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To explore malware propagation mechanisms in networks and to develop optimal
strategies for controlling the spread of malware, we propose a susceptible-
unexposed-infected-isolation-removed epidemic model. First, we establish a
non-linear dynamic equation of malware propagation. Then, the basic
reproductive number is derived by using the next-generation method. Finally,
we carry out numerical simulations to observe the malware spreading in WSNs to
verify the obtained theoretical results. Furthermore, we investigate the
communication range of the nodes to make the results more complete. The
optimal range of the nodes is designed to control malware propagation.
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1 Introduction

Malware attacks pose a serious security risk, which threatens our ever-expanding
wireless sensor networks (WSNs). The characteristic of malware propagation in WSNs is
similar to how an epidemic spreads among humans. The malware at each infective node may
seek to contract more susceptible nodes by amplifying the transmission range and the media
scanning rate, thereby accelerating its spread. Kephart et al [1] originally applied the mean-
field theory to study the modeling of malware propagation.

Since then, a number of mathematical epidemic models, ones have looked into dynamic
behaviors of malware propagation. In the past few decades, many researchers focused on the
Susceptible-Infectious-Recovered (SIR) epidemic model to describe behaviors of malware
propagation, such as Youssef et al. [2], Feng et al. [3], and Rey et al [4]. In their works, all
nodes are divided into the susceptible node, infectious node, and recovered node. The
interaction of these three classes is governed by the following model, consisting of three non-
linear differential equations:
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dS t( )
dt

� −γS t( )I t( ),
dI t( )
dt

� γS t( )I t( ) + μI t( ),
dR t( )
dt

� −μI t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where S(t), I(t), and R(t) are the densities of the susceptible node,
infectious node, and recovered node at time t, respectively, and γ and
μ are the multiplication rate and the recovered rate, respectively.

In recent years, many malware propagation models based on the
classical SIR model have been developed. For example, Xiao et al. [5]
established a SIRS model of malware propagation with diffusion and
time delays. They forecasted the occurrence of tipping points and
studied the tipping dynamics due to the Turing instability and Hopf
bifurcation. Dong et al. [6] proposed a fractional network SIRS
epidemic model with fuzzy transmission and saturated treatment
function. Carnier et al. [7] generalized the methodology of
derivation of the exact Markov chain for any malware model
based on the simplest compartmental model SIR model. In those
proposed models, the susceptible, exposed, infected, and recovered
(SEIR) model is the most adopted to characterize the spreading of
malware. In addition, calculation of the basic reproduction numbers
and local stability of a non-trivial equilibrium and an endemic
equilibrium are widely concerned in mathematical epidemiology.
For example, Prajapati et al. [8] proposed an epidemic model to
describe the spread of malicious objects in the network due to
removable devices. Equilibrium points, both endemic and malware
free, were obtained, and they also formulated a reproduction
number. Liu et al. [9] proposed a delayed e-epidemic SEIRS
malware propagation model with a generalized non-monotone
incidence rate. Shakya et al. [10] proposed the correlation-based
SIR model, which takes into account the spatial correlation
characteristics of WSNs. The basic reproduction number was
derived, and the local stability and Hopf bifurcation analysis were
performed in their works. Moreover, Liu et al. [11] proposed a
distributed continuous-time model in which two competing viruses
spread over a network. The unique equilibrium and global stability
were performed in their work. Zhang et al. [12] proposed an
e-epidemic time-delay epidemic model to study the appearance
of delay dynamics and performed non-linear stability analysis,
Hopf bifurcation analysis, and an analysis of its stability. Due to
the exposed nodes in WSNs, they may have different infection rates
during malware propagation, Yu et al. [13] proposed the improved
SEIR model with two infectious rates in the cyber-physical systems
to explore the transition mechanism. Dmitriy et al. [14] divided
infectious nodes into susceptible-infected by strain 1 or by strain 2-
susceptible with duty cycles. The basic reproduction number and the
stability were analyzed in their work. Dong et al. [15, 16] proposed
the improved SEIR model with two distinct compartment exposed
nodes. The dynamics of the network-based fractional order
epidemic model were studied in their work. Nwokoye et al. [17]
combined the strength of the above models and proposed a multi-
group model, which represents multiple exposed infections due to
worms and viruses. In addition to the SEIR model, some researchers
have tried to divide nodes into more classes. For example, Ojha et al.
[18] proposed an improved epidemic model that aggregates
quarantine and vaccination techniques. The basic reproduction

