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We present global predictions of the ground state mass of atomic nuclei based on
a novel Machine Learning algorithm. We combine precision nuclear experimental
measurements together with theoretical predictions of unmeasured nuclei. This
hybrid data set is used to train a probabilistic neural network. In addition to training
on this data, a physics-based loss function is employed to help refine the solutions.
The resultant Bayesian averaged predictions have excellent performance
compared to the testing set and come with well-quantified uncertainties which
are critical for contemporary scientific applications. We assess extrapolations of
the model’s predictions and estimate the growth of uncertainties in the region far
from measurements.
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1 Introduction

Mass is a defining quantity of an atomic nucleus and appears ubiquitously in research
efforts ranging from technical applications to scientific studies such as the synthesis of the
heavy elements in astrophysical environments [1, 2]. While accurate nuclear data of masses
is available for nuclei that are relatively stable, the same is not true for nuclei farther away
from beta stability because measurements on radioactive nuclei are exceedingly challenging
[3]. As a consequence, theoretical models of atomic nuclei are required for extrapolations
used in present-day scientific applications [4].

The goal of theoretical nuclear models is to describe all atomic nuclei (from light to
heavy) using fundamental interactions. Attainment of this challenging goal remains elusive,
however, due to the sheer complexity of modeling many-body systems with Quantum
Chromodynamics [5]. To understand the range of nuclei that may exist in nature, mean-field
approximations are often made which simplify complex many-body dynamics into a non-
interacting system of quasi-particles where remaining residual interactions can be added as
perturbations [6]. A consequence of this approximation is that current nuclear modeling
efforts are unable to describe the rich correlations that are found across the chart of nuclides.

In contrast, Machine Learning (ML) based approaches do not have to rely on the
assumption of modeling nuclei from a mean-field. This provides freedom in finding
solutions that contemporary modeling may not be capable of ascertaining. Furthermore,
Bayesian approaches to ML afford the ability to associate predictions with uncertainties [7,
8]. Such tasks are more difficult to achieve in modern nuclear modeling due to relatively
higher computational costs.
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ML approaches in nuclear physics were pioneered by J.W. Clark
and colleagues [9, 10]. These studies were the first to show that
networks could approximate stable nuclei, learn to predict masses
and analyze nuclear systematics of separation energies as well as
spin-parity assignments [11, 12]. Powered by open-source
frameworks, research into ML methods has seen a recent
resurgence in nuclear physics [13]. ML approaches have shown
promise in optimizing data and experiments [14], building surrogate
models of density functional theory [15], and describing quantum
many-body wave functions for light nuclei [16, 17].

Several research groups are actively pursuing the problem of
describing nuclear systems with ML from a more data-centric
approach. These efforts currently attempt to improve existing
nuclear models by adding correction terms [18]. Gaussian
Processes (GP) have also been used for model averaging [19], but
this approach is inherently limited to where data is known as GP
methods typically revert to the mean when extrapolating. A further
limitation to training ML models on residuals (or the discrepancy of
theoretical model predictions with experimental data) is that the
methods are arbitrary. The changes learned by the network to
improve one model will not be applicable to another. These
approaches thus provide limited insight into the underlying
missing physics in modern models of the atomic nucleus.

In [20], a different approach was taken, where the masses of
atomic nuclei were modeled directly with a neural network. It was
shown that the masses of nuclei can be well described, and model
predictions with increased fidelity correlate strongly with a careful
selection of physically motivated input features. The selection of
input features is especially important in ML applications [21, 22].
Following this work, [23] showed that the size of the training set can
greatly be reduced, and the fidelity of model solutions increases
drastically, when an additional physical constraint is introduced as a
second loss function during model training.

The focus of this work is to present a Bayesian approach for
combining precision data with theoretical predictions to model the
mass of atomic nuclei. In Section 2, we present our ML algorithm
and define the model hyperparameters. In Section 3, we show the
results of our approach and assess the quality of model
extrapolations. We end with a short summary.

2 Methods

In this section, we outline our methodology: describe the neural
network, define our physics-based feature space, list model
hyperparameters, and discuss training.

2.1 Mixture density network

In a feed-forward neural network, inputs, x, are mapped to outputs, y,
in a deterministic manner. We employ the Mixture Density Network
(MDN)of Bishop [24]which differs from the standard approach. ThisML
network takes as inputs stochastic realizations of probability distributions
andmaps this to amixture ofGaussians. Thus, the network fundamentally
respects the probabilistic nature of both known data and model
predictions by both sampling the prior distribution of inputs and
predicting the posterior distribution of the outputs.

