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This review presents an overview of the current research in kinetic exchange
models for opinion formation in a society. The review begins with a brief
introduction to previous models and subsequently provides an in-depth
discussion of the progress achieved in the Biswas-Chatterjee-Sen model
proposed in 2012, also known as the BChS model in some later research
publications. The unique feature of the model is its inclusion of negative
interaction between agents. The review covers various topics, including phase
transitions between different opinion states, critical behavior dependent on
various parameters, and applications in realistic scenarios such as the
United States presidential election and Brexit.
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1 Introduction

It has been a popular notion for a while to perceive human society as a complex
network system [1–3]. The actions of individual human beings, as they interact with
one another through social or economic network links, lead to a social non-equilibrium
steady state with macroscopic characteristics such as wealth distribution, opinionated
consensus, etc. This is similar to how a many-body condensed matter system arrives at
an equilibrium macro-state through interactions. However, there are criticisms and
challenges to this idea. One significant issue is that the individual constituents or “social
atoms” are themselves quite intricate and may not adhere to the straightforward, well-
defined laws of interaction assumed in models of physical atoms in ideal gas or material
systems.

However, in the appropriate context, the interactions between the individuals and the
resulting changes in the values of the social variables (e.g., money, opinion, etc.) can be
sufficiently restricted so that the complexities arising out of the presence of self-deciding
individuals rather than well-defined gas molecules, are minimized. For instance, the nuance
involved in one’s political opinion gets drastically reduced when at the polling stations they
have to choose between predominantly two opinions (say, in Brexit). It is, therefore, a valid
context to consider binary opinion values for the individual agents, or even a generalization
towards having a continuous range of values between two extreme ends.

The complexity (or assumptions, or interests) then translates into formulating the
interactions between the agents. This is where a class of models were formulated (see, e.g.,
Ref. [4]) which consider the interaction between the agents as an exchange of opinions
between the individuals [5]. Mathematically, if the opinion value of the ith agent at an instant
of time t is denoted by oi(t), then it could evolve following
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oi t + 1( ) � f oi t( ), oj t( )( ), (1)

where an interaction/exchange has happened between the ith and
the jth agents and the function f, which represents this interaction/
exchange process, is a linear function of its arguments. There is,
however, a non-linearity in this process that comes from the fact that
the opinion values of all agents are bounded (|oi(t)| ≤ 1) at the
extreme values (±1) of opinions. This simple linear form is inspired
by the similar genre of models of wealth exchanges in a closed
economy [6, 7], which was in-turn inspired by the kinetic theory of
ideal gases (see Figure 1 for a schematic diagram). An ‘exchange’ in
this context is mostly the formal similarity with wealth exchange and
also is in the spirit of exchanging ideas or information between the
selected pair that could then lead to shifts in their opinions. Like the
kinetic theory of ideal gases, the exact form of interactions is hard to
track down but as is known in the kinetic theory that the departures
so introduced, are averaged out in the statistical sense. Unlike the
kinetic theory, of course, the interactions are not just exchanges of
energy (wealth or opinions), but instead are accompanied by a
saving propensity that keeps a fraction of the exchanging quantity
for themselves and “trade” with the remaining part. While a
conservation of wealth is still obeyed in wealth exchanges, there
is no such conservation for opinion exchanges. Instead, following an
exchange of opinions, the two participating individuals either come
closer together in their views or drift apart, depending on the nature
of the “exchange” they had between them. As a result, the collective
opinion of the society can either shift towards an emergent
consensus or can get fragmented. Interesting questions arise
regarding the conditions that facilitate emergent consensus, such
as the effects of topologies (i.e., the way agents are connected and
interact), the impact of non-conformist individuals on global
consensus, and the time required to reach a consensus, the
proximity to breakdown of consensus, and so on. Another line of
investigation is on the characterization of the transition between
consensus and fragmented state in the form of a critical
phenomenon. The exponent values and the corresponding
universality class are of interest.

