functional equation with the Grunwald–Letnikov fractional
derivative and discussed the link with the distribution of prime
numbers. The other comprehensive literature can be studied in
[30–37].

According to the previously described literature, fractional
calculus is still a relatively new field that requires more accurate
numerical approaches to examine the more practicable FDEs. The
goal of this research is to develop a more accurate and reliable
numerical technique for the FDWE. An attempt to discretize the R-L
integral operator numerically and implement it in the
Riemann–Liouville fractional-order derivative to approximate the
FDWE has not yet been made. This approach reduces
computational complexity and increases accuracy. Analysis,
including aspects such as stability, consistency, and convergence,
was also investigated based on the Fourier method and Taylor’s
series expansion.

TABLE 3 Error E∞ and order of convergence of the IDS for the example for
different values of τ,Δx, andΔy and a fixed value of q � 0.5.

E∞ C2− order

Δx � Δy � τ � 1\4 9.2878 E-03 -

Δx � Δy � 1\8, τ � 1\64 1.7302 E-03 2.425

Δx � Δy � τ � 1\8 5.3546 E-03 -

Δx � Δy � 1\16, τ � 1\128 9.8240 E-04 2.446

FIGURE 1
Graphical representation between the exact and approximated solutions at q � 0.35,Δy � 0.25,N � 4, andT � 1.0.
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The remainder of the paper is arranged as follows: the
associated preliminaries are described in Section 2. Section 3
explains the proposed method. The stability analysis is
discussed in Section 4. Consistency and convergence are
addressed in Section 5. Section 6 presents the numerical
results, and the conclusion is provided in Section 7.

Here, we consider the FDWE as follows [23]:

∂2w x, y, t( )
∂t2

�D2−q
t

∂2w x, t( )
∂x2

+ ∂2w y, t( )
∂y2

( ) + F x, y, t( ),
qϵ 0, 1( ], xϵ 0, L[ ], yϵ 0, L[ ], tϵ 0, T[ ], (1)

where the conditions are

w x, y, 0( ) � φ1 x, y( ), wt x, y, 0( ) � φ2 x, y( ), (2)
w 0, y, t( ) � φ3 y, t( ), w L, y, t( ) � φ4 y, t( ),

w x, 0, t( ) � φ5 x, t( ), w x, L, t( ) � φ6 x, t( ), (3)

where F(x, y, t) represents the non-homogenous term and D2−q
t

denotes the R-L fractional-order derivative operator of order q lying
between 0 and 1.

2 Preliminaries

The R-L fractional differential operator is the most important
extension of the classical differential operator. The R-L fractional-
order derivative is defined as follows [38]:

D2−q
t w x, y, t( ) � 1

Γ q( )
d2

dt2
∫t

0

w x, y, z( )
t − z( )1−q dz � d2

dt2
Iq0w x, y, t( ).

(4)
The R-L integral operator can be defined as follows:

Iq0w x, y, t( ) � 1
Γ q( ) ∫

t

0

w x, y, z( )
t − z( )1−q dz, (5)

where Iq0 represents the R-L fractional-order integral operator of
order q lying between 0 and 1. Equation 5 can also be written as

Iq0w x, y, tn( ) � 1
Γ q( ) ∫

tn

0
tn − z( )q−1 w x, y, z( )dz. (6)

We use the Jumarie property in [25] as

� 1
qΓ q( )∫

tn

0
W x, y, z( ) dz( )q.

By discretization of the aforementioned equation, we obtain the
following equations:

� 1
Γ 1 + q( )∑

n−1
k�0∫

tk+1

tk

w x, y, z( ) dz( )q,

� 1
Γ 1 + q( )∑

n−1
k�0w x, y, tn−k( )∫tk+1

tk

z0 dz( )q. (7)

Applying the Jumarie property ∫t

0
zm(dz)n � (Γ(1+m)Γ(1+n)

Γ(1+m+n) )tm+n,

� τq

Γ 1 + q( )∑
n−1
k�0w(x, y, tn−k) k + 1( )q − k( )q( ),

� τq

Γ 1 + q( )∑
n−1
k�0C

q
kw x, y, tn−k( ), (8)

where Δt � τ is the time step and can be defined as tk+1 � ((k +
1)Δt) � ((k + 1)τ) and C(q)

k � (k + 1)q − (k)q, where k �
0, 1, 2, . . . , n − 1.

Lemma 1. The q(0< q< 1)-order R-L fractional integral of
w(x, y, t) in [0, T] is defined as

Iq0w xi, yj, tk( ) � τq

Γ 1 + q( )∑
k−1
v�0C

q( )
v w xi, yj, tk−v( ). (9)

Lemma 2. The coefficient C(q)
k (k � 0, 1, 2 . . .) satisfies the

following properties [39]:

• C q( )
0 � 1, C

q( )
k > 0, k � 0, 1, . . . .,

• C q( )
k−1 >C

q( )
k , k � 1, 2, . . . .,

• τ ≤C1C
q( )

k τq, where C1 > 0,

• ∑n
k�0

C
q( )

k τq � n + 1( )q ≤Tq.

3 The proposed implicit difference
scheme

In this section, the implicit difference scheme (IDS) for the
FDWE is constructed using Lemma 1 for the fractional-order part,
and the space-derivative is reduced to the central difference
approximation. The step for space is xi � iΔx and yj � jΔy, and
the step for time is tk � kτ, where 1 ≤ i≤M − 1,Δx � L

M,
Δy � V

H, 0≤ k≤N, and τ � T
N, respectively. We substitute Eq. 2 in

Eq. 1 at mesh point w(xi, yj, tk) as follows:

∂2w xi, yj, tk( )
∂t2

� d2

dt2
Iq0
δ2xw xi, yj, tk( )

Δx2
+ d2

dt2
Iq0
δ2yw xi, yj, tk( )

Δy2

+ F xi, yj, tk( ). (10)