Formally, the conditional probability can be written as

p y|x( ) � ∑K
i�1

πi x( )N y|μi x( ), Iσ i x( )( ), (1)

whereN is the normal distribution with means, μi(x), and standard
deviations, σi(x). The πi(x) represent the weighting of each Gaussian
respectively. The covariance matrix is assumed to be diagonal, as
indicated by the use of the notation Iσi.

The neural network outputs are π, μ, and σ which depend only
on the input training set information x and the network weights. For
ease of reading the equation we have kept the dependence of the
network weights implicit.

The hyperbolic tangent function a(z) � ez−e−z
ez+e−z is used as the

activation function for the neurons in the linear layers of the
network. At the final layer a softmax function is used for the πi
so that the previous layer’s output can be mapped to a vector that
sums to unity. This choice ensures that the mixture of Gaussians can
be safely interpreted as a probability. Our MDN uses the PyTorch
[25] framework and can be run on either CPU or GPU architectures.

2.2 Physics-based feature space

We now discuss the components of the input vector, x. The
ground state of an atomic nucleus comprises Z protons and N
neutrons. While it is reasonable to start from these two independent
features as inputs [21], and [20] reported that a modestly larger
physics-based feature space drastically improves the prediction of
masses. For this reason, we employ a combination of macroscopic
and microscopic features that are of relevance to low-energy nuclear
physics properties.

In addition to the proton number Z and neutron number N, we
also use the mass number A = Z + N, and a measure of isospin
asymmetry, Pasym � N−Z

A , as relevant macroscopic features. For the
microscopic features that encode the quantized nature of atomic
nuclei, we employ notions of pairing by considering the even-odd
behavior of the proton, neutron, and mass numbers. This can
calculated by observing the binary values of these quantities
modulo 2; Zeo = Z ÷ 2, Neo = N ÷ 2, Aeo = A ÷ 2. A notion of
shell structure is also important. To encode this information we
include the number of valence nucleons or holes (beyond the mid-
shell) from the nearest major closed shell for protons, Vp, and
neutrons, Vn, respectively. The value of Vp or Vn is zero at a closed
shell and reaches a maximum at the mid-shell. The number of
valence nucleons is correlated with more complex excitations in
nuclei, including collective behavior that may appear [26, 27]. The
closed proton shells are set to 8, 20, 28, 50, 82, and 114. The closed
neutron shells are set to 8, 20, 28, 50, 82, 126, and 184. These choices
are free parameters in our modeling and can be modified to explore
different physics.

The input feature space is then a nine component vector:

x � Z,N,A, Pasym, Zeo, Neo, Aeo, Vp, Vn( ), (2)

where the first four components can be considered macroscopic
features and the last five are microscopic features. All remaining
features beyond the second are functions of Z and N exclusively.
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2.3 Hybrid data for training

Our training is hybrid data consisting of two distinct input sets.
The first is the mass data provided by the 2020 Atomic Mass
Evaluation (AME2020) [28]. The information in this set is very
precise with an average reported mass uncertainty of roughly
25 keV. Modern experimental advances, such as Penning trap
mass spectrometers enhanced with the Phase-Imaging Ion-
Cyclotron-Resonance technique, enable such high precision
measurements [29, 30].

The second mass data are provided by modern theoretical
models. The information in this set is less precise, owing to the
approximations made in the modeling of atomic nuclei. This set can
be calculated for nuclei that have not yet been measured, providing a
valuable new source of information. Nuclear models in this second
set include macroscopic-microscopic approaches like the Duflo-
Zuker model [31], the 2012 version of the Finite Range Droplet
Model (FRDM) [32], the WS4 model [33] and microscopic
approaches like UNEDF [34], and HFB32 [35].

In this work, we combine predictions from three theoretical
models: FRDM2012, WS4, and HFB32. Because these models do not
report individual uncertainties on their predictions, we instead
estimate theoretical model uncertainty using the commonly
quoted root-mean-square error or

σRMS �
�������������
1
N

∑N
j

dj − tj( )2√√
, (3)

where dj is the atomic mass from the AME and tj is the predicted
atomic mass from the theoretical model. The sum runs over each j
which defines a nucleus, (Z, N). For FRDM2012, WS4, and HFB32,
σRMS = 0.606, 0.295, and 0.608 MeV respectively, using
AME2020 masses. While the σRMS is a good measure of overall
model accuracy for measured nuclei, uncertainties are certainly
larger for shorter-lived systems. In this work, we do not seek to
preferentiate one model over another. For this reason, we increase
the assumed uncertainty of WS4 to a more reasonable 0.500 MeV
when probing its predicted masses further from stability.

