
Modeling semiconducting silicene
nanostrips: electronics and THz
plasmons

Talia Tene1, Marco Guevara2, Myrian Borja3,
María José Mendoza Salazar4,
María de Lourdes Palacios Robalino4, Cristian Vacacela Gomez5*
and Stefano Bellucci5

1Department of Chemistry, Universidad Técnica Particular de Loja, Loja, Ecuador, 2UNICARIBE Research
Center, University of Calabria, Rende, Italy, 3Facultad de Ciencias, Escuela Superior Politécnica de
Chimborazo (ESPOCH), Riobamba, Ecuador, 4Carrera de Matemática, Facultad de Ciencias, Escuela
Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador, 5INFN-Laboratori Nazionali di
Frascati, Frascati, Italy

Silicene nanostrips (SiNSs) have garnered significant attention due to their
remarkable physical properties, making them an ideal candidate for numerous
electronics and plasmonics applications. Their compatibility with current
semiconductor technology further enhances their potential. This study aims to
investigate the electronic and plasmonic properties of SiNSs with a minimum
width of 100 nm using a semi-analytical model that utilizes the carrier velocity of
silicene. The carrier velocity was calculated using density functional computations
and refined through the GW approximation. Our results reveal that SiNSs with
widths ranging from 100 to 500 nm exhibit small bandgaps within the range of a
few meV, specifically ranging from 30 to 6 meV, respectively. Furthermore, all the
nanostrips analyzed in this study exhibit a

��
q

√
-like plasmon dispersion within the

THz regime (≤ 35 THz). By varying the experimental setup or the geometric
factors of the nanostrips, the associated plasmon THz frequency can be
manipulated, resulting in an increase or decrease in frequency or a shift to
larger momentum values. Our study serves as a fundamental starting point and
a source of inspiration for future experiments, providing a foundation for
confirming the results presented in this study.
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1 Introduction

Silicene is an intriguing two-dimensional (2D) allotrope of silicon that shares a similar
hexagonal lattice structure to graphene [1]. Composed of a single layer of silicon atoms,
silicene is incredibly thin and flexible with a high surface area to volume ratio, giving it a wide
range of potential applications [2]. One of the most promising aspects of silicene is its
potential use in current semiconductor technology due to its silicon composition [3]. This
opens up exciting possibilities for the development of advanced electronic devices that can
take advantage of the unique electronic and optical properties of silicene [4]. For instance, its
tunable bandgap can be controlled by applying an external electric field [5], making it
suitable for electronic devices such as transistors. Additionally, silicene has a high thermal
conductivity [6], which allows for efficient heat transfer and makes it useful in thermal
management applications. Furthermore, the presence of unsaturated silicon atoms on its
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surface makes silicene highly reactive and capable of being
functionalized with different chemical groups [7], making it
useful for applications such as sensing and catalysis.

Silicene nanostrips (SiNSs), which typically have widths on the
order of several tens of nanometers (i.e., silicene nanoribbons of ≥
100 nm wide), offer exciting opportunities to further tailor the unique
properties of silicene. Compared to larger silicene sheets, SiNSs offer
several advantages: i) these systems have a tunable bandgap, which
means that their electronic properties can be adjusted by changing the
ribbon width [8], ii) SiNSs exhibit improved mechanical stability due to
passivation of the edges with hydrogen or other chemical groups [9],
which prevents the formation of wrinkles or other defects, and iii) these
systems are flexible and can be bent or shaped without breaking,
making them ideal for flexible and lightweight electronics [10].
Furthermore, SiNSs exhibit distinct electronic and transport
properties depending on their edge type, i.e., zigzag and armchair
edges. Zigzag-edge systems are characterized by a higher density of
localized edge states, which can dominate the electronic properties and
result inmetallic behavior [11]. In contrast, armchair-edge systems have
a lower density of edge states and typically exhibit a well-defined
bandgap that can be adjusted by changing the ribbon width [12].
Experimentally [13] have demonstrated that edge effects significantly
affect the transport properties of graphene nanoribbons (analogous to
silicene nanoribbons) when their width is less than or equal to 57 nm,
and the same scenario is expected for SiNSs.

Despite numerous attempts to synthesize SiNSs using
techniques such as scanning tunneling microscopy (STM)
lithography [14], chemical vapor deposition (CVD) [15],
chemical etching [16], and laser cutting [17]; there is a dearth of
modeling approaches available for the study of very large nanostrips.
While density functional theory (DFT) [18], tight-binding models
[19], and Green’s function methods [20] are commonly used, these
numerical methods can be challenging to implement for wide SiNSs
due to the large number of atoms involved. As an alternative, semi-
analytical models [21] can provide a useful tool for investigating the
behavior of the material at a substantially lower computational cost.
Such models can shed light on the electronic and plasmonic
properties of SiNSs and guide experimental research in this field.
By complementing experimental research, these models can help
accelerate the development of silicene-based nanoelectronics and
optoelectronics.