To eliminate the second-order time derivatives, we applied the
backward difference approximation, then integrated from tk to tk+1,
and also, used the trapezoidal rule for the forcing term. Finally, we
obtained

wk+1
i,j − 2wk

i,j + wk−1
i,j � Iq0

Δx2
δ2xw

k+1
i,j − 2δ2xw

k
i,j + δ2xw

k−1
i,j( )

+ Iq0
Δy2

δ2yw
k+1
i,j − 2δ2yw

k
i,j + δ2yw

k−1
i,j

( )
+ τ2

2
Fk+1
i,j + Fk

i,j[ ]. (11)

We substituted Lemma 1, and after simplification, we obtained
the approximated scheme for the FDWE as follows:
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wk+1
i,j −2wk

i,j +wk−1
i,j

� [S1 wk+1
i+1,j −2wk+1

i,j +wk+1
i−1,j( )−S1 wk

i+1,j −2wk
i,j +wk

i−1,j( )
+∑k−1

v�0 Cq
v+1 −Cq

v( ) wk−v
i+1,j −2wk−v

i,j +wk−v
i−1,j( )

−S1∑k−1
v�1 Cq

v −Cq
v−1( ) wk−v

i+1,j −2wk−v
i,j +wk−v

i−1,j( )]
+[S2 wk+1

i,j+1 −2wk+1
i,j +wk+1

i,j−1( )−S2 wk
i,j+1 −2wk

i,j +wk
i,j−1( )

+S2∑k−1
v�0 Cq

v+1 −Cq
v( ) wk−v

i,j+1 −2wk−v
i,j +wk−v

i,j−1( )
−S2∑k−1

v�0 Cq
v −Cq

v−1( ) wk−v
i,j+1 −2wk−v

i,j +wk−v
i,j−1( )]

+ τ2

2
Fk+1
i,j +Fk

i,j[ ].
(12)

We know that wt(x, y, 0) � φ2(x, y). Therefore,

w−1
i,j � w1

i,j + 2τφ2 xi, yj( ), (13)

w0
i,j � φ1 xi, yi( ), wk

0,j � wk
Mx,j

� wk
0,j � wk

0,My
� 0, (14)

where S1 � τq

[(q+1)Δx2, S2 � τq

[(q+1)Δy2, i � 1, 2, . . . .Mx − 1,
j � 1, 2, . . . ,My − 1, and k � 1, 2, . . . , N − 1.

4 Stability

The von Neumann method is used to determine the stability of
the proposed scheme, and the approach in [40]is followed. Let wk

i,j

represent the exact solution for Eq. 12, and we obtain

wk+1
i+1,j−2wk+1

i,j +wk+1
i−1,j

�[S1 wk+1
i+1,j−2wk+1

i,j +wk+1
i−1,j( )−S1 wk

i+1,j−2wk
i,j+wk

i−1,j( )
+S1∑k−1

v�0 Cq
v+1−Cq

v( ) wk−v
i+1,j−2wk−v

i,j +wk−v
i−1,j( )

−S1∑k−1
v�1 Cq

v −Cq
v−1( ) wk−v

i+1,j−2wk−v
i,j +wk−v

i−1,j( )]
+[S2 wk+1

i,j+1−2wk+1
i,j +wk+1

i,j−1( )
−S2 wk

i,j+1−2wk
i,j+wk

i,j−1( )+S2∑k−1
v�0 Cq

v+1−Cq
v( )

wk−v
i,j+1−2wk−v

i,j +wk−v
i,j−1( )−S2∑k−1

v�0 Cq
v −Cq

v−1( )
wk−v

i,j+1−2wk−v
i,j +wk−v

i,j−1( )]. (15)

FIGURE 2
Graphical representation between the exact and approximated solutions at q � 0.35,Δy � 0.1,N � 100, andT � 1.0.

TABLE 4 Comparison between the numerical results of the proposed scheme with the previous study for various values of fractional order α, space steps
Δx � Δy � 1

8, and time step Δt sizes at T = 1.0.

For γ � 0.5 γ � 0.6

τ Test problem 1 [34] Proposed scheme Test problem 1 [34] Proposed scheme

1/10 6.9182E-03 6.3169 E-03 5.5331 E-03 5.2677 E-03

1/20 3.5625E-03 3.0504 E-03 2.9268 E-03 2.4844 E-03

1/40 1.8210E-03 1.3302 E-03 1.5059 E-03 1.1844 E-03

1/80 9.3190E-04 7.7013 E-04 7.5969 E-04 6.8401 E-04
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The error is defined as Ek
i,j � wk

i,j −Wk
i,j, and Ek

i,j satisfies Eq. 15
as follows:

Ek+1
i+1,j − 2Ek+1

i,j + Ek+1
i−1,j

� [S1 Ek+1
i+1,j − 2Ek+1

i,j + Ek+1
i−1,j( ) − S1 Ek

i+1,j − 2Ek
i,j + Ek

i−1,j( )
+S1∑k−1

v�0 Cq
v+1 − Cq

v( ) Ek−v
i+1,j − 2Ek−v

i,j + Ek−v
i−1,j( )

−S1∑k−1
v�1 Cq

v − Cq
v−1( ) Ek−v

i+1,j − 2Ek−v
i,j + Ek−v

i−1,j( )]
+ [S2 Ek+1

i,j+1 − 2Ek+1
i,j + Ek+1

i,j−1( )
− S2 Ek

i,j+1 − 2Ek
i,j + Ek

i,j−1( ) + S2∑k−1
v�0 Cq

v+1 − Cq
v( )

Ek−v
i,j+1 − 2Ek−v

i,j + Ek−v
i,j−1( ) − S2∑k−1

v�0 Cq
v − Cq

v−1( )
Ek−v
i,j+1 − 2Ek−v

i,j + Ek−v
i,j−1( )S2∑k−1

v�0 Cq
v+1 − Cq

v( )
Ek−v
i,j+1 − 2Ek−v

i,j + Ek−v
i,j−1( ) − S2∑k−1

v�0 Cq
v − Cq

v−1( )
Ek−v
i,j+1 − 2Ek−v

i,j + Ek−v
i,j−1( )]. (16)

We assume that the growth factor takes the form of a single
Fourier mode as

Ek
i,j � λke

��−1√
σ Δxi+Δyj( ), (17)

whereσ andΔx andΔy are themodenumber and step sizes, respectively.
Eq. 17 can be the solution of the aforementioned error in Eq. 16.