Training for the hybrid input data is taken at random, rather
than selected based on any given criteria. The number of unique
nuclei from experimental data is a free parameter in our training.
The best performance is found for models provided with
approximately 20% of the AME, or 400–500 nuclei [23]. Adding
more than 20% of the AME data does not provide subsequent new
information for the model regarding the different types of nuclei that
may exist. Thus increasing this number does not offer any predictive
benefits, however, it does slow down training due to the larger input
space. The number of unique nuclei from theory is also a free
parameter. We find that as few as 50 additional unmeasured nuclei
can influence training, and therefore use this minimal number.
There is flexibility in the choice of this number. Larger values would
more strongly preference theoretical data in training than what is
considered here. Such studies may be useful in understanding the
properties of nuclei at the extremes of nuclear binding. In this work,
we sample the masses of 50 randomly chosen nuclei from each of the
three theoretical mass models independently.

The benefit of using hybrid data is that the neural network is not
limited to solutions of model averaging which can regress to the
mean when extrapolating. Instead, the combination of hybrid data
with ML-based methods affords the opportunity to create new
models that are capable of reproducing data, capturing trends,
and predicting yet to be measured masses with sound uncertainties.

2.4 Model training and hyperparameters

The network is set up with 6 hidden layers and 10 hidden nodes
per layer. The final layer turns the network into a Gaussian ad-
mixture. For masses we choose a single Gaussian, although other
physical quantities, such as fission yields, may require additional
components [36]. The Adam optimizer is used with learning rate
0.0002 [37]. We also implement a weight-decay regularization with
value 0.01. These hyperparameters were determined from a select set
of runs where the values were varied. By setting the network
architecture to the aforementioned values and fixing the feature
space to 9 inputs this work has 683 trainable parameters in the
model. Similar results can be found with a smaller number of
trainable parameters (on the order of 300) as in Mumpower
et al. [23].

We perform model training with two loss functions. The first
loss function, L1, captures the match to input data. The log-
likelihood loss for data is written as,

L1 � −ln ∑K
i�1

πi x( )
2π( )K/2σ i x( ) exp −‖y − μi x( )‖2

2σ i x( )2{ }⎡⎣ ⎤⎦, (4)

where y is the vector of training outputs and K is the total number of
Gaussian mixtures. The πi(x), μi(x), and σi(x), variables define the
Gaussians, as in Eq. 1. The minimization of this loss function
furnishes the posterior distributions of predicted masses.

The hybrid mixture of experimental data and theoretical data
enter into training as the variable y. Each nucleus defined uniquely
by a proton number Z and neutron number N. A Gaussian
distribution is assumed to represent the probability distribution
for sampling both experimental and theoretical data,

f y, μ, σ( ) � 1
σ

���
2π

√ exp −1
2

y − μ

σ
( )2( ). (5)

For the high-precision experimental data taken from the AME, the
mean is set to the evaluated mass, μ � MAME

Z,N , and the variance is set
to the reported uncertainty of a nucleus’ mass, σ � δMAME

Z,N . For the
theoretical data from the three mass models, the mean value is taken
as the prediction of the given mass model respectively. The
uncertainties in these models is not reported on a per nucleus
basis. Therefore an approximation to the model’s σRMS, which is
computed with respect to the AME, is used as the variance in the
probability distribution.

In this work, we do not include masses of isomeric states in the
training set. However, we note that since our previous works [20,
23], the AME2020 is now utilized, rather than the earlier AME2016.
This data better refines the separation of ground state and isomeric
states in evaluated masses, which continues to be a known source of
systematic uncertainty in the evaluation of atomic masses.
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For the AME data, we take roughly 500 nuclei for training,
leaving the remaining 80% of the AME as testing data. The number
of stochastic realizations per nucleus is 50. For theory data, we take
only 50 additional nuclei explicitly outside the AME. These nuclei
are also taken at random. A given nucleus is set to have 20 stochastic
realizations per theory model, for a total of 60 samples overall.