The present work aims to fill the gap in knowledge by
investigating the electronic and plasmonic properties of wide
SiNSs. The significance of studying these properties lies in
understanding the behavior of SiNSs and how they can be used
in practical electronic and photonic devices. Hence, a semi-
analytical approach [22] is used in this work, which involves an
ab initiomany-body GW calculation to determine the charge-carrier
velocity of freestanding silicene. This result is then integrated into
the semi-analytical method to analyze the band structure, density of
states (DOS), bandgap, and plasmon-frequency dispersion of SiNSs
with a width of at least 100 nm. The study takes into account various
factors such as excitation angle, effective electron mass, electron
relaxation, and charge-carrier density to examine the plasmon
dispersion and its tunability. This modeling technique can be
extended to investigate the electronic and plasmonic properties of
related systems such as nanostrips based on graphene and
germanene.

2 Theoretical approach

2.1 Density functional computations

The ground-state properties of silicene are calculated using
standard density functional theory (DFT) computations
implemented in the Abinit software [23], specifically within the
local density approximation (LDA) [24]. The Kohn-Sham (KS)
electron wave functions are expanded in the plane-wave (PW)
basis [25], represented as:

PWk+G r( ) � Ω−1/2
0 ei k+G( )·r (1)

where k is a wave vector in the first Brillouin zone along the ΓΚΜΓ
path, G is a reciprocal lattice vector, and Ω0 represents the unit-cell
volume associated with the real-space lattice. The number of PW s is
limited by the energy cut-off |k + G|/2≤ 25 Hartree (~ 680 eV). To
remove the effect of core electrons, norm-conserving
pseudopotentials of the Troullier-Martins type are utilized [26].
The 3D periodic boundary conditions required for plane-wave DFT
calculations are achieved by replicating the silicene sheets along the z
direction with a vacuum distance of 20�A. The scope of this study is
limited to ideal freestanding silicene, and geometric optimization
was unnecessary as its impact on the estimation of charge carrier
velocity was found to be negligible beyond the third significant digit
(Supplementary Figure S1). The lattice constant and buckling are
fixed at 3.82 �A and 0.45 �A, respectively.

To calculate the electron band structure of silicene, we prepared
two datasets of parameters. The first set involves a 90 × 90 × 1
Monkhorst-Pack grid [27] that is Γ-centered and unshifted, which
can yield energy levels up to 10 eV above the Fermi level using
50 bands. The second set uses a high-resolution grid of
540 × 540 × 1, which enables the calculation of the linear band
structure of silicene near the K point and includes up to 6 bands due
to computational constraints. The KS electronic structure, which
includes the ground-state energy and electronic density, is then
utilized as the starting point in the GW calculation.

2.2 GW calculations

To obtain an accurate calculation of the band dispersion of
freestanding silicene, it is essential to incorporate many-body effects,
which can be achieved by using the many-body GW self-energy
method. As well-known, the GW method is a widely used approach
for improving the accuracy of DFT calculations. The self-energy in
the GW approximation is given by the expression [28]:

∑ r, r′,ω( ) � i

2π
∫∞

−∞
dω′G r, r′,ω − ω′( )W r, r′,ω′( ) (2)

where G is the one-particle Green’s function and W is the screened
Coulomb interaction. Eq. 2 represents the product of Green’s
function G and the dynamically screened interaction W(ω). The
screened Coulomb interaction is given by:

W ω( ) � ϵ−1 ω( ) · υ (3)
where ϵ−1(ω) is the inverse of the dynamical dielectric function, and υ is
the bare Coulomb interaction. Tomake our analysis simpler, we choose
to ignore vertex corrections in both the self-energy and the
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polarizability. Instead, we construct the G and W components in the
GW method using the DFT-KS electronic structure. To integrate over
frequency, we use the contour deformation (CD) method [29], which is
a reliable and precise method of frequency integration. This involves
deforming the real axis contour to calculate the self-energy as an integral
along the imaginary axis while accounting for a contribution from the
residual of the contour-included poles ofG. This method is essential for
our analysis as it ensures the accuracy of our calculations.

2.3 Semi-analytical model

To explore the plasmon characteristics of SiNSs that have a
width of 100 nm or greater, we adopt the approach introduced by
[21]. The investigation involves determining the plasmon frequency
(ωp), which is accomplished through the utilization of the following
expression:

ωp � Re

�������������������
2 π e2 N2D

ϵmp
qcos 2 θ − v2

4

√
− i

v

2
[ ] (4)

the parameters of Eq. 4 are detailed as follows.

• e is the conventional electron charge
• N2D is the 2D charge density
• ϵ is the dielectric constant
• m* is the effective electron mass
• q is the reciprocal wave vector (momentum) along the ribbon
direction

• θ is the plasmon excitation angle
• v is the electron relaxation rate.