number and equilibrium points were analyzed in their work.
Hosseini et al. [19–21] proposed a new dynamic model of
malware propagation in heterogeneous networks based on the
rumor diffusion model. In their works, all the nodes were
divided into six classes: susceptible nodes, exposed nodes,
infectious nodes, recovered nodes, vaccinated nodes, and
quarantine nodes. In addition to their characteristic of the
spreading over the network, the optimal strategies are also a
concern for many researchers, such as Muthukrishnan et al. [22],
who investigated an optimal control strategy to reduce malware
propagation in WSNs. Liu et al. [23] extended the traditional SIR
model by adding another delitescent compartment to address the
behavior of malware. The optimal control theory was employed to
study malware immunization strategies. Moreover, Nwokoye et al.
[24] reviewed the epidemic models of malware propagation and
control in WSNs. Jain et al. [25] introduced an optimal control of
rumor spreading in a homogeneously mixed population tominimize
the density of rumor adopters and control cost.

The majority of previous studies have focused on modeling
malware propagation but ignored the characteristics of WSNs. How
to design efficient control strategies to reduce the spread of malware
is little discussed. For example, the malware transmission rate is a
parameter related to the communication radius of the node
communication volume; the node recovery rate can be realized
by a node system update. Therefore, combining node characteristics
can optimize the wireless sensor network by reducing the
propagation radius and increasing the update frequency. To
overcome such weaknesses, an improved malware propagation
model is introduced in this article. The basic reproduction
number is derived in detail, which is the main contribution we
make. The novelty of this work is to explore malware propagation
mechanisms in networks through the proposed SUIQR model and
finding the optimized strategies for controlling the spread of
malware based on the reproduction number. The rest of the
article is organized as follows. The main contribution of this
article is briefly summarized in Section 2. A new difference
model is proposed, called a SUIQR model. Then, the basic
reproduction number of the proposed model is derived, and local
stability is analyzed in Section 3. In Section 4, optimal strategies are
discussed to control the spread of malware propagation.
Mathematical results are illustrated by numerical simulations,
and some control strategies are given in Section 5. Finally, the
conclusions and further questions are presented in Section 6.

2 Model formulation

In this section, a new differential equation epidemic model is
built to describe the dynamic behaviors of malware propagation.
The total nodes inWSNs are divided into five categories: susceptible,
unexposed, infectious, isolation, and removed, called SUIQR. The
relationship of these categories is shown in Figure 1, and the
meaning of all the symbols in Figure 1 is shown in Table 1.

The susceptible nodes will be infected by the unexposed nodes
and infectious nodes at the rate of γ. There are γS(U + I) nodes,
which will remove from class S into class U. Due to the system being
updated at a certain period, the nodes in WSNs will enter the class R
at the rate of μ. The recovered nodes will enter class S at the rate of τ
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due to protection failure [26, 27]. Therefore, the transfer
relationships between S and other classes can be expressed as
follows:

dS

dt
� −γS U + I( ) + τR − μS. (2)

The density of the unexposed nodes will increase when the
susceptible nodes are infected. Some unexposed nodes will be found
as the isolated class Q at the rate of η through regular checking. Some
unexposed nodes will move into class I before being recovered at the
rate of β. Therefore, the transfer relationships between U and other
classes can be expressed as follows:

dU

dt
� γS U + I( ) − μU − βU − ηU. (3)

The density of the infectious nodes will increase because some
unexposed nodes will move into class I. Some nodes in class I will

remove into class R due to the periodic system updates at the rate of
μ. Therefore, the transfer relationships between I and other classes
can be expressed as the following equations:

dI

dt
� βU − μI, (4)

The density of the isolation nodes will increase when the
unexposed nodes are founded. Some nodes in class Q will
remove into class R due to the periodic system updates at the
rate of μ. Therefore, the transfer relationships between Q and other
classes can be expressed as the following equations:

dQ

dt
� ηU − μQ. (5)

Assuming the total number of the nodes in WSNs is a constant.
Therefore, the transfer relationships between R and other classes can
be obtained as follows:

FIGURE 1
The transfer diagram of a system.