The training is most sensitive to precision masses that comprise
the AME. The training size of this data has been carefully
determined to be approximately 500 through a series of runs. To
determine this number, we fix all model hyperparameters and
incrementally increase the AME training size. In this way,
additional nuclei are continually added to the previous set, which
introduces new information to the model. The obtained results from
this set of runs are depicted in Figure 1.

When the training size is set to 450 or larger, the resulting
training and testing RMS values remain consistently around
0.35 MeV with minimal fluctuations. Conversely, if the training
set consists of fewer than 450 data points, the training RMS remains
small while the testing RMS is large. This observation can be
attributed to the limited amount of data available to the model.
With limited data, the model does not have sufficient information to
generalize outside of the training set. Consequently, the testing
masses are predicted poorly. To ensure that our model possesses
sufficient training information while preserving its predictive
capability, we have chosen to set the training size to 500. This
selection strikes a balance between providing ample training data for
robust learning while avoiding a potential pitfall of overfitting.

We summarize the model hyperparameters in Table 1. This table
lists the parameters which control the input data, the size of the

network, the admixture of Gaussians, the valid range of predictions,
the weight of the physics constraint, as well as basic physics
knowledge of the closed shells. In this work we fix these
parameters. A more complete study of all model hyperparameters
is the subject of future investigations.

One essential observation of ground-state masses is that they
obey the eponymous Garvey-Kelson (GK) relations [38]. This result
suggests a judicious choice of mass differences of neighboring nuclei
that minimizes the interactions between nucleons to first order,
resulting in particular linear combinations that strategically sum
to zero.

If N ≥ Z, the GK relations state that the mass difference is

MZ−2,N+2 −MZ,N +MZ−1,N
−MZ−2,N+1 +MZ,N+1 −MZ−1,N+2 ≈ 0,

(6)

and for N < Z,

MZ+2,N−2 −MZ,N +MZ,N−1
−MZ+1,N−2 +MZ+1,N −MZ+2,N−1 ≈ 0.

(7)

Higher order GK mass relations may also be considered, as in [39].
However, the use of these constraints alone does not yield viable
predictions far from stability due to the accumulation of uncertainty
as the relationship is recursively applied beyond known data [40].

As an alternative, we perform no such iteration in our
application of the GK relations. Eqs. 6, 7 are used directly, and it
is important to recognize that these equations depend exclusively on
the masses. Thus the second (physics-based) loss function can be
defined purely as a function of the ML model’s mass predictions.

FIGURE 1
Root-Mean-Square (RMS) Error relative to AME2020 data across various training sizes for a fixed random seed.
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To enforce this physics-based observation, the second loss
function can be defined as

L2 � −ln ∑
C{ }
GK μ( )∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣⎛⎝ ⎞⎠, (8)

where GK is function that defines the left-hand side of Eqs. 6, 7 and
we only use the model’s predicted mean value of the masses, μ. The
sum is performed over any choice of subset, {C}, of masses and does
not have to overlap with the hybrid training data. The absolute value
is necessary to ensure that the log-loss remains a real number. As
with the data loss, L1, we also seek to simultaneously minimize the
physics-loss, L2, which amounts to reducing the error among the
difference in masses defined in the above equations.

An alternative to Eq. 8 that is, potentially more restrictive, is to
take the absolute value inside the summation

Lalt
2 � −ln ∑

C{ }
GK μ( )∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠. (9)

Because Eq. 9 sums many non-zero items, it is a larger loss than
using Eq. 8. In this case, the strength of the physics hyperparameter
(discussed below) should generally be lower than in the case of using
Eq. 8. A strong preference for selecting one functional form for the
physics-based loss over the other has not been found.

The total loss function used in training is taken as a sum of the
data and physics losses

Ltotal � L1 + λphysicsL2 (10)

where λphysics is a model hyperparameter which defines the strength
of enforcement of the physics loss. We have found that values

between 0.1 and 2 generally enforce the physics constraint in model
predictions.

2.5 Assembling a model

A schematic of our methodology is shown in Figure 2 and
encapsulated below. The modeling of masses begins by setting
hyperparameters, summarized in Table 1, for the particular
calculation. A random selection of hybrid data is made, as can be
seen in Figure 3. The bulk of the masses selected for training comes
from the AME (black squares) where high-precision evaluated data
resides (gray squares). Only a handful of masses from theoretical
models are taken for training (red squares).