In this review, we will first discuss the formulation of the
kinetic exchange models for opinion dynamics and what do the
parameters of the models mean for various different features of
opinion exchanges between individuals (Sec.IIA). We will then
move onto the phase transition behavior seen in such models,
the nature of the phase transitions, and the different variations
of the models where the individuals include non-conformists.
Then we will discuss the effect of topology on such phase
transition behavior (Sec. IIB). Finally, we will discuss the
various different situations where such models could be
applied–the case of the US presidential election (Sec.IIIA),
the case of Brexit (Sec.IIIB) and some models of tax evasion
(Sec. IIIC), for example,. The corresponding comparisons with
the real data were discussed wherever possible, and then we
summarize the results and provide the outlook.

2 Kinetic theory of social exchanges

As noted in Eq. 1, the evolution of the opinion values oi(t)
follows a linear exchange with the opinion value of another agent
oj(t), but the resulting process could be non-linear, in order to
incorporate the bounds at the extreme values ±1. The values of oi(t)
can be either continuous within this range, or discrete (±1, 0) that
includes a neutral opinion explicitly.

Obviously, the interaction/exchange in the above-
mentioned scenario is a complex process, but we argue that
the crux of the resulting reshaping of the opinion values could
be captured by relatively simpler rules in a statistical sense,
i.e., the departures from such simple rules cancel out on
average. Of course, this is a simplifying assumption. In this
case, we assume that a particular individual retains a part of
their original opinion state (unlike in the voter and related
models) and is influenced only partly by the opinion state of the
other individual, hence the exchange. Particularly,

oi t + 1( ) � λoi t( ) + λϵ t( )oj t( ), (2)
where the “exchange” is considered between the ith and jth agents.
We will refer to this as the LCCC model, which was introduced in
Ref. [5]. During the interaction (written here from the view of the ith
agent, and a similar equation could be written for the jth agent as
well), the agent retains λ fraction of their original opinion (at time t)
and gets influenced by the jth agent, such that λϵ(t) fraction of the jth
agent’s opinion is added to it. Here λ is a constant across all agents
and ϵ(t) is a random variable drawn at each time independently for
each interaction from a uniform distribution in (0,1). There is no
restriction on the choice of ith and jth agent. However, a bounded
confidence variant was studied in Ref. [8], where the agents interact
only when the difference between their opinion values remain
within a limit. Note that the interaction process here is such that
it is non-negative, meaning that if the two agents had belonged to the
same side of the opinion spectrum (both positive or both negative),
then after the interaction they would remain on the same side. This
is easily seen if the above equation is rewritten as.

oi t + 1( )
oj t( ) � λ

oi t( )
oj t( ) + λϵ t( ). (3)

FIGURE 1
A schematic representation of the kinetic exchange opinion
model. Two agents, ith and jth, come to a discussion/argument at the
time t with the respective opinion values oi(t) and oj(t). After the
discussion, they modify their opinion values to oi (t + 1) and oj (t +
1). Themodification process is a linear relation with generic form given
in Eq. 1, however a non-linearity enters through enforcing the bounds |
ok(t)| ≤ 1 on the opinion values (real numbers).
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Given that in the above equation the last term is positive definite, if
the other term on the right-hand side is positive then the left-hand
side must also be positive. Therefore, there is a spontaneous
symmetry breaking transition for sufficiently large values of λ,
where all opinion values are of the same sign (see Figure 2). For
low values of λ, all opinion values eventually become zero. The
nature of the symmetry breaking transition in this model has been
investigated widely. Within the framework of the critical
phenomena, simulation results indicate that it does not belong to
the Ising universality class (even though it breaks a Z2 symmetry), or
that of mean-field active-absorbing transition (although the system
reaches an absorbing state below a critical value of λ). The order
parameter is defined as the average of the overall opinion values

O t( ) � 1
N

∑
i

oi t( )
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣. (4)

In the steady state (long time limit), near the critical point (λ = λc
≈ 2/3), it fits a variation of the form

O t → ∞( ) ~ λ − λc( )β, (5)
with β ≈ 0.1 [5]. This value of the order parameter exponent is
significantly less than that of the mean-field Ising model (β = 1/2) or
the mean-field active-absorbing transitions (β = 1). Additionally, there is
very little system size dependence in this version of the model.