The charge density (N2D) can also be expressed as a function of
the one-dimensional (1D) charge density (N1D) of an isolated
nanostrip:

N2D � N1D

d
(5)

where d is the vacuum distance between contiguous strips.
From the experimental results presented by [30], it has been

demonstrated that in graphene nanostrips with widths ranging
from 155 to 480 nm, there exist two distinct resonance modes: the
surface plasmon and the edge plasmon. It is also expected that
these modes are present in SiNSs. In particular, the edge plasmon
mode can be selectively tuned by altering the ribbon width [31],
while the surface plasmon mode is found to be more sensitive to
various external factors, including doping levels, temperature,
electron mobility, and the angle of plasmon excitation [32]. These
findings have significant implications for the design of nanoscale
electronic and photonic devices. Indeed, by controlling the
dimensions of the nanostrips and selectively tuning the
plasmon modes, it may be possible to engineer novel devices
with tailored optical and electronic properties.

Eq. 4 is a mathematical expression that describes only the
dispersion of the surface plasmon mode. While this equation does
not account for the nature of the edge plasmon mode, it is still an
efficient means of calculating the frequency dispersion of surface
plasmons. Furthermore, this expression is consistent with
experimental observations, which have shown that the

plasmon wavelength follows the sample length, with the
sample length being much larger than both the vacuum
distance and the ribbon width [33]. For simplicity, we use the
term “plasmon” exclusively to refer to the surface plasmon mode
in this work.

To further customize the analysis of plasmonic properties in a
specific context, Eq. 4 can be modified as needed, for instance, using.

(i) The Fermi level (EF) shift [34] as:

EF � Z vF
�������
2 πN2D

√
(6)

(ii) The intrinsic semiconductor behavior [35] as:

EF � Ec + Ev

2
+ kBT

2
ln

Nv

Nc
( ) (7)

In Eq. 7, it is assumed that EF is in the middle of the bandgap,
where Ec, Ev,Nc and Nv are the conduction band edge, the valence
band edge, the effective DOS in the conduction band, and the
effective DOS in the valence bands, respectively. The other well-
known parameters kB and T represents the Boltzmann constant and
the absolute temperature. Thus, Eq. 4 can be expressed in terms of
the needed Fermi level to inject or eject electrons as well as the
desired temperature.

Due to Eq. 4 being a straightforward analytical expression, when
the plasmon damping (γ) is very high, the radicand becomes
negative. The plasmon damping is identified [36] as:

γ � ]
2

(8)

From the physical point of view, this effect can be caused by
various mechanisms, including scattering, absorption, and
radiation, which lead to a loss of plasmon energy. As a result, the
plasmon response can move towards larger momenta, which
corresponds to a higher frequency or shorter wavelength.

FIGURE 1
Band structure of freestanding silicene along the high symmetry
ΓΚMΓ path. The results are obtained using LDA-DFT (dashed black line)
and GW (solid red line) calculations within an energy range of ± 4 eV.
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Moreover, the notion of a complex dielectric function (ϵM) [37]
can be used to better comprehend this phenomenon, which is
represented by:

ϵM q,ω( ) � ϵR ω( ) + iϵI ω( ) (9)
thus, ϵR(ω) corresponds to the real part of the in-phase response,
while iϵI(ω) corresponds to the imaginary part of the out-of-phase
response. Eq. 9 indicates that the plasmons can be observed by
detecting zeros in the real part within a frequency range where the
imaginary part is minimum or cero. Indeed, forbidden plasmon
regions appear if this condition is not met.

With this in mind, it is now feasible to compute the effective
electron mass in Eq. 4 by incorporating the charge-carrier velocity
(vF) of silicene, as outlined in [21]:

mp � Δ
2 v2F

(10)

and the bandgap (Δ) of a single nanostrip can be evaluated as [21]:

Δ � 2 π vF Z
w

(11)

here, Z is the Planck constant.
As noted, the charge-carrier velocity of silicene is the critical

parameter in Eq. 4 and is the foundation of the semi-analytical
model. Then, to estimate the charge-carrier velocity accurately, we
employed either GWor LDA-DFT calculations to perform a linear fit of
the π (highest valence) and π* (lowest conduction) bands. This linear fit
is equivalent to the Dirac cone approximation [38], denoted as:

E � ± vF p
∣∣∣∣ ∣∣∣∣ (12)

here, ± sign represents the conduction and valence bands and p is
the momentum represented as p � -(k − ΓΚ).

On the other hand, to estimate the band structure of SiNSs, it is
crucial to take into account the quasi-one-dimensional confinement
of charge carriers. This confinement leads to the formation of
multiple energy sub-bands (En), expressed as [21, 39]:

En � ±
Δ
2

��������
n2 + 2p2

‖
mpΔ

√
(13)

here the integer number n represents the sub-band index
(n � 1, 2, 3, . . .) and p‖ is the parallel wavevector to the nanostrip
direction. To further clarify, in quasi-1D systems such as SiNSs, the
confinement of charge carriers leads to quantization of the energy
levels, resulting in the formation of multiple sub-bands. These sub-
bands are distinguished by their energy levels and wavefunctions
and can be indexed by n. More importantly, Eq. 13 displays a
parabolic band dispersion at the Γ point, which in fact is

FIGURE 2
The low-energy band structure and charge-carrier velocity of freestanding silicene near the K point and around the Fermi level. (A) Displays the
energy bands of silicene with the π and π* bands represented in green and black, respectively. The cyan line denotes a linear fit of these bands. (B) The
color plot of the charge-carrier velocity (106 m s−1) of silicene as a function of band dispersion vs. wave vector. The negative values refer to the velocity in
the valence band.