After selection of hyperparameters and data, training begins
which seeks to minimize the total loss, Eq. 10. Training can take
many epochs, and the data loss as well as the physics loss play
important roles throughout this process, as discussed in [23]. Once
the MDN has been trained on data, the results are assembled into
predictions by sampling the posterior distribution several thousand
times. The final output is a prediction of the mean value of the
expected mass, M, and its associated uncertainty, σ(M) for any
provided nucleus defined by (Z, N).

3 Results

In this section we present a MDNmodel trained on hybrid data.
We analyze the performance with known data and discern the ability
to extrapolate model predictions. We evaluate the impact of
including theoretical data and the physics-based loss function.

TABLE 1 The neural network hyperparameters used in this work.

Parameter Value(s) Comment

λlayers 6 Defines the number of hidden layers

λnodes 10 Defines the number of hidden nodes per hidden layer

λgauss 1 Defines the number of Gaussians used in the MDN.

λlr 0.0002 Defines the learning rate of the Adam optimizer

λwd 0.01 Defines the weight-decay regularization

λexp 506 Defines the number of AME2020 data used in training

λexp−pulls 50 Defines the number of samples per AME mass

λtheory 50 Defines the unique nuclei probed using the three models

λtheory-pulls 20 Defines the number of samples per theory mass

λphysics 1.0 Defines the strength of the physics loss enforcement

λZ-low 5 Defines the minimal proton number for the network

λN-shells 8, 20, 28, 50, 82, 126, 184 Defines the major closed neutron shells

λZ-shells 8, 20, 28, 50, 82, 114 Defines the major closed proton shells

λFRDM2012 0.6 MeV Defines the uncertainty used in probing FRDM2012 masses

λWS4 0.5 MeV Defines the uncertainty used in probing WS4 masses

λHFB32 0.6 MeV Defines the uncertainty used in probing HFB32 masses
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3.1 Comparison with existing data

The final match to 506 training nuclei for our MDN model is
σRMS = 0.279 MeV. The total σRMS for the entire AME2020 is
0.395 MeV. This is an increase of roughly 0.116 MeV between
training and verification data which is on the order of the
accuracy of the GK relations. We limit the calculation of σRMS to
nuclei with A ≥ 50 as this more aptly captures the predictive region
of our model. While the model can predict masses for nuclei lighter
than A = 50, it generally performs worse in this region because there
are fewer nuclei at lowermass numbers than in heavier mass regions.
Therefore, there are fewer light nuclei selected in the random sample
than heavy nuclei. Different sampling techniques (for instance, first
grouping nuclei using K-means) may be employed that could
alleviate the present bias.

The absolute value of the mass residual,
ΔMZ,N � |MAME

Z,N −MMDN
Z,N |, is one way to measure model

performance. Figure 4 plots this quantity across the chart of
nuclides versus the AME2020. The predictions of light nuclei
tend to have an error on the order of several MeV with heavier
nuclei around 0.3 MeV. The MDN model performance is on par
with commonly used models in the literature.

In comparison to our previous results discussed in [23], the
addition of light nuclei in training is found to relatively increase the
discrepancy for heavier nuclei. The additional information modestly
reduces the overall model quality as measured by σRMS. On the other
hand, the model is better positioned to describe the nuclear
landscape more completely, insofar as the training process
introduces information on the nuclear interaction, that is,
uniquely captured in low-mass systems.

FIGURE 2
A schematic of our methodology. The procedure used in this work combines high precision evaluated data with a handful of less-precise theoretical
data. This results in predictions with well-quantified uncertainties across the chart of nuclides.

FIGURE 3
The chart of nuclides showing the extent of the 2020 Atomic Mass Evaluation (AME) indicated by grey squares, training nuclei part of the AME
indicated by black squares, and the extra theoretical nuclei indicated by red squares. Closed proton and neutron shells are indicated by parallel lines.
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The behavior of the model with respect to select isotopic
chains are shown in Figure 5. In regions of the chart where the
MDN model is confident in its predictions such as in the Z = 79
isotopic chain, the uncertainties are very well constrained. The
converse is also true, as is the case with higher uncertainties

along the Z = 43 isotopic chain. The tin (Z = 50) isotopic chain
highlights an intermediate case.

Inspection of this figure shows that the MDN model has a
preference for evaluated data in this region and does not follow the
trends of any of the theoretical predictions, despite some of these

FIGURE 4
The absolute value ofmass residuals across the chart of nuclides using anMDNmodel and the AME2020. Heavier nuclei are generally well described
by the model while lighter nuclei exhibit larger discrepancies. See text for details.