λk+1e
��−1√

iΔxσ1+jΔyσ2( ) −2λke
��−1√

iΔxσ1+jΔyσ2( ) +λk−1e
��−1√

iΔxσ1+jΔyσ2( )
� [S1 λk+1e

��−1√
i+1( )Δxσ1+jΔyσ2( ) −2λk+1e

��−1√
iΔxσ1+jΔyσ2( )(

+λk+1e
��−1√

i−1( )Δxσ1+jΔyσ2( ))−S1 λke
��−1√

i+1( )Δxσ1+jΔyσ2( )(
−2λke

��−1√
iΔxσ1+jΔyσ2( ) + e

��−1√
i−1( )Δxσ1+jΔyσ2( ))

+S1∑k−1
v�0 Cq

v+1 −Cq
v( ) λk−ve

��−1√
i+1( )Δxσ1+jΔyσ2( )(

−2λk−ve
��−1√

iΔxσ1+jΔyσ2( ) +λk−ve
��−1√

i−1( )Δxσ1+jΔyσ2( ))
−S1∑k−1

v�1 Cq
v −Cq

v−1( ) λk−ve
��−1√

i+1( )Δxσ1+jΔyσ2( )(
−2λk−ve

��−1√
iΔxσ1+jΔyσ2( ) +λk−ve

��−1√
i−1( )Δxσ1+jΔyσ2( ))]

+[S2 λk+1e
��−1√

iΔxσ1+ j+1( )Δyσ2( ) −2λk+1e
��−1√

iΔxσ1+jΔyσ2( )(
+λk+1e

��−1√
iΔxσ1+ j−1( )Δyσ2( ))−S2 λke

��−1√
iΔxσ1+ j+1( )Δyσ2( )(

−2λke
��−1√

iΔxσ1+jΔyσ2( ) +λke
��−1√

iΔxσ1+ j−1( )Δyσ2( ))
+S2∑k−1

v�0 Cq
v+1 −Cq

v( ) λk−ve
��−1√

iΔxσ1+ j+1( )Δyσ2( )(
−2λk−ve

��−1√
iΔxσ1+jΔyσ2( ) +λk−ve

��−1√
iΔxσ1+ j−1( )Δyσ2( ))

−S2∑k−1
v�1 Cq

v −Cq
v−1( ) λk−ve

��−1√
iΔxσ1+ j+1( )Δyσ2( )(

−2λk−ve
��−1√

iΔxσ1+jΔyσ2( ) +λk−ve
��−1√

iΔxσ1+ j−1( )Δyσ2( ))].
(18)

Dividing both sides by e
��−1√

σΔxΔy(i,j) and then replacing
e
��−1√

σΔxΔy + e−
��−1√

σΔxΔy � 2 − 4sin 2(σΔxΔy2 ), we obtain

λk+1 � 1
1 + μ

λk 2 + μ( ) − λk−1 − μ ∑k−1
v�0 Cq

v+1 − Cq
v( )λk−v([

−∑k−1
v�1 Cq

v − Cq
v−1( )λk−v)],

(19)

where

μ � 4S1sin
2 σ1Δx

2
( ) + 4S2sin

2 σ2Δy
2

( )[ ].
Proposition 1. Suppose λk+1, where k � 0, 1, . . . , N − 1, is the
solution of Eq. 19; then, we need to prove that

λ| k+1 ≤ λ| 0
∣∣∣∣ ∣∣∣∣. (20)

Proof. Let us consider k � 0 in Eq. 19 to prove the proposition
using the induction method as follows:

λ1 � 1
1 + μ

λ0 2 + μ( ) − λ−1[ ]. (21)
We get λ−1 � λ1 by substituting Eqs 13, 17 into Eq. 21. The

provided equation becomes easier after simplification.

λ1 � λ0 2 + μ( )
2 + μ

. (22)
We obtain the following relation:

|λ1|≤ |λ0|. (23)
Suppose |λ1|≤ | λ0| holds true for k � 1, 2, . . . , N − 1.
Using Eqs 19–, 23 and Lemma 2, we have

λ| k−1| � 1
1 + μ

λk
∣∣∣∣ ∣∣∣∣ 2 + μ( ) − λ| k−1| − μ ∑k−1

v�0 Cq
v+1 − Cq

v( ) ∣∣∣∣ λk−v|([
−∑k−1

v�1 Cq
v − Cq

v−1( ) λ| k−v|)],
� 1
1 + μ

[ λ0
∣∣∣∣ ∣∣∣∣ 2 + μ( ) − λ0

∣∣∣∣ ∣∣∣∣
−μ ∑k−1

v�0 Cq
v+1 − Cq

v( ) −∑k−1
v�1 Cq

v − Cq
v−1( )( ) λ| 0|],

≤
1

1+μ[1+μ−μ(∑
k−1
v�0 Cq

v+1 −Cq
v( )−∑k−1

v�1 Cq
v −Cq

v−1( ))] λ0
∣∣∣∣ ∣∣∣∣,

≤
1

1 + μ
1 + μ − μ C1 − Ck−1( ) − C1 − Ck−2( )( )[ ] λ0∣∣∣∣ ∣∣∣∣,

≤
1

1 + μ
1 + μ − μ Ck−2 − Ck−1( )( )[ ] λ0∣∣∣∣ ∣∣∣∣. (24)

From Lemma 2, the value is 0<Ck−2 − Ck−1 < 1, so it is clear that

0< 1 + μ − μ Ck−2 − Ck−1( )( )
1 + μ

< 1 and λ| K+1 ≤ λ| 0
∣∣∣∣ ∣∣∣∣. (25)

Here, |λK+1|≤ | λ0| and |Ek+1
i,j |≤ |E0

i,j|, so it is written as ‖Ek+1
i,j ‖2 ≤

‖E0
i,j‖2. It reveals that the proposed method is unconditionally stable.