TABLE 1 The charge-carrier velocity of silicene is estimated by LDA and GW
calculations. The results are compared with the experimental (Exp-graphene)
[42] y theoretical (GW-graphene) values of graphene.

Method Value (106) (m s-1) Variation percentage (%)

LDA-DFT 0.540 −27.22

GW 0.742 −33.63

LDA-DFT-
graphene

0.829 −24.64

GW-graphene 1.118 +1.64

Exp-graphene 1.1 ---

Frontiers in Physics frontiersin.org04

Tene et al. 10.3389/fphy.2023.1198214

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1198214


predominant in narrow-wide SiNSs in the eV scale, and starts to be
negligible by increasing the ribbon width (w → ∞), i.e., the unique
electronic properties of silicene are recovered gradually.

2.4 Lorentz function

Now, to show the plasmon spectrum (i.e., the maximum of the
plasmon peak) for selected values of q, the standard approach of
spectral line profile can be used:

L � 1

1 + 4 ω−ωo( )2
W2

(14)

here, L is the Lorentzian function, ωo is the transition energy/frequency
of the maximum (taken from data using Eq. 4), ω is the energy/
frequency sampling of interest, and capital W is the full width at half
maximum (FWHM). FWHM is set to 0.25 for all spectra.

The Lorentzian line function is a widely used model for describing
spectroscopic features in physical systems like ions, atoms, and
molecules, as well as in SiNSs. This study employs frequency units
for ω, ωo and W, following the customary practice for collective
excitations spectra [40]. It is worth noting that in samples supported
on metallic substrates, the maximum of the plasmon peak can shift due
to core-electron excitations [41], but this is not the case for freestanding

SiNSs. Furthermore, the plasmon structure in SiNSs is not expected to
be a simple Lorentzian peak; however, this approach effectively
demonstrates the control of plasmons in SiNSs.

3 Results and discussions

3.1 Freestanding silicene

To begin, we analyze the band structure of freestanding
silicene using a 90 × 90 × 1 grid. Figure 1 shows a comparison
between the band structure obtained from LDA-DFT (dashed
black line) and quasiparticle GW (solid red line) calculations
within an energy range of ± 4 eV. Although the impact of
exchange and correlation effects is evident, we observed only
minor changes in the band shapes and band dispersions.
Interestingly, regardless of the theoretical level used, we found
that silicene displays a conical band dispersion at the Κ point,
which is commonly referred to as a Dirac cone.

It is worth noting that the LDA results show a lowering of the
bands, while the gaps at the Γ (3.3 → 4.1 eV) and M (1.7 →
2.21 eV) points are increased by up to 19% and 23%, respectively.
Such behavior is a typical effect of GW approximation, as
observed in previous studies. Moreover, there is an increase in
the linear energy dispersion around the K point (GW results),
which confirms a rise in the charge-carrier velocity of
freestanding silicene. It is interesting to note that this
phenomenon has also been observed in freestanding graphene
when comparing the two theoretical levels [29].

We now focus on the region around the Dirac cone (K point)
by examining energy-momentum data obtained from GW
calculations of freestanding silicene. We have considered the
first conduction (π*) band and last valence (π) band with the
second (high resolution) grid of 540 × 540 × 1, as shown in
Figure 2A. By applying a linear fit (cyan line) to this data, we
can estimate the charge-carrier velocity. Interestingly, we observe
a perfect linear dispersion of electron energy within a certain

FIGURE 3
Comparison of the estimated bandgap values for SiNSs with widths ranging from (A) 10–50 nm and (B) 100–500 nm, using both GW
(vF � 0.742 × 106 m s−1, red line) and DFT-LDA (vF � 0.540 × 106 m s−1, blue line) calculations.

TABLE 2 Bandgap (meV) and effective mass (× m0) of certain SiNSs. m0 is the
elementary electron mass.

Width (nm) Bandgap (meV) m* × m0 (10−3)

100 30.69 4.90

200 15.34 2.45

300 10.23 1.63

400 7.67 1.23

500 6.14 0.98
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range of energy (± 0.16 eV) and wave vector (± 0.04 �A
−1
), which

closely matches the Dirac cone approximation (as described in
Eq. 12).