TABLE 1 Definition of the parameters.

Symbols Physics meanings

S(t) The rate of the susceptible nodes at time t, denoted as S

U(t) The rate of the unexposed nodes at time t, denoted as U

I(t) The rate of the infectious nodes at time t, denoted as I

Q(t) The rate of the isolation nodes at time t, denoted as Q

R(t) The rate of the recovered nodes in at time t, denoted as R

γ The conversion rate that susceptible nodes contract with the other nodes

μ The recover rate of nodes into recovered class

τ The period of the nodes from recovered to susceptible

β The transmission rate from unexposed nodes to infected ones

η The transmission rate from unexposed nodes to isolation ones
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dR

dt
� μS + μU + μI + μQ − τR. (6)

Combining the above ideas, the SUIQR model governing the
transmission of malware is described by the following system of
non-linear differential equations:

zS

zt
� −γS U + I( ) + τR − μS,

zU

zt
� γS U + I( ) − μU − βU − ηU,

zI

zt
� βU − μI,

zQ

zt
� ηU − μQ,

zR

zt
� μS + μU + μI + μQ − τR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

3 The mathematical analysis of the
SUIQR epidemic model

The basic reproductive number is a key parameter to represent
the infected numbers in an average infection period. Firstly, the
global stability of the malware-free equilibrium (MFE) is introduced
[28]. We can get the SUIQR model 7) to have a malware-free
equilibrium point Pf* and the malware-endemic equilibrium point
Pe* by solving the following Eq. 8:

−γS × U + I( ) + τR − μS � 0,
γS × U + I( ) − μU − βU − ηU � 0,
βU − μI � 0,
ηU − μQ � 0,
S + U + R + I + Q � 1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (8)

The malware-free equilibrium point Pf* and the malware-
endemic equilibrium point Pe* are shown in Eq.9 and Eq.(10),
respectively:

Pf* Sf* , Uf* , If* , Qf* , Rf*( ) � τ

μ + τ
, 0, 0, 0,

μ

μ + τ
( ). (9)

Pp
e Spe , U

p
e , I

p
e , Q

p
e , R

p
e( ) � βμ + ημ + μ2

βγ + γμ
,−μ βμ2 + ημ2 + μ2τ + μ3 − βγτ + βμτ + ημτ − γμτ( )

μ + τ( ) γβ2 + 2γβμ + ηγβ + γμ2 + ηγμ( ) ,(
−β βμ2 + ημ2 + μ2τ + μ3 − βγτ + βμτ + ημτ − γμτ( )

μ + τ( ) γβ2 + 2γβμ + ηγβ + γμ2 + ηγμ( ) ,

−ημ
3 + η2μ2 + ημ2τ + η2μτ + βημ2 − βηγτ + βημτ − ηγμτ

μ + 1( ) γβ2 + 2γβμ + ηγβ + γμ2 + ηγμ( ) ,
μ

μ + τ
)
(10)

Then, the next-generation method (NGM) is applied to calculate
the basic reproductive number R0 [29]. The main advantage of the
NGM is that it allows the research to ignore any uninfected classes
and focus only on the infected classes. There are three infected
classes in the proposed SUIQRmodel. Let X = (U,I,Q)T, the model 7)
equals to the following form:

dX

dt
� F − V. (11)

Where F �
γS(U + I)

0
0

⎛⎜⎝ ⎞⎟⎠ and V �
μU + βU + ηU
−βU + μI
−ηU + μQ

⎛⎜⎝ ⎞⎟⎠.

We define f and v as the Jacobian matrices of F and V evaluated
at the malware-free equilibrium point Pf* :

f � zF

zX
( )|Pf* �

γSf* γSf* 0
0 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠ �

τγ

μ + τ

τγ

μ + τ
0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (12)

v � zV

zX
( )|Pf* �

μ + β + η 0 0
−β μ 0
−η 0 μ

⎛⎜⎝ ⎞⎟⎠. (13)

The basic reproductive number R0 is the largest eigenvalue of the
matrix fv−1 given by Eq. 14:

fv−1 �

β + μ( )τγ
μ μ + τ( ) β + η + μ( ) γτ

μ μ + τ( ) 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

Then, we can obtain the basic reproductive number R0.