As mentioned earlier, an equation similar to Eq. 2 could be
written for the jth agent as well. As far as the numerical simulations
of these models are concerned, the steady-state properties do not
depend on the types (asynchronous or synchronous) of updates.

A mean field calculation was proposed [9] for the fixed point o*
given by

o* 1 − λ 1 + 〈ϵ〉( )[ ] � 0, (6)
from where it follows that the critical point λc = 1/(1 + 〈ϵ〉) where
〈. . .〉 refers to average. For uniform random distribution of ϵ, 〈ϵ〉 =

1/2 and hence, λc = 2/3. Here, it is important to note that this mean-
field treatment does not incorporate the cut-offs at ± 1. It was also
noted that the underlying topology (1-dimension, 2-dimensions or
infinite range) has barely any effect on the critical point.

A variant of this model was later proposed [10] where the conviction
parameters of the agents and the parameter representing the influence of
the others were taken as different. The exchange equation then reads

oi t + 1( ) � λoi t( ) + μϵ t( )oj t( ). (7)
Here, the behavior of the model is non-universal along the λ − μ

plane, with the original model being recovered at the λ = μ point.
Various attempts have been made to seek analytical solutions for

this category of models, all of which demonstrate very little
fluctuations with respect to system size and undergo a
spontaneous active-absorbing type of symmetry breaking
transition. However, they maintain a distinct set of critical
exponent values that are far from the anticipated mean-field class
of active-absorbing transitions in models of this nature [9].

One such attempt [11] was to write Eq. 3 in the form of a mean
field like dynamical evolution of the form

O t + 1( ) � λ 1 + ϵ t( )( )O t( ), (8)
whereO(t) represents the mean field average opinion value. One can
study the stochastic map in Eq. 8 by describing it in terms of random
walks. Writing X(t) = log (O(t)) (for all subsequent discussions we
always take O(t) to be positive), Eq. 8 can be written as

X t + 1( ) � X t( ) + η, (9)
where, η(t) = log [λ(1 + ϵ)]. As is clear from the above equation, it
actually describes a random walk with a reflecting boundary at X = 0
to take the upper cut-off of O(t) into account. Depending upon the
value of λ, the walk can be biased to either way and is unbiased just at
the critical point. As one can average independently over these
additive terms in Eq. 9, this gives an easy way to estimate the critical
point [5]. An unbiased random walk would imply 〈η〉 = 0 i.e.,

∫1
0

log λc 1 + ϵ( )[ ]dϵ � 0 (10)

giving λc = e/4 ≈ 0.68, where a uniform distribution of ϵ in the range
(0,1) had been considered. The tricky averaging here over the log
function may be performed using the transformation x = log (1 + ϵ),
giving ∫1

0
log(1 + ϵ)dϵ � ∫log2

0
xexdx � 2log2 − 1. The steady state

value of O(t), which is the equivalent of the order parameter in the
multi-agent model, turns out to be of the form

O t → ∞( ) � exp −k|log λ|3/2 λ − λc( )−1/2[ ]. (11)

This is not a power-law variation of the form taken in Eq. 5.
A further modification was proposed [12], where the values of the

conviction parameter λwere made stochastic, in the sense that λ = 1 with
probability p and λ = 0 otherwise. This modification makes the model
analytically tractable, because the opinion values now become discrete
(±1, 0) if one starts from discrete initial conditions. The non-negativity of
the interactions discussed above results in a polarization (either positive or
negative opinions survived) in the system that could be shown
analytically. It was then shown that the order parameter, in the steady
state limit (t → ∞) behaved as

FIGURE 2
For the LCCCmodel, Monte Carlo simulation results for the order
parameterO is plotted as a function of the conviction parameter λ. The
inset shows the same for the fluctuation in O. The symmetry breaking
transition is seen at λc, which is approximately 2/3. Taken from
Ref. [5].
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O t → ∞( ) � 3 p − 2/3( )
p

, (12)

implying an order parameter exponent β = 1, consistent with mean field
active-absorbing transition. Also, the finite size scaling and the related
exponents were observed from an off-critical scaling of the form

O t( ) � t−δF Δt1/]‖ , t
d/z

N
( ), (13)

where ]‖ is the time correlation length exponent, z is the dynamical
exponent, d is the space dimensionality, N is the system size and Δ =
p − pc the critical interval. The scaling relation δ = β/]‖ is maintained
here, where all the values are close to unity. Interestingly, if d = 4 is
assumed (as the upper critical dimension), then z = 2 is obtained, as
is expected for mean field.