Figure 2B displays the linear behavior of charge-carrier
velocity, although only within a narrower energy range (±
0.13 eV) since the intense (white) lines start to disappear.
These findings are significant as they provide limits for the
semi-analytical model used (~31 THz), which relies on a linear
dependence. Similar results are obtained through LDA-DFT
calculations (results not shown here), suggesting a minor limit
of approximately ± 0.11 eV (~26 THz). This information is
crucial for understanding the plasmonic properties of SiNSs at
the THz frequencies.

Specifically, Table 1 compares the estimated values by LDA-
DFT (vF � 0.540 × 106 m s−1) and GW (vF � 0.742 × 106 m s−1)
calculations. The LDA-DFT calculation underestimated the GW
value by 27.22%. Currently, there is no consensus on the
experimental charge-carrier velocity of silicene. To gain a
deeper understanding of our findings, we compared the results
obtained for silicene with those of graphene at the same
theoretical levels (LDA-DFT-graphene (Supplementary Figure
S2) and GW-graphene (Supplementary Figure S3).
Interestingly, we found that the charge-carrier velocity of
silicene is 33.63% lower than that of graphene. It is worth
noting that the GW calculation for graphene showed only a
slight overestimation of 1.64%, which closely matched the
experimental result for graphene (Exp-graphene) [42].
Similarly, as in silicene, LDA-DFT calculations for graphene
yield a charge-carrier velocity that is 24.64% lower than the
experimentally measured value. This discrepancy highlights the
limitations of the LDA-DFT method and the need to employ
more advanced calculations. Additionally, these results confirm
that the GW approximation is a reliable method for predicting the
charge-carrier velocity of silicene, and future experiments are
likely to produce similar outcomes.

3.2 Electronic properties of SiNSs

Equation 11 demonstrates that there is an inverse relationship
between the bandgap and ribbon width. Specifically, as the width of
the ribbon increases, the bandgap value decreases exponentially.
Therefore, if the ribbon width were to approach infinity (w → ∞),
the bandgap value would approach zero (Δ→ 0), similar to silicene.
This implies that the structural and electronic properties of silicene
would be gradually restored. Figure 3 illustrates this relationship
between ribbon width and bandgap, demonstrating the exponential
decrease in bandgap value, which remains consistent regardless of
whether the charge-carrier velocity was determined through GW
(red curve) or LDA-DFT (blue curve).

The impact of ribbon width on the bandgap is most pronounced
apparently in narrow SiNSs with widths ranging from 10 to 50 nm,
as shown in Figure 3A, where the bandgap decreases from 0.3 eV to
50 meV. Conversely, wider SiNSs with widths ranging from 100 to
500 nm, shown in Figure 2B, exhibit a decrease in bandgap from
30 meV to 5 meV. In both cases, the bandgap decreases by a factor of
six. Moving forward, we will focus on the electronic properties of
SiNSs using the charge-carrier velocity of silicene obtained through
GW calculations (i.e., vF � 0.702 × 106 m s-1).

Table 2 presents information on the bandgaps and effective
electron masses for various nanostrips with different widths ranging
from 100 to 500 nm. The data reveals a noteworthy trend: the wider
the nanostrip, the smaller the bandgap. This trend is evident in the
100 nm wide nanostrip, which has a bandgap of approximately
30 meV, compared to the 500 nm wide nanostrip, which has a
bandgap of approximately 6 meV. Furthermore, when comparing
the same nanostrips, the effective electron masses show the same
trend. The effective electron mass values obtained for the different
nanostrips are consistent with both experimental findings and
predictions for graphene nanostrips [43], [45], in terms of orders
of magnitude. These results suggest that the properties of the SiNSs
are similar to those of graphene nanostrips.

FIGURE 4
Band structure and density of states (DOS) of two SiNSs with different widths: (A, B) 100 nm and (C, D) 500 nm. The DOS is calculated from the
energy-momentum data list using a conventional histogram with equal bin widths, and the red line represents the smoothed curve of the histogram.
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In Figure 4, we now present the band structure (Figures 4A, C)
and density of states (DOS) (Figures 4B, D) of the 100 nm and
500 nm wide nanostrips, in a ± 70 meV energy range. This analysis
helps in understanding the electronic properties of these nanostrips
and their potential applications in various fields. As an example,
SiNSs with a bandgap of 1.1 eV, similar to silicon, could be useful for
the semiconductor industry. On the other hand, nanostrips with a
bandgap in the range of a few meV, particularly SiNSs with widths
equal to or greater than 100 nm wide (see Table 2), are highly
promising for nanophotonics applications.