R0 � ρ fv−1( ) � β + μ( )τγ
μ μ + τ( ) β + η + μ( ). (15)

When R0 < 1, it means that the SUIQR model will reach a
malware-free situation eventually; when R0 > 1, the SUIQR model
always has malware and has an endemic equilibrium.

Finally, we analyze the sensitivity of each parameter (μ, η, β, λ)
about the basic reproductive number and obtain normed forward
sensitivity indexes as follows:

zR0

R0

zλ

λ

� 1> 0,

zR0

R0

zβ

β

� ηβ

β + μ( ) β + μ + η( )> 0,

zR0

R0

zμ

μ

� τγ μ2 + μτ( ) β + η + μ( ) − τγ β + μ( ) 3μ2 + 2μ β + η + τ( ) + τβ + τη( )
μ + τ( ) β + η + μ( ) β + μ( )τγ < 0,

zR0

R0

zη

η

� −η
β + μ + η

< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

It is obvious that λ, β and R0 are proportional, η, μ, and R0 are
inverse proportional. The increase of η or μmay result in the decrease
of R0. The decrease of λ and βmay result in the decrease of R0. Above
all, we can take some measures to control the spread of malware.

• Reduce the period of system updates. This can improve the
defense capabilities of nodes, that is, to increase μ.

• Reduce the communication frequency between nodes, that is,
to decrease λ. This will reduce the conversion rate that
susceptible nodes contract with the other nodes.

The Jacobian matrix of the SUIQR model at Pe* is as follows:

J �

−γ Up
e + Ipe( ) − μ −γSpe −γSpe 0 τ

γ Up
e + Ipe( ) γSe − μ − β − η γSe 0 0
0 β −μ 0 0
0 η 0 −μ 0
μ μ μ μ −τ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (17)
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The corresponding characteristic equation is shown in Eq. 18:

λ5 + A4λ
4 + A3λ

3 + A2λ
2 + A1λ + A0 � 0. (18)

A4 � β + η + 4μ − τ + γIpe − γSpe + γUp
e ,

A3 � 3βμ + 3ημ − βτ − ητ − 5μτ + 6μ2 + βγIpe + ηγIpe − βγSpe + 3γμIpe + βγUp
e + ηγUp

e−γτIpe − 3γμSpe + 3γμUp
e + γτSpe − γτUp

e ,
A2 � 3βμ2 + 3ημ2 − 9μ2τ + 4μ3 − 4βμτ − 4ημτ + 3γμ2Ipe − 3γμ2Spe + 3γμ2Up

e + 2βγμIpe+2ηγμIpe − βγτIpe − 2βγμSpe − ηγτIpe + 2βγμUp
e + 2ηγμUp

e + βγτSpe − 4γμτIpe−βγτUp
e − ηγτUp

e + 4γμτSpe − 4γμτUp
e ,

A1 � βμ3 + ημ3 − 7μ3τ + μ4 − 5βμ2τ − 5ημ2τ + γμ3Ipe − γμ3Spe + γμ3Up
e + βγμ2Ipe+ηγμ2Ipe − βγμ2Spe + βγμ2Up

e + ηγμ2Up
e − 5γμ2τIpe + 5γμ2τSpe − 5γμ2τUp

e

−3βγμτIpe − 3ηγμτIpe + 3βγμτSpe − 3βγμτUp
e − 3ηγμτUp

e ,
A0 � 2γμ3τSpe − 2βμ3τ − 2ημ3τ − 2γμ3τIpe − 2μ4τ − 2γμ3τUp

e − 2βγμ2τIpe − 2ηγμ2τIpe+2βγμ2τSpe − 2βγμ2τUp
e − 2ηγμ2τUp

e .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(19)

According to the Routh-Hurwitz criterion [27], when R0 > 1, the
endemic equilibrium Pe*Se*, Ue*, Ie*, Qe*, Re* is asymptotically stable.

4 The optimal control strategy

We assume that the distribution of the nodes follows the Poisson
point process in WSN. The probability of there being k nodes in the
communication range can be calculated by the following
equation (30):

P X � k{ } � λπR2
1( )ke−λπR2

1

k!
. (20)

Where λ is the density of the nodes in WSNs, and R1 is the
communication range of each node, which is always an
adjustable parameter.