5 Consistency

Here, followingtheapproachin[41],weassumethatw is theclosed-
form solution,W is the estimated solution, and the functionY(W) � 0
is theapproximatedschemefortheproposedequationat themeshpoint
(xi, yj, tk) to discover the consistency analysis. The local truncation
error at (xi, yj, tk) was subsequently indicated by Y(W) � Tk

i .

Theorem 1. The local truncation error T(x, y, t) for the suggested
scheme is Tk

i,j � O(Δt2) + O(Δx)2 + O(Δy)2.

Tk+1
i,j � Wk+1

i,j − 2Wk
i,j +Wk−1

i,j

− [S1∑k

v�0C
q
v Wk−v+1

i+1,j − 2Wk−v+1
i,j +Wk−v+1

i−1,j( )
− 2S1∑k−1

v�0C
q
v Wk−v

i+1,j − 2Wk−v
i,j +Wk−v

i−1,j( )
+ S1∑k−2

v�0C
q
v Wk−v−1

i+1,j − 2Wk−v−1
i,j +Wk−v−1

i−1,j( )]
− [S2∑k

v�0C
q
v Wk−v+1

i,j+1 − 2Wk−v+1
i,j +Wk−v+1

i,j−1( )
− 2S2∑k−1

v�0C
q
v Wk−v

i,j+1 − 2Wk−v
i,j +Wk−v

i,j−1( )
+ S2∑k−2

v�0C
q
v Wk−v−1

i,j+1 − 2Wk−v−1
i,j +Wk−v−1

i,j−1( )].

(26)
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Using the Taylor series, we obtain

Tk+1
i,j � wk

i,j +Δt
∂u
∂t

∣∣∣∣∣ki,j + Δt( )2
2!

∂2u
∂t2

∣∣∣∣∣ki,j + Δt( )3
3!

∂3u
∂t3

∣∣∣∣∣ki,j(
+ Δt( )4

4!
∂4u
∂t4

∣∣∣∣∣ki,j + . . .)−2wk
i,j + wk

i,j −Δt
∂u
∂t

∣∣∣∣∣ki,j + Δt( )2
2!

∂2u
∂t2

∣∣∣∣∣ki,j(
− Δt( )3

3!
∂3u
∂t3

∣∣∣∣∣ki,j + Δt( )4
4!

∂4u
∂t4

∣∣∣∣∣ki,j − . . .)
−[S1∑k

v�0C
q
v wk−v+1

i,j +Δx∂u
∂x

∣∣∣∣∣k−v+1i,j
+ Δx( )2

2!
∂2u
∂x2

∣∣∣∣∣k−v+1i,j
{

+ Δx( )3
3!

∂3u
∂x3

∣∣∣∣∣k−v+1i,j
+ x( )4

4!
∂4u
∂x4

∣∣∣∣∣k−v+1i,j
+ . . .}−2wk−v+1

i,j

+ wk−v+1
i,j −Δx∂u

∂x

∣∣∣∣∣k−v+1i,j
+ Δx( )2

2!
∂2u
∂x2

∣∣∣∣∣k−v+1i,j
− Δx( )3

3!
∂3u
∂x3

∣∣∣∣∣k−v+1i,j
{

+ Δx( )4
4!

∂4u
∂x4

∣∣∣∣∣k−v+1i,j
− . . .}−2S1∑k−1

v�0C
q
v wk−v

i,j +Δx∂u
∂x

∣∣∣∣∣k−vi,j
{

+ Δx( )2
2!

∂2u
∂x2

∣∣∣∣∣k−vi,j
+ Δx( )3

3!
∂3u
∂x3

∣∣∣∣∣k−vi,j
+ Δx( )4

4!
∂4u
∂x4

∣∣∣∣∣k−vi,j
+ . . .}−2wk−v

i,j

+ wk−v
i,j −Δx∂u

∂x

∣∣∣∣∣k−vi,j
+ Δx( )2

2!
∂2u
∂x2

∣∣∣∣∣k−vi,j
− Δx( )3

3!
∂3u
∂x3

∣∣∣∣∣k−vi,j
{

+ Δx( )4
4!

∂4u
∂x4

∣∣∣∣∣k−vi,j
− . . .}+S1∑k−2

v�0C
q
v wk−v−1

i,j{
+Δx∂u

∂x

∣∣∣∣∣k−v−1i,j
+ Δx( )2

2!
∂2u
∂x2

∣∣∣∣∣k−v−1i,j
+ Δx( )3

3!
∂3u
∂x3

∣∣∣∣∣k−v−1i,j

+ Δx( )4
4!

∂4u
∂x4

∣∣∣∣∣k−v−1i,j
+ . . .}−2wk−v−1

i,j + wk−v−1
i,j −Δx∂u

∂x

∣∣∣∣∣k−v−1i,j
{

+ Δx( )2
2!

∂2u
∂x2

∣∣∣∣∣k−v−1i,j
− Δx( )3

3!
∂3u
∂x3

∣∣∣∣∣k−v−1i,j
+ Δx( )4

4!
∂4u
∂x4

∣∣∣∣∣k−v−1i,j
− . . .}]

−[S2∑k

v�0C
q
v wk−v+1

i,j +Δy∂u
∂y

∣∣∣∣∣k−v+1i,j
+ Δy( )2

2!
∂2u
∂y2

∣∣∣∣∣k−v+1i,j
{

+ Δy( )3
3!

∂3u
∂y3

∣∣∣∣∣k−v+1i,j
+ Δy( )4

4!
∂4u
∂y4

∣∣∣∣∣k−v+1i,j
+ . . .}−2wk−v+1

i,j

+ wk−v+1
i,j −Δy∂u

∂y

∣∣∣∣∣k−v+1i,j
+ Δy( )2

2!
∂2u
∂y2

∣∣∣∣∣k−v+1i,j
− Δy( )3

3!
∂3u
∂y3

∣∣∣∣∣k−v+1i,j
{

+ Δy( )4
4!