Upon comparison, it becomes apparent that there is a
quadratic band dispersion of the conduction and valence
bands near the Γ point (zero) for both 100- and 500-nm wide
systems. It should be noted that we have maintained the same
effective electron mass for all bands, with only the sub-band
index, n, being altered in Eq. 10. Though it is possible to
accurately calculate the effective electron mass of each band,
including both conduction and valence bands, using ab initio
methods such as DFT, the main issue is that the systems analyzed
in this study are too broad for current computers to handle. Then,
the semi-analytical model proves advantageous in this regard and
produces reasonable outcomes. In light of this, we can observe
that in the same energy range, the 500 nm wide nanostrip
(Figure 4C) displays a considerably greater number of bands
in comparison to the 100 nm wide nanostrip (Figure 4D). It is also
worth noting that with an increase in the width of nanostrips, the
energy gap between the bands decreases, and they tend to
converge, whenever possible, to the same energy state, similar
to what we observe in silicene with the corresponding π* and π

bands (Figure 1, Figure 2A).
Figures 4B, D show the DOS of the 100 nm and 500 nm wide

nanostrips, respectively. These figures display several peaks
corresponding to the bands in the band structure plot.
Interestingly, smoothing the DOS histogram (red line) can lead
to a narrower bandgap of the system. For example, the bandgap of
the 100 nm wide nanostrip is roughly 23 meV, while that of the
500 nm wide nanostrip is around 4 meV. This results in a 23% and
33% reduction in the bandgap, respectively (Table 2).

3.3 Charge density effect

In this section, we investigate the plasmonic properties of SiNSs,
focusing on the effect of charge carrier density (N2D). Charge
density in a nanostrip refers to the amount of electric charge per
unit area. There are several methods to estimate charge density
experimentally or theoretically, including analyzing the diffraction
pattern of X-rays or neutrons scattered by a crystal, using
electrostatic force microscopy, performing Hall effect
measurements, and measuring the capacitance of a
semiconductor device. DFT calculations can also be used to
determine charge density.

Indeed, previous studies have reported that the charge carrier
density in isolated graphene nanostrips is approximatelyN1D ≈ 1015

cm−1 [39],[46]. Similar results are expected for SiNSs. However, this
value can vary depending on factors such as doping, ribbon size, or
geometric factors. Then, Eq. 5 can be used as a starting point to
adjust the charge density to the desired value (see Table 3).

Interestingly, as the distance between adjacent nanostrips
increases, the charge density decreases. For instance, when the
vacuum distance between nanostrips increases from 10 nm to
100 nm, the charge density reduces by one order of magnitude.
However, it is worth noting that, in this case, the Fermi level (EF)
only decreases by approximately threefold, going from 0.38 eV (for
d � 10 nm) to 0.12 eV (for d � 100 nm).

Figure 5A shows the dispersion of plasmon frequency-
momentum for a 100 nm wide nanostrip as a function of the
reciprocal wave vector (q). As expected for 2D materials such as
graphene and silicene, the plasmon dispersion in SiNSs follows a�
q

√
-like behavior, which can be explained by the nature of Eq. 4.

Interestingly, increasing the distance (d) between adjacent
nanostrips from 10 nm to 100 nm leads to a decrease in the
plasmon frequency and plasmon dispersion. This phenomenon
occurs because the plasmon frequency is proportional to the
square root of the charge density (ωp ~

����
N2D

√
).

Additionally, Table 3 indicates that a separation distance of
10 nm results in a high charge density (N2D � 1 × 1013 cm−2) and a
shift in the Fermi level of 0.38 eV, which may lead to excessive
doping for a 100 nm wide nanostrip with a small bandgap of a few
meV (~30 meV). Therefore, we focus on a charge density of N2D �
1 × 1012 cm−2, which is a commonly used value for modeling
graphene or similar materials. This choice results in a Fermi level
shift of only 0.12 eV and a separation distance of 100 nm is adequate.
Furthermore, this vacuum distance ensures that the system can be
treated as a quasi-isolated SiNS.

Considering this, Figure 5B shows the dispersion of the
maximum of the plasmon peak for a 100 nm wide nanostrip
with a charge density of 1 × 1012 cm−2 at selected momentum (q)
values within a frequency range of 0.1–3 THz, where in turn, the
most relevant silicene-based plasmonic applications, could occur.
On the other hand, Figure 5C presents a complete analysis of the
effect of the charge density from 1 × 1012 to 1 × 1013 cm−2. The
analysis reveals two significant observations: i) forbidden regions for
plasmons at values of q near zero (indicated by the purple region),
and ii) the spectral weight enhances with increasing charge density
and momentum. At high charge densities (~ 1013), a plasmon
response can be detected up to approximately 35 THz (red region).

3.4 Effective mass effect

The effective electron mass (m*) is a key parameter being
studied. It characterizes the behavior of electrons in a solid and is

TABLE 3 2D charge density and Fermi level shift, as influenced by different
vacuum distances between adjacent nanostrips. The expression used to
modulate the charge density is N2D � N1D/d, while the estimation of the Fermi
level shift is done by Eq. 9.

d (nm) N2D (cm-2) EF (eV)

10 1 × 1013 0.38

20 5 × 1012 0.27

50 2 × 1012 0.17

100 1 × 1012 0.12
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dependent on the bandgap and charge-carrier velocity.
Experimental methods such as transport measurements, the
Hall effect, and angle-resolved photoemission spectroscopy
(ARPES) can be used to determine the effective mass.
Alternatively, quantum mechanical models such as DFT, tight-
binding models, and effective mass approximation (EMA) can be
used for its calculation.