Therefore, the conversion rate that susceptible nodes contract
with the other nodes can be calculated by the following equation:

γ � E X( ) � λπR2
1. (21)

The sensitivity of the communication range about the basic
reproductive number and obtaining a normed forward sensitivity
index is shown as Eq. 22:

zR0
R0

zR1
R1

� 2
R1

> 0. (22)

According to the analysis above, we need to adjust the
parameters (μ or R1) to keep the basic reproductive number at
less than 1. By substituting Eq. 21 into Eq. 15, the relationship
between μ and R1 is given by the following inequality:

β + μ( )τλπR2
1

μ μ + τ( ) β + η + μ( )< 1. (23)

•Case 1. R1 is the adjustable parameter and μ is the fixed constant:

R1 <
����������������
μ μ + τ( ) β + η + μ( )

β + μ( )τλπ
√

. (24)

Based on the above inequality, we set the threshold of the
communication range. When the range is less than the threshold,
the SUIQR model reaches a malware-free situation eventually.

•Case 2. μ is the adjustable parameter and R1 is the fixed constant:

μ3 + β + η + τ( )μ2 + τβ + τη − τλπR2
1( )μ − τλπβR2

1 > 0. (25)

5 Numerical simulations

In this section, some numerical simulations are performed to
illustrate and complement our analytical results. There are
100 nodes in the networks with the area of 1000 × 1000. We fix
the parameters β = 0.6, λ = 0.0001, η = 0.3, μ = 0.1, R1 = 50, τ = 0.3.
The initial density of each class is S(0) = 0.6, U(0) = 0.1, I(0) = 0.1,
Q(0) = 0.1, R(0) = 0.1. The evolutions of each class along with time
are shown in Figure 2.

In this example, we can calculate the basic reproductive number
R0 = 4.1233 based on Eq. 15 As can be seen from Figure 2, the
reproduction number is determined by R0 > 1. Here, we can see the
densities of class S and class U decrease rapidly over time and eventually
stabilize the equilibrium point Pe*, with a high rate of conversion and
recovery. The densities of class I and class R increase rapidly over time
and eventually stabilize the equilibrium point. The malware-endemic
equilibrium point Pe* � [0.1819, 0.0568, 0.3409, 0.2500]. The malware
will exist in this WSN. The corresponding characteristic equation is
shown as follows:

λ5 + 2.5406λ4 + 2.0997λ3 + 0.6419λ2 + 0.0692λ + 0.0024 � 0 (26)
The roots of the characteristic equation are [-1.1874, −0.8467, -

0.3370, −0.1000, −0.0695]. The Routh-Hurwitz table is given by:

H �

1.0000 2.0997 0.0692
2.5406 0.6419 0.0024
1.8470 0.0683 0
0.5480 0.0024 0
0.0603 0 0
0.0024 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

According to the Routh-Hurwitz criterion, this system is stable
based on the given parameters.

Then, we analyze the influence of the optimal control strategy on
the evolutions of each class. In the above example, the malware will
not be eliminated. When only one parameter is adjustable, R1 can be
calculated by Eq.24, R1 < 24.6233 if R0 < 1. We fixed R1 = 24, and the
evolutions of each class are shown in Figure 3.

In this example, we can calculate the basic reproductive number
R0 = 0.9500 based on Eq. 15 As can be seen from Figure 3, the
reproduction number is determined by R0 < 1. Here, the densities of
class S, class U, and class Q can be seen to increase rapidly and decay
slowly to 0, with a high recovery rate. The density of class S decreases
rapidly and then slowly increases to eventually stabilize the equilibrium
point. The malware-free equilibrium point Pf* � [0.75, 0, 0, 0, 0.25].
The corresponding characteristic equation is shown as follows:

λ5 + 1.6188λ4 + 0.5099λ3 + 0.2729λ2 − 0.0012λ − 0.00003 � 0

(27)
The roots of the characteristic equation are

[-1.2197, −0.3179, −0.1000, 0.0391, −0.0202]. The Routh-Hurwitz
table is given by:

H �

1.0000 0.5099 −0.0012
1.6188 0.0273 −0.0000
0.4930 −0.0011 0
0.0310 −0.0000 0
−0.0007 0 0
−0.0000 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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According to the Routh-Hurwitz criterion, this system is stable
based on the given parameters.