∂4u
∂y4

∣∣∣∣∣k−v+1i,j
− . . .}−2S2∑k−1

v�0C
q
v wk−v

i,j +Δy∂u
∂y

∣∣∣∣∣k−vi,j
{

+ Δy( )2
2!

∂2u
∂x2

∣∣∣∣∣k−vi,j
+ Δy( )3

3!
∂3u
∂y3

∣∣∣∣∣k−vi,j
+ Δy( )4

4!
∂4u
∂y4

∣∣∣∣∣k−vi,j
+ . . .}

−2wk−v
i,j + wk−v

i,j −Δy∂u
∂y

∣∣∣∣∣k−vi,j
+ Δy( )2

2!
∂2u
∂y2

∣∣∣∣∣k−vi,j
{

− Δy( )3
3!

∂3u
∂y3

∣∣∣∣∣k−vi,j
+ Δy( )4

4!
∂4u
∂y4

∣∣∣∣∣k−vi,j
− . . .}

+S2∑k−2
v�0C

q
v{wk−v−1

i,j +Δy∂u
∂y

∣∣∣∣∣k−v−1i,j
+ Δy( )2

2!
∂2u
∂y2

∣∣∣∣∣k−v−1i,j

+ Δy( )3
3!

∂3u
∂y3

∣∣∣∣∣k−v−1i,j
+ Δy( )4

4!
∂4u
∂y4

∣∣∣∣∣k−v−1i,j
+ . . .}

−2wk−v−1
i,j + wk−v−1

i,j −Δy∂u
∂y

∣∣∣∣∣k−v−1i,j
+ Δy( )2

2!
∂2u
∂y2

∣∣∣∣∣k−v−1i,j
{

− Δy( )3
3!

∂3u
∂y3

∣∣∣∣∣k−v−1i,j
+ Δy( )4

4!
∂4u
∂y4

∣∣∣∣∣k−v−1i,j
− . . .}].

(27)

After the cancelation of the same terms with opposite signs, we
obtain

Tk+1
i,j � Δt( )2∂

2u

∂t2
∣∣∣∣∣ki,j + Δt( )4

12
∂4u
∂t4

∣∣∣∣∣ki,j + . . .( )
− [S1 ∑k

v�0C
q
v Δx( )2∂

2u

∂x2

∣∣∣∣∣k−v+1i,j
+ Δx( )4

12
∂4u
∂x4

∣∣∣∣∣k−v+1i,j
+ . . .{ }

− 2S1 ∑k−1
v�0C

q
v Δx( )2∂

2u

∂x2

∣∣∣∣∣k−vi,j
+ Δx( )4

12
∂4u
∂x4

∣∣∣∣∣k−vi,j
+ . . .{ }

+ S1∑k−2
v�0C

q
v Δx( )2∂

2u

∂x2

∣∣∣∣∣k−v−1i,j
+ Δx( )4

12
∂4u
∂x4

∣∣∣∣∣k−v−1i,j
+ . . .{ }]

− [S2∑k

v�0C
q
v Δy( )2∂2u

∂y2

∣∣∣∣∣k−v+1i,j
+ Δy( )4

12
∂4u
∂y4

∣∣∣∣∣k−v+1i,j
+ . . .{ }

− 2S2∑k−1
v�0C

q
v Δy( )2∂2u

∂y2

∣∣∣∣∣k−vi,j
+ Δy( )4

12
∂4u
∂y4

∣∣∣∣∣k−vi,j
+ . . .{ }

+ 2S2∑k−2
v�0C

q
v Δy( )2∂2u

∂y2

∣∣∣∣∣k−v−1i,j
+ Δy( )4

12
∂4u
∂y4

∣∣∣∣∣k−v−1i,j
+ . . .{ }].

Replacing the values of S1 and S2 in the aforementioned
equation, we obtain

Tk+1
i,j � Δt( )2 ∂2u

∂t2
∣∣∣∣∣ki,j + Δt( )2

12
∂4u
∂t4

∣∣∣∣∣ki,j( ) − Δx( )2 Δt( )2
Δx( )2( )

∑k

v�0C
q
v

∂2u
∂x2

∣∣∣∣∣k−v+1i,j
− 2∑k−1

v�0C
q
v

∂2u
∂x2

∣∣∣∣∣k−vi,j
+∑k−2

v�0C
q
v

∂2u
∂x2

∣∣∣∣∣k−v−1i,j
( )
− Δy( )2 Δt( )2

Δy( )2( ) ∑k

v�0C
q
v

∂2u
∂y2

∣∣∣∣∣k−v+1i,j
− 2∑k−1

v�0C
q
v

∂2u
∂y2

∣∣∣∣∣k−vi,j
(

+∑k−2
v�0C

q
v

∂2u
∂y2

∣∣∣∣∣k−v−1i,j
).

(28)
From the aforementioned equation, it is implied that if the time

and space steps approach zero, we obtain the following simplified
form:

Tk+1
i,j � ∂2u

∂t2
∣∣∣∣∣ki,j + Δt( )2

12
∂4u
∂t4

∣∣∣∣∣ki,j( )
− ∑k

v�0C
q
v

∂2u
∂x2

∣∣∣∣∣k−v+1i,j
− 2∑k−1

v�0C
q
v

∂2u
∂x2

∣∣∣∣∣k−vi,j
+∑k−2

v�0C
q
v

∂2u
∂x2

∣∣∣∣∣k−v−1i,j
(

+ Δx( )2) − ∑k

v�0C
q
v

∂2u
∂y2

∣∣∣∣∣k−v+1i,j
− 2∑k−1

v�0C
q
v

∂2u
∂y2

∣∣∣∣∣k−vi,j
(

+∑k−2
v�0C

q
v

∂2u
∂y2

∣∣∣∣∣k−v−1i,j
+ Δy( )2).