FIGURE 5
The prediction of masses along three isotopic chains in comparison to AME2020 data (black triangles). Masses are plotted in reference to the
theoretical trainingmodels: FRDM2012,WS4, andHFB32. TheMDNmodel captures the trends exhibited in data and furnishes individual uncertainties (the
one, two, and, three sigma confidence intervals are shown by blue shading).
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masses being provided for training. This result reveals a unique
feature of our modeling: evaluated points, due to their low
uncertainties, are highly favored while theoretical points, with
relatively larger uncertainties, are used as guideposts for how
nuclei behave where there is no data. How much a particularly
model is favored farther from stability depends on how much
weighting we provide it with the choice of model uncertainty. In
this work we treat the choice of weighting of theoretical models as
free parameters. As these parameters are set to be roughly
equivalent, recall Table 1, no specific theoretical model is favored
where measurements do not exist. The trends of the MDN
predictions far from the stable isotopes are discussed in the next
section.

3.2 Trends away from measured data

The extrapolation quality of atomic mass predictions is an
important problem, especially for astrophysical applications
where this information is needed for thousands of
unmeasured species [41, 42]. The formation of the elements
in particular requires robust predictions with well-quantified
uncertainties [43]. The MDN supplies such information, and we
now gauge the quality of the extrapolations by comparison with
other theoretical models.

The Qβ(Z, N) =MZ,N −MZ+1,N−1 is plotted in Figure 6 for the tin
(Z = 50) isotopic chain. Additionally plotted is the uncertainty, δQβ,
which is calculated via propagation of error

δQβ Z,N( ) �
���������������������������������������
σ2 MZ,N( ) + σ2 MZ+1,N−1( ) − 2σ MZ,N,MZ+1,N−1( )√

.

(11)
The mass uncertainties σ(MZ,N), σ(MZ+1,N−1) are outputs of the
MDN. The correlation between the masses, σ(MZ,N, MZ+1,N−1), is
assumed to be zero. The model has excellent performance where
data is known and this result can be considered representative for
other isotopic chains. Predicted uncertainties grow with decreasing
and increasing neutron number outside of measured data,
underscoring the Bayesian nature of our approach.

Also shown in Figure 6 are the theoretical models used in
training. Comparison with these models shows that the MDN
continues to retain physical behavior when extrapolating to
neutron deficient or neutron rich regions. Intriguingly, the MDN
model does not preferentiate one specific model when extrapolating.
Instead, where there begins to be discrepancies among the
theoretical models, the uncertainties begin to increase. For Qβ,
the predictions along the tin isotopic chain begin to be
dominated by uncertainties roughly ten units from the last
available AME2020 data point.

In Figure 7 we show the extrapolation quality of one-neutron
separation energies, S1n(Z,N) =Mn +MZ,N−1 −MZ,N. These energies
play a significant role in defining the r-process path and are pivotal
in shaping the isotopic abundance pattern [44]. The propagation of
error formula, Eq. 11, is again employed to calculate δS1n since this
quantity also depends on mass differences. The uncertainty of the
mass of the neutron, Mn, can be safely ignored. The qualitative
behavior of S1n is well described. No unphysical inversions of S1n are

FIGURE 6
The total available energy for nuclear β− decay, Qβ, along the tin isotopic chain (Z =50) with a 1-σ confidence interval. The MDN model (blue)
reproduces known data (black) and continues reasonably physical behavior when extrapolating. Theoretical models used in training are plotted for
comparison.
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found with the MDN model in contrast to the HFB32 model where
this behavior can arise; observe around N = 105. Again, we find that
roughly ten units from the last measured isotope, uncertainties begin
to rise substantially.

A consequence of the growth of uncertainties is that the
prediction of the neutron dripline, S1n = 0 is also largely
uncertain for any isotopic chain. We conclude that hybrid data
does not presently place stringent constraints on this quantity,
which is widely recognized as an open problem by the
community [45–47].

The comparison with theoretical models in Figures 6, 7 serves
two purposes. First, it shows that our model remains physical when
extrapolating into regions where data does not exist, mimicking the
behavior of well-established theoretical models. Second, despite
training on theoretical data, the model does not regress to the
average of the model predictions far from the stable isotopes as
observed in model averaging procedures. Instead, the model is free
to explore various solutions whilst retaining physical qualities. This
is an important point, as there could be “missing physics” or other
deficiencies in standard theoretical models that can be explored
freely in physics-constrained ML based methods such as the one
presented here.