When only one parameter is adjustable, μ can be calculated by
Eq. 24, μ > 0.2961. We fixed the communication range of each R1 =
0.3, and the evolutions of each class are shown in Figure 4.

In this example, we can calculate the basic reproductive
number R0 = 0.9817 based on Eq. 15 As can be seen from

Figure 4, it is observed that the reproduction number is
determined by R0 < 1. Here, the densities of class S, class U,
and class Q can be seen to increase rapidly and decay slowly to 0,
with a high recovery rate. The density of class S
decreases rapidly and then slowly increases to eventually
stabilize the equilibrium point. The SUIQR model will
reach a malware-free situation eventually, and the

FIGURE 2
Evolutions of S, U, I, Q, R along with time t.

FIGURE 3
Evolutions of S, U, I, Q, R for τ =2, R1=24, μ =0.1 along with time t.
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malware-free equilibrium point Pf* � [0.5, 0, 0, 0, 0.5]. The
corresponding characteristic equation is shown as follows:

λ5 + 3.2799λ4 + 3.3250λ3 + 1.2538λ2 − 0.1903λ − 0.0099 � 0 (28)
The roots of the characteristic equation are

[-1.7649, −0.9278, −0.3000, −0.1658, −0.1214]. The Routh-
Hurwitz table is given by:

H �

1.0000 3.3250 0.1903
3.2799 1.2538 0.0099
2.9427 0.1873 0
1.0450 0.0099 0
0.1594 0 0
0.0099 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

According to the Routh-Hurwitz criterion, this system is stable
based on the given parameters.

FIGURE 4
Evolutions of S, U, I, Q, R for τ =2, R1=50, μ =0.4 along with time t.

FIGURE 5
Evolutions of S, U, I, Q, R along with time t.
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We set the update period of the system μ, which satisfies the
above inequality to ensure the SUIQR model will reach a malware-
free situation eventually. As shown in Figures 3, 4, the system is
optimal and stable when the R1 or μ is set. We can obtain the control
strategy to reduce the spread of malware by setting reasonable
parameters for nodes in WSNs.

Sometimes, the results of adjusting the single parameter μ or R1

are not satisfactory. In these scenes, we need to adjust μ and R1

simultaneously; the relationship between μ and R1 is given in Eq. 25
Based on the given parameters, the relationship between the two
parameters is shown in Figure 5.

As shown in Figure 5, the region below is feasible, while the region
above is not. We can adjust these two parameters in the curve to ensure
the SUIQR model reaches a malware-free situation eventually. A
schematic of the results of controlling both the communication
radius and the frequency of system updates to the system is shown
in Figure 5. The previous control method highlights that malware
propagation in networks can be simulated regardless of whether the
radius of communication is decreased or the frequency of updates to the
system is increased. In the curve shown in Figure 5, the entire space is
divided into two parts. The upper part of the space is not feasible, that is,
the control strategy in the upper part of the space cannot achieve the
purpose of suppressing the spread of malware. The second half of the
space is the feasible part, that is, the control strategy in the second half of
the space can effectively suppress the malware. The points on the curve
represent the critical values and are the most up-to-date regulatory
solution. If the current control strategy can fail to achieve the goal of
suppressing malware propagation, control can be achieved by adjusting
the radius of communication at a triangle checkpoint or by increasing
the frequency of system updates at the circle checkpoint.

6 Conclusion

This article proposed a SUIQR epidemic model to describe the
spreading of malware. The basic reproductive number was derived
by using the next-generation method. Finally, we carried out
numerical simulations to observe the malware spreading in
WSNs to verify the obtained theoretical results. Furthermore, we
also investigated the communication range of the nodes to make the
results more complete. As a result, we can adjust the communication
range and the period of system updating to reduce the spreading of
malware in WSNs. Due to the lack of experimental data, only
numerical simulations were performed in this article, which is
also a limitation of the work. In our further work, we will
continue to investigate and perform relevant experiments and

compare them with other infectious disease models to verify that
the method is feasible.
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