The obtained order of approximation is as follows:

Tk+1
i,j � O Δt( )2 + O Δx( )2 + O Δy( )2. (29)

The IDS of the FDWE is consistent if Δx, Δy, and Δt → 0;
subsequently, the local truncation error approaches zero.

Theorem 2. According to Lax equivalence theorem, if the method
is consistent and stable, then it is convergent [42]. Hence, it is proven
that the proposed scheme is convergent.
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6 Numerical results

This section considers time fractional-order DWE examples to
determine the exactness and viability of the technique. The numerical
example is coded in Maple 15, and the maximum error is as follows:

E∞ � 0≤ i≤Mx−1, 0≤ j≤My−1max0≤ k≤N w xi, yj, tk( ) −Wk
i,j

∣∣∣∣∣ ∣∣∣∣∣. (30)

The norms E2 error is

E2 � ∑Mx−1
i�1 ∑My−1

j�1 w xi, yj, tk( ) −Wk
i,j( )2 Δx( ) Δy( )( )1

2

. (31)

Example 1. In Eqs 1–3, we consider the source term F(x, y, t) �
60x2y2(1 − x)(1 − y)( t2

2+t + t) − 20(1 − 3x)(1 − y)y2 + (1 − x)
(1 − 3y)x2( 6t3+q

Γ(q+4) + tq

Γ(q+1) + 6t2+q
Γ(q+3) + 3t1+q

Γ(q+2)) and the closed solution

w(x, y, t) � 10x2y2(1 − x)(1 − y)(t + 1)3.
Example 2. We consider the two-dimensional fractional-order

Rayleigh–Stokes problem, which is provided as follows [23]:

∂2w x,y,t( )
∂t2

�D1−q
t

∂2w x,t( )
∂x2

+ ∂2w y,t( )
∂y2

( )+ ∂2w x,t( )
∂x2

+ ∂2w y,t( )
∂y2

+F x,y,t( ), qϵ 0,1( ], xϵ 0,1[ ], yϵ 0,1[ ], tϵ 0,1[ ],

where the forcing term F(x, y, t) is

F x, y, t( ) � exp x + y( ) 1 + γ( )tγ + 2Γ 2 + γ( )
Γ 1 + 2γ( )t2γ − 2t1+γ( ).

Therefore, the closed-form solution is w(x,y, t) � exp(x+ y)t1+γ.

7 Discussion

The 2D fractional-order DWE is solved by the modified
implicit numerical scheme. The formulated scheme is
established by the Riemann–Liouville fractional integral

operator that is mentioned in Lemma 1. The discretized
Riemann–Liouville fractional integral operator is used with the
implicit scheme, which is very easy to implement and find in the
theoretical analysis. The numerical results are provided in the form
of tables for various values of space steps, time steps, and different
fractional orders. As Table 1 is plotted for various values of step
sizes and varying the values of fractional order, the error is reduced
when increasing the number of step sizes for various values of
fractional order. In Table 2, the value of fractional order α is fixed
and the step sizes of space and time are varied, which shows that
the error is reducing. Table 3 confirmed the feasibility and
agreement with theoretical analysis by the rate of convergence
for the fixed value of α of the proposed formulated scheme. The
graphical representation in Figures 1, 2 also shows that the
approximate solution has excellent performance compared to
the exact solution. For more confirmation and to check the
accuracy of the proposed scheme, we solved the 2D fractional-
order Rayleigh–Stokes problem mentioned in example 2 and
compared the numerical values with the high-order
approximated scheme in [43] in Table 4, which shows better
accuracy. Although the proposed scheme is not of high order,
Figure 3 represents the graphical solution for example 2, which also
shows that the obtained solution is more accurate and feasible.

8 Conclusion

A practical and quick numerical approach was designed for the
FDWE. The discretization of the Riemann–Liouville integral, as
described in Lemma 1, serves as the basis for the approximation.
Through employing mathematical induction and demonstrating
consistency and convergence, we successfully showed the
theoretical analysis of stability, consistency, and convergence. The
numerical results corroborated our theoretical findings and
demonstrated that the suggested method is fast, convergent, and
viable. This method can also be extended to different types of models
arising in the realm of mathematical physics.

FIGURE 3
Graphical representation between the exact and approximated solutions at q � 0.5,Δy � 0.0625,N � 256, andT � 1.0.

Frontiers in Physics frontiersin.org08

Rafaqat et al. 10.3389/fphy.2023.1199665

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1199665


Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material; further inquiries can be directed
to the corresponding authors.

Author contributions

All authors listed made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

Funding

The authors would like to thank the Deanship of Scientific
Research at Umm Al-Qura University for supporting this work
under grant code 22UQU4310396DSR68.

Acknowledgments

The authors would like to thank the referee for the valuable
comments.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Ali U, 2019. Numerical solutions for two-dimensional time-fractional differential
sub-diffusion equation. Ph.D., 135, pp.1–200.

2. Ali U, Mastoi S, Othman WAM, Khater MM, Sohail M. Computation of traveling
wave solution for nonlinear variable-order fractional model of modified equal width
equation. AIMS Math (2021) 6(9):10055–69. doi:10.3934/math.2021584

3. Khater M, Ali U, Khan MA, Mousa AA, Attia RA. A new numerical approach for
solving 1D fractional diffusion-wave equation. J Funct Spaces (2021) 2021:1–7. doi:10.
1155/2021/6638597

4. Shen S, Liu F, Anh VV. The analytical solution and numerical solutions for a two-
dimensional multi-term time-fractional diffusion and diffusion-wave equation.
J Comput Appl Math (2019) 345:515–34. doi:10.1016/j.cam.2018.05.020

5. Ruzhansky M, Tokmagambetov N, Torebek BT. On a non–local problem for a
multi–term fractional diffusion-wave equation. Fractional Calculus Appl Anal (2020)
23(2):324–55. doi:10.1515/fca-2020-0016

6. Yang F, Zhang Y, Li XX. Landweber iterative method for identifying the initial value
problem of the time-space fractional diffusion-wave equation.Numer Algorithms (2020)
83(4):1509–30. doi:10.1007/s11075-019-00734-6