Eq. 10 contains this parameter, which is only affected by changes in
the bandgap, such as those resulting from modifications to the ribbon
width (Table 2) since the charge-carrier velocity (vF � 0.702 × 106

m s−1) remains constant in this work. With this in mind, Figure 6A
shows the plasmon dispersion of SiNSs with widths ranging from 100 to
500 nm as a function of the momentum (q). Increasing the width of the
nanostrip causes the effective electron mass to decrease, increasing the
plasmon frequency. This correlation is straightforward since the
plasmon frequency is inversely proportional to the square root of
the effective electron mass, i.e., ωp ~

����
1/m*

√
. This trend is

consistent with the values in Table 2, where the effective electron
mass decreases as the nanostrip width increases.

Figure 6B provides compelling evidence of the controllability and
tunability of plasmon response, showing that increasing the width of the
nanostrip or decreasing the effective electronmass results in an increase

in plasmon frequency. This figure focuses on a frequency range of
0.1–3 THz, which is highly relevant for plasmonic applications in
silicene, as mentioned earlier. Therefore, nanostrip systems ranging
from 100 to 500 nm hold promise as potential candidates for such
applications. Furthermore, Figure 6C demonstrates that there are no
forbidden regions for plasmons and confirms that a decrease in the
effective electron mass leads to an increase in plasmon frequency by
approximately 25 THz (red region).

A final remark, Fei et al. [30] have successfully prepared
graphene nanostrips with widths similar to those examined in
this study (i.e., w � 155, 270, 380, and 480 nm).

3.5 Excitation angle effect

The plasmon excitation angle (θ) is determined by the interaction of
electromagnetic waves with a material and depends on factors such as
energy, momentum, material properties, and system geometry. ARPES
can experimentally measure the plasmon excitation angle by directly
measuring the momentum and energy of electrons in the material.
Hence, Figure 7A explores the impact of the angle of plasmon excitation
on a 100 nm wide nanostrip, which can be altered in the experimental

FIGURE 5
(A) Plasmon frequency dispersion by altering the vacuum distance between neighboring nanostrips. (B) The maximum of the plasmon peak for
specific momentum values. (C) Density plot of the plasmon frequency-momentum dispersion as a function of density concentration and momentum.
Results for a 100 nm wide nanostrip with: m* � 4.90 × 10−3m0, θ � 0°, ] � 0.
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setup. It is worth noting that as the angle of plasmon excitation
increases, the frequency of the plasmon decreases, indicating that at
an angle of 90°, the plasmonic response to the perpendicular direction
becomes non-existent. It is evident that for angles less than 90°, the
plasmonic response can be customized for specific purposes within the
frequency range of 0.1–3 THz (Figure 7B) by adjusting this parameter.
In addition, increasing the angle shifts the plasmon response towards
lower frequency values.

Figure 7C exhibits the existence of forbidden regions where
plasmons are prohibited, and as the angle increases. Interestingly,

these prohibited regions can also be observed by increasing
the momentum value (as evidenced by the extended purple
region). Moreover, it is important to highlight that the
highest spectral intensity is achieved with small angles
(ωp ~

�����
cos 2θ

√
), producing a plasmonic response of nearly

10 THz (red region).

3.6 Electron relaxation effect

Electron relaxation rate (]) is the rate at which electrons in a
material lose their energy. Time-resolved pump-probe spectroscopy
and transient absorption spectroscopy are experimental techniques
that can measure the relaxation rate of electrons in a material. DFT
calculations or many-body perturbation theory can also be used to
estimate this parameter.

Then, we focus on the electron relaxation rate in nanostrip of
100 and 500 nm wide. Additionally, this parameter is crucial in
providing the values for electronic mobility and plasmon relaxation
rate (Eq. 8) as shown in Table 4. Particularly, the electron mobility
(υ) can be obtained using the relationship υ � e τ/m*, where τ

FIGURE 6
(A) Plasmon frequency dispersion by altering the effective electronmass which ismodulated by increasing the ribbon width from 100 to 500 nm. (B)
The maximum of the plasmon peak at q � 100 cm−1. (C) Density plot of the plasmon frequency-momentum dispersion as a function of density
concentration and momentum. The parameters are fixed as: N2D � 1.0 × 1012 cm−2, θ � 0°, ] � 0.

TABLE 4 The calculated values of electron relaxation rate (ν), plasmon
relaxation rate (γ), and electron mobility.

] (s−1) × 1013 γ (s−1) × 1012 e Mobility (cm2 V−1 s−1)

0.5 2.5 58921

1.0 5.0 49704

1.5 7.5 40486

2.0 10 31268
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FIGURE 7
(A) Plasmon frequency dispersion by altering the plasmon excitation angle from0° to 80°. (B) Themaximumof the plasmon peak at q � 100 cm−1. (C)
Density plot of the plasmon frequency-momentum dispersion as a function of density concentration and momentum. Results for a 100 nm wide
nanostrip with: N2D � 1.0 × 1012 cm−2, m* � 4.90 × 10−3m0, ] � 0.