Another quantity that can be used to gauge the quality of
extrapolations is the two-neutron separation energy, S2n(Z, N) =
2Mn +MZ,N−2 −MZ,N. The two-neutron separation exhibits less odd-
even staggering than S1n because the subtraction always pairs even-
N or odd-N nuclei. The behavior of the MDN model is shown in
Figure 8 for the lutetium (Z = 71), tungsten (Z = 74), iridium (Z =
71), and mercury (Z = 80) isotopic chains. All experimental data falls

within the 1-σ confidence intervals except for 206Hg. A relatively
robust shell closure is predicted at N = 126, though there is some
weakening at the smaller proton numbers.

Finally, we consider the behavior of the physics of ground-state
masses across the nuclear chart using the predictions of the MDN
model. Whether or not the GK relations are preserved is yet another
test of the extrapolation quality of the MDN. The calculation of the
left hand side of Eqs. 6, 7 is shown in Figure 9 across the chart of
nuclides. Yellow shading indicates the GK relations are satisfied
while orange and red shading indicate potential problem areas
where the relations have broken down. Given the behavior seen
in the previous figures, it is clear that towards the neutron dripline,
the uncertainties have grown so large that the model is unsure of the
preservation of the GK relations. To emphasize this point, we
calculate the nuclei for which the mass uncertainty, δM, is larger
than the one-neutron separation energy, S1n, and designate this as a
region bound in black. We observe that this bounded region is
precisely where the orange and red regions are located. Figure 9
suggests that a potential modification of the loss function that
encodes the GK relations could be made to include uncertainties
obtained from the MDN. This line of reasoning is the subject of
future work.

3.3 Impact of theoretical data and physics
constraint

Wenow assess the impact of the inclusion of theoretical data and
the physics loss on the predictive capabilities of the MDN. Figure 10

FIGURE 7
The one-neutron separation energy, S1n, along the promethium isotopic chain (Z =61) with a 1-σ confidence interval. The MDN model (blue)
reproduces known data (black) and continues reasonably physical behavior when extrapolating. Theoretical models used in training are plotted for
comparison.
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shows four different training sets in the context of S1n values. The
line labeled MDN is the network shown throughout this manuscript
that includes both hybrid data and physical constraint. A1 is a MDN
model trained only with experimental data, lacking information

about theory or the physical loss defined by the GK relations; A2 is a
MDN model trained with the physics loss but without theoretical
data; and A3 is a MDN model trained with theory data but without
any physics loss.

FIGURE 8
The two-neutron separation energy, S2n, along several isotopic chains plotted with a 1-σ confidence interval. The MDN model (colors) reproduces
known data (black) and continues reasonably physical behavior when extrapolating.

FIGURE 9
A test of how well the GK relations are maintained throughout the chart of nuclides. Lower values indicate predictions inline with GK, which is found
nearly everywhere, except for themost extreme cases where themodel is uncertain at the limits of bound nuclei. The black outlined nuclei have δM > S1n,
indicating where mass uncertainties are large.
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From these four sets, it is clear that both hybrid data and the physics-
based loss are necessary to provide quality extrapolations into unknown
regions. Training with the lack of theory and GK (A1) exhibits a less
desirable preference for a smooth extrapolation of S1n values. The
addition of the physics loss (A2) improves the situation by restoring
the odd-even behavior observed in measured nuclei. The expected
behavior in S1n is also restored by run A3, where the hybrid data
includes theory but training is not informed of the GK relations.

We note that the improvement in extrapolation behavior resulting
from the hybrid data and physics-based loss is generally independent of
any hyperparameters that otherwise appear in the MDN. In particular,
we have preliminarily verified this result against systematic variations in
relevant hyperparameters, including network size, training size, different
nuclei, different input features and different blends of theoretical models.
All of these variations demonstrate a similar propensity for improvement
when both physics loss and hybrid data are used. These results lead us to
reaffirm our previous observation that the addition of theory data serves
as guideposts for the network solutions while the GK relations are used
to ensure a refined solution.