7. Rashidinia J, Mohmedi E. Approximate solution of the multi-term time-fractional
diffusion and diffusion-wave equations. Comput Appl Math (2020) 39(3):216–25.
doi:10.1007/s40314-020-01241-4

8. Feng L, Liu F, Turner I. Finite difference/finite element method for a novel 2D
multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex
domains. Commun Nonlinear Sci Numer Simulation (2019) 70:354–71. doi:10.1016/j.
cnsns.2018.10.016

9. Yang JY, Zhao YM, Liu N, Bu WP, Xu TL, Tang YF. An implicit MLS meshless
method for 2-D time-dependent fractional diffusion–wave equation. Appl Math Model
(2015) 39(3-4):1229–40. doi:10.1016/j.apm.2014.08.005

10. Lyu P, Liang Y, Wang Z. A fast linearized finite difference method for the
nonlinear multi-term time-fractional wave equation. Appl Numer Math (2020) 151:
448–71. doi:10.1016/j.apnum.2019.11.012

11. Salehi R. A meshless point collocation method for 2-D multi-term time-fractional
diffusion-wave equation.Numer Algorithms (2017) 74(4):1145–68. doi:10.1007/s11075-
016-0190-z

12. Ghafoor A, Haq S, Hussain M, Kumam P, Jan MA. Approximate solutions of
time-fractional diffusion wave models. Mathematics (2019) 7(10):923. doi:10.3390/
math7100923

13. Zhuang P, Liu F. Finite difference approximation for two-dimensional time
fractional diffusion equation. J Algorithms Comput Tech (2007) 1(1):1–16. doi:10.1260/
174830107780122667

14. Heydari MH, Avazzadeh Z, Yang Y. A computational method for solving variable-
order fractional nonlinear diffusion-wave equation. Appl Math Comput (2019) 352:
235–48. doi:10.1016/j.amc.2019.01.075

15. Shekari Y, Tayebi A, Heydari MH. A meshfree approach for solving 2D variable-
order fractional nonlinear diffusion-wave equation. Comp Methods Appl Mech Eng
(2019) 350:154–68. doi:10.1016/j.cma.2019.02.035

16. Kumar A, Bhardwaj A. A local meshless method for time fractional nonlinear
diffusion wave equation. Numer Algorithms (2020) 85(4):1311–34. doi:10.1007/s11075-
019-00866-9

17. Ding H. A high-order numerical algorithm for two-dimensional time–space
tempered fractional diffusion-wave equation. Appl Numer Math (2019) 135:30–46.
doi:10.1016/j.apnum.2018.08.005

18. Li M, Huang C. ADI Galerkin FEMs for the 2D nonlinear time-space fractional
diffusion-wave equation. Int J Model Simulation, Scientific Comput (2017) 8(03):
1750025. doi:10.1142/s1793962317500258

19. Li L, Xu D, Luo M. Alternating direction implicit Galerkin finite element method
for the two-dimensional fractional diffusion-wave equation. J Comput Phys (2013) 255:
471–85. doi:10.1016/j.jcp.2013.08.031

20. Datsko B, Podlubny I, Povstenko Y. Time-fractional diffusion-wave equation with
mass absorption in a sphere under harmonic impact. Mathematics (2019) 7(5):433.
doi:10.3390/math7050433

21. Ren J, Sun ZZ. Numerical algorithm with high spatial accuracy for the fractional
diffusion-wave equation with Neumann boundary conditions. J Scientific Comput
(2013) 56(2):381–408. doi:10.1007/s10915-012-9681-9

22. Yang F, Pu Q, Li XX, Li DG. The truncation regularization method for identifying
the initial value on non-homogeneous time-fractional diffusion-wave equations.
Mathematics (2019) 7(11):1007. doi:10.3390/math7111007

23. Ali U, Abdullah FA. December. Modified implicit difference method for one-
dimensional fractional wave equation. In: AIP conference proceedings, 2184. New York:
AIP Publishing LLC (2019). No. 1.060021

24. Nawaz R, Ali N, Zada L, Shah Z, Tassaddiq A, Alreshidi NA. Comparative analysis
of natural transform decomposition method and new iterative method for fractional
foam drainage problem and fractional order modified regularized long-wave equation.
Fractals (2020) 28(07):2050124. doi:10.1142/s0218348x20501248

25. Farid S, Nawaz R, Shah Z, Islam S, Deebani W. New iterative transform method
for time and space fractional (n+1)-dimensional heat and wave type equations. Fractals
(2021) 29(03):2150056. doi:10.1142/s0218348x21500560

26. Sayevand K, Jafari H. A promising coupling of Daftardar-Jafari method and He’s
fractional derivation to approximate solitary wave solution of nonlinear fractional KDV
equation. Adv Math Models Appl (2022) 7(2):121–9.

27. Li C, Dao X, Guo P. Fractional derivatives in complex planes. Nonlinear Anal
Theor Methods Appl (2009) 71(5-6):1857–69. doi:10.1016/j.na.2009.01.021

28. Guariglia E. Fractional calculus, zeta functions and Shannon entropy. Open Math
(2021) 19(1):87–100. doi:10.1515/math-2021-0010

29. Guariglia E. Riemann zeta fractional derivative—Functional equation and link with
primes. Adv Difference Equations (2019) 2019(1):261–15. doi:10.1186/s13662-019-2202-5

30. Ortigueira MD, Rodríguez-Germá L, Trujillo JJ. Complex grünwald–letnikov,
liouville, riemann–liouville, and Caputo derivatives for analytic functions. Commun
Nonlinear Sci Numer Simulation (2011) 16(11):4174–82. doi:10.1016/j.cnsns.2011.02.022

31. Závada P. Operator of fractional derivative in the complex plane. Commun Math
Phys (1998) 192:261–85. doi:10.1007/s002200050299