FIGURE 8
Plasmon frequency dispersion by altering the electron relaxation rate: Results for (A) 100 nm wide nanostrip and (B) 500 nm wide nanostrip
(N2D � 1.0 × 1012 cm−2, m100

* � 4.90 × 10−3m0, m500
* � 0.98 × 10−3m0, θ � 0°).
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represents the electron relaxation time, which includes the Fermi
level and other parameters mentioned in Eqs 6, 7.

Figure 8A depicts the plasmon frequency-momentum dispersion
of a 100 nm wide nanostrip as a function of the increasing electron
relaxation rate. Notably, the curves appear to overlap, prompting us to
investigate whether this effect is attributable to the width of the
strip. To that end, we analyzed a 500 nm wide nanostrip (as
shown in Figure 8B) but found that the plasmon frequency-
momentum dispersion followed the same pattern.

Given that this effect is not due to strip width, we continue the
analysis to a lower momentum regime for a 100 nm wide nanostrip,
as depicted in Figure 9. We observe in Figure 9A that the plasmon
frequency continues to be proportional to the square root of q.
However, when the relaxation rate of electrons increases, we observe
two additional phenomena.

(i) The plasmonic response moves towards higher momentum
values.

(ii) The frequency of the plasmonic response drops significantly.

Apart from the significant influence of the electron relaxation
rate, Figure 9B shows that even a 100 nm wide SiNS subjected to the

electron relaxation rate effect displays plasmon responses in the
frequency range of 0.1–3 THz, suggesting even greater adjustable
plasmonic properties. Figure 9C demonstrates the existence of
forbidden regions for plasmons, which become more prominent
as the electron relaxation rate and momentum increase (purple
region). As previously mentioned, increasing the electron relaxation
rate results in a significant reduction in the plasmon frequency. For
instance, in a 100 nm wide nanostrip, the plasmon frequency
reaches a maximum of around 2 THz (red region).

Hence, Eq. 4 provides a comprehensive understanding of the
parameters that influence the plasmon response, including its
frequency and dispersion. By thoroughly examining these parameters,
one can manipulate them individually or in combination to customize
the plasmon response for a specific application.

4 Conclusion

In summary, we have utilized a semi-analytical model that relies
on the charge-carrier velocity of silicene as its main input parameter.
To determine the charge-carrier velocity, we conducted LDA-DFT
computations, resulting in vF � 0.527 × 106 m s−1, which was

FIGURE 9
(A) Plasmon frequency dispersion by altering the electron relaxation rate. (B) Themaximum of the plasmon peak at q � 900 cm-1. (C)Density plot of
the plasmon frequency-momentum dispersion as a function of density concentration and momentum. Results for a 100 nm wide nanostrip with:
N2D � 1.0 × 1012 cm−2, m* � 4.90 × 10−3m0, θ � 0°.
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further refined using the GW approximation, resulting in vF �
0.702 × 106 m s−1. We then incorporated this GW value into the
proposed semi-analytical modeling approach, which encompassed a
wide range of parameters and variables to comprehensively
investigate the behavior and characteristics of SiNSs with widths
of 100 nm or greater.

Our results indicate that SiNSs with widths ranging from 100 nm to
500 nm possess bandgap values in the range of a few meV. Specifically,
we found that nanostrips with widths of 100, 200, 300, 400, and 500 nm
exhibit bandgaps of approximately 30, 15, 10, 8, and 6meV, respectively.
Furthermore, the effective electron mass for these systems ranges from
4.90 × 10−3 m0 (for 100 nm wide nanostrips) to 0.98 × 10−3 m0 (for
500 nm wide nanostrips). The band structure of these nanostrips
demonstrates a nearly quadratic dispersion pattern, regardless of strip
width, offering a detailed view of their electronic behavior.

Furthermore, our study provides a comprehensive investigation
into the plasmonic properties of various nanostrips, including the
effects of ribbon width, charge density, plasmon excitation angle,
and electron relaxation rate. Particularly, we demonstrate that by
adjusting these parameters individually or in combination, it is
possible to achieve the desired plasmon resonance, enabling
precise control and customization of plasmonic properties to
meet specific application requirements. As the main findings, all
the nanostrips examined in this study display a

�
q

√
-like plasmon

dispersion within the THZ regime (≤ 35 THz), with the related
plasmon THz frequency capable of increasing or decreasing.
Additionally, the plasmon response can be shifted to larger
momentum values, resulting in forbidden regions for plasmons.

Our study provides a thorough understanding of the electronic
and plasmonic properties of SiNSs, which is essential for the
advancement of future nanodevices. The insights gained from
our research can serve as a valuable reference for future
experiments aimed at verifying and building upon our findings.
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