3.4 Estimated growth of uncertainties with
neutron number

The behavior of mass uncertainties as one traverses the chart of
nuclides can be ascertained using the MDN predictions. Here we

consider the evolution of uncertainties provided by an MDN model
as a function of neutrons from the line of β stability, δN. The line of β
stability may be approximated using the Weizsäcker formula,

Nβ � Z 1 + aC
2aA

A
2
3( ) (12)

whereNβ is the neutron number of the β-stable nucleus for the given
value of Z (proton number) and A (nucleon number). The Coulomb
coefficient is taken to be aC ~ 0.711 and the asymmetry coefficient is
taken to be aA ~ 23.7. For a given nucleus with Z protons and N
neutrons, the distance from the β stability line is then,

δN � N −Nβ. (13)

Note that this quantity can be negative indicating neutron deficient
nuclei. A final remark regarding the definition of δN is an
observation that nearly identical behavior can be found by
measuring instead from the last stable isotope defined in the
NuBase (2020) evaluation [48].

It is important to realize that for each isotopic chain, δN may
reference a slightly different neutron number for the particular
isotope. The choice of this variable provides a relatively straight
forward way to observe how mass uncertainties grow far from
known data.

The average and standard deviation of the MDN model’s
uncertainties are shown by a blue line and shaded region in

FIGURE 10
Comparison of MDN models with different assumptions for input data and training loss along the dysprosium (Z = 66) isotopic chain. See text for
details.
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Figure 11. Here we can see that the model predictions are fairly
robust for neutron-rich nuclei (δN > 0) up to about 10 neutrons
from β stability. At this point the uncertainties start to rapidly grow.
Because the model is trained on a random selection of nuclei,
neutron-deficient nuclei are naturally less represented. Thus,
uncertainties grow even faster for nuclei with δN < 0 in contrast
to their neutron-rich counterparts.

The functional form of the average uncertainty growth as a
function of neutrons from the β-stability line is well approximated
by the following relation,

σ δN( ) ≈ p0 + p1δN + p2δN
2 + p3δN

3 + p4δN
4 + pδN

5 , (14)
where the parameters, pi, are fit numerically (least squares) and are
given in Table 2. This functional form may be readily used in
simulations of nucleosynthesis to approximate uncertainties in
masses with models that do not provide this information.

4 Conclusion

We present a Bayesian averaging technique that can be used to
study the ground-state masses of atomic nuclei with corresponding
uncertainties. In this work, we combine high-precision evaluated
data, weighted strongly, with theoretical data for nuclei which are
further from stability, more poorly understood, and therefore
weighted more weakly. Training of a probabilistic neural network
is used to construct the posterior distribution of ground-state
masses. Along with a loss function for matching data, a second,
physics-based loss function is employed in training to emphasize the
relevant local behavior of masses. Excellent performance is obtained

with comparison to known data, on the order of σRMS ~ 0.3 MeV and
the physical behavior of solutions is maintained when extrapolating.
Furthermore, the model does not regress to the mean of theoretical
predictions when extrapolating which implies flexibility in finding
novel physics-constrained solutions. In contrast to our previous
work (limited to Z > 20) [23], the MDN model of this work is
capable of describing systems as light as boron (Z = 5). It is found
that available data from experiment and theory are not, at this time,
sufficient to resolve the relatively large uncertainties towards the
limits of bound nuclei using the framework developed in this work.
Uncertainties in predicted masses are found to grow moderately as
in Eq. 14.We emphasize the continuing need for advances in nuclear
experiment and theory to reduce these uncertainties.

Our Bayesian averaging procedure enables the rapid
construction of a mass model using any combination of precise
and imprecise data through adjustable stochastic weights of the
hybrid training inputs. For instance, if a particular theoretical model
is favored over another, its sampling can be adjusted accordingly to
emphasize its importance. Similarly, new high-precision data may
be incorporated in the future from measurement campaigns at
radioactive beam facilities. At the same time, our technique also
enables freedom in the exploration of the relevant physics of
ground-state masses. This can be achieved by probing a variety
of physics-based features, for example, or by introducing alternative
physics-based loss functions in training. Machine Learning/
Artificial Intelligence approaches such as the one presented here
hold great promise to advance modeling efforts in low-energy
nuclear physics where the typical model development time scale
is on the order of a decade or longer.

The methodology outlined here can be generalized to describe
any nuclear physics property of interest, particularly when reliable
extrapolations are necessary. This technique opens new avenues into
Machine Learning research in the context of nuclear physics through
the unification of data, theory, and associated physical constraints to
empower predictions with quantified uncertainties. We look
forward to extensions of this work to model nuclear decay
properties, such as half-lives and branching ratios, as particularly
promising opportunities in the near future.
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