Frontiers in Physics frontiersin.org09

Rafaqat et al. 10.3389/fphy.2023.1199665

https://doi.org/10.3934/math.2021584
https://doi.org/10.1155/2021/6638597
https://doi.org/10.1155/2021/6638597
https://doi.org/10.1016/j.cam.2018.05.020
https://doi.org/10.1515/fca-2020-0016
https://doi.org/10.1007/s11075-019-00734-6
https://doi.org/10.1007/s40314-020-01241-4
https://doi.org/10.1016/j.cnsns.2018.10.016
https://doi.org/10.1016/j.cnsns.2018.10.016
https://doi.org/10.1016/j.apm.2014.08.005
https://doi.org/10.1016/j.apnum.2019.11.012
https://doi.org/10.1007/s11075-016-0190-z
https://doi.org/10.1007/s11075-016-0190-z
https://doi.org/10.3390/math7100923
https://doi.org/10.3390/math7100923
https://doi.org/10.1260/174830107780122667
https://doi.org/10.1260/174830107780122667
https://doi.org/10.1016/j.amc.2019.01.075
https://doi.org/10.1016/j.cma.2019.02.035
https://doi.org/10.1007/s11075-019-00866-9
https://doi.org/10.1007/s11075-019-00866-9
https://doi.org/10.1016/j.apnum.2018.08.005
https://doi.org/10.1142/s1793962317500258
https://doi.org/10.1016/j.jcp.2013.08.031
https://doi.org/10.3390/math7050433
https://doi.org/10.1007/s10915-012-9681-9
https://doi.org/10.3390/math7111007
https://doi.org/10.1142/s0218348x20501248
https://doi.org/10.1142/s0218348x21500560
https://doi.org/10.1016/j.na.2009.01.021
https://doi.org/10.1515/math-2021-0010
https://doi.org/10.1186/s13662-019-2202-5
https://doi.org/10.1016/j.cnsns.2011.02.022
https://doi.org/10.1007/s002200050299
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1199665


32. Lin SD, Srivastava HM. Some families of the Hurwitz–Lerch Zeta functions and
associated fractional derivative and other integral representations. Appl Math Comput
(2004) 154(3):725–33. doi:10.1016/s0096-3003(03)00746-x

33. Podlubny I. Geometric and physical interpretation of fractional integration and
fractional differentiation (2001). arXiv preprint math/0110241.

34. Zafar ZUA, Shah Z, Ali N, Kumam P, Alzahrani EO. Numerical study and stability
of the Lengyel–Epstein chemical model with diffusion. Adv Difference Equations (2020)
2020:427–4. doi:10.1186/s13662-020-02877-6

35. Sinan M, Shah K, Kumam P, Mahariq I, Ansari KJ, Ahmad Z, et al. Fractional
order mathematical modeling of typhoid fever disease. Results Phys (2022) 32:105044.
doi:10.1016/j.rinp.2021.105044

36. Srivastava HM, Iqbal J, Arif M, Khan A, Gasimov YS, Chinram R. A new
application of Gauss quadrature method for solving systems of nonlinear equations.
Symmetry (2021) 13(3):432. doi:10.3390/sym13030432

37. Aboud F, Jameel IT, Hasan AF, Mostafa BK, Nachaoui A. Polynomial
approximation of an inverse Cauchy problem for Helmholtz-type equations. Adv
Math Models Appl (2022) 7(3):306–22.

38. Ali U, Khan MA, Khater M, Mousa AA, Attia RA. A new numerical approach for
solving 1D fractional diffusion-wave equation. J Funct Spaces (2021) 2021:1–7. doi:10.
1155/2021/6638597

39. Ali U, Sohail M, Usman M, Abdullah FA, Khan I, Nisar KS. Fourth-order
difference approximation for time-fractional modified sub-diffusion equation.
Symmetry (2020) 12(5):691. doi:10.3390/sym12050691

40. Ali U, Iqbal A, Sohail M, Abdullah FA, Khan Z. Compact implicit difference
approximation for time-fractional diffusion-wave equation. Alexandria Eng J (2022)
61(5):4119–26. doi:10.1016/j.aej.2021.09.005

41. Ganie AH, Saeed AM, Saeed S, Ali U. The Rayleigh–Stokes problem for a heated
generalized second-grade fluid with fractional derivative: An implicit scheme via
riemann–liouville integral. United States: Mathematical Problems in Engineering (2022).

42. Tekriwal M, Duraisamy K, Jeannin JB. (2021). May. A formal proof of the Lax
equivalence theorem for finite difference schemesNASA Formal Methods: 13th
International Symposium, NFM 2021, Virtual Event, May 24–28, 2021, California,
Cham: Springer International Publishing

43. Khan MA, Ali NHM. High-order compact scheme for the two-
dimensional fractional Rayleigh–Stokes problem for a heated generalized
second-grade fluid. Adv Difference Equations (2020) 2020(1):233. doi:10.
1186/s13662-020-02689-8

44. Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of
non-differentiable functions further results. Comput Math Appl (2006) 51(9-10):
1367–76. doi:10.1016/j.camwa.2006.02.001

Frontiers in Physics frontiersin.org10

Rafaqat et al. 10.3389/fphy.2023.1199665

https://doi.org/10.1016/s0096-3003(03)00746-x
https://doi.org/10.1186/s13662-020-02877-6
https://doi.org/10.1016/j.rinp.2021.105044
https://doi.org/10.3390/sym13030432
https://doi.org/10.1155/2021/6638597
https://doi.org/10.1155/2021/6638597
https://doi.org/10.3390/sym12050691
https://doi.org/10.1016/j.aej.2021.09.005
https://doi.org/10.1186/s13662-020-02689-8
https://doi.org/10.1186/s13662-020-02689-8
https://doi.org/10.1016/j.camwa.2006.02.001
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1199665


Nomenclature

FDWE Fractional diffusion-wave equation

RL Riemann–Liouville

NL-FDEs Non-local fractional-order differential equations

2D Two dimensional

FEM Finite element method

FDM Finite difference method

MLS Moving least squares

TFDE Time-fractional diffusion equation

PDEs Partial differential equations

FO Fractional order

ADI Alternating direct implicit

IDS Implicit difference scheme
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