It is interesting to note that if the two-agent exchange condition
were to be relaxed, the transition behavior changed significantly. For
example, a three-agent interaction was considered in the following
way: three agents were chosen at random, then the first agent
interacted with the other two only if the opinion values of the
other two agents matched. Keeping other parts of the dynamics
same, this results in a discontinuous transition, where the order
parameter behaves as O(t → ∞) � 1

2 +
3

����
p−8/9√

2
�
p

√ . For a mixture of the
two-agent and three-agent interactions, the transition eventually
becomes continuous, passing through a tri-critical point at a critical
value of the mixture.

However, it was also noted that the nature of the ‘disordered’
phase in all the above-mentioned versions is peculiar in the context
of opinion formation, so as to have all opinion values at zero,
meaning a neutral phase. Usually, in a society with competing
opinions, the disordered phase is a fragmented one with almost
equal sizes of population on either side of the issue (and possibly
with few neutral agents). The reason for this ‘absorbing’ phase in the
disordered state of these models is the non-negative nature of the
interactions discussed above. Indeed, even for the ordered phase,
opinion values of one sign survives [12]. Therefore, a negative

TABLE 1 The table shows the values of ξi (t +1) in the two schemes for different
values of oi at times t and t +1. Note that |oi(t)− oi (t +1)|≤1.

oi(t) oi (t + 1) ξi (t + 1)

Scheme I Scheme II

1 1 1 1

1 0 0 −1

0 0 0 0

0 1 1 1

0 −1 −1 −1

−1 0 0 1

−1 −1 −1 −1

TABLE 2 Comparing the critical exponents of the model studied, with Ising model in different dimensions. Mean field exponents for the model are taken from Ref.
[15], while exponents of Ising model are taken from Ref. [49] (d =2, exact results) and Ref. [50] (d =3).

Dimension d Lattice μ pc ] β γ

mean field discrete 1
4 (exact); 0.250 ±

0.001 [15]

�] � 2.00 ± 0.01 1
2 (exact); 0.50 ± 0.01 [15] 1.00 ± 0.05 [15]

mean field continuous 0.3404 ± 0.0002 [15] �] � 2.00 ± 0.01 [15] 0.50 ± 0.01 [15] 1.00 ± 0.05 [15]

d = 2 square discrete 0.1340 ± 0.0001 [44] 0.99 ± 0.01 [44] 0.122 ± 0.002 [44] 1.75 ± 0.01 [44]

d = 2 square continuous 0.2266 ± 0.0001 [44] 0.99 ± 0.01 [44] 0.125 ± 0.001 [44] 1.75 ± 0.01 [44]

d = 2 triangular continuous 0.123 ± 0.0006 [48] 0.97 ± 0.0008 [48] 0.14 ± 0.005 [48] 1.58 ± 0.002 [48]

d = 2 honeycomb continuous 0.115 ± 0.0004 [48] 1.14 ± 0.009 [48] 0.19 ± 0.002 [48] 1.81 ± 0.006 [48]

d = 2 kagome continuous 0.068 ± 0.0003 [48] 1.16 ± 0.002 [48] 0.16 ± 0.002 [48] 1.89 ± 0.005 [48]

d = 2 Penrose quasiperiodic continuous 0.2293 ± 0.00005 [45] 1 [45] 1/8 [45] 1 [45]

d = 2 Ammann-Beenker
quasiperiodic

continuous 0.2299 ± 0.00005 [45] 1 [45] 1/8 [45] 1 [45]

d = 2 Seven-fold quasiperiodic continuous 0.2290 ± 0.00005 [45] 1 [45] 1/8 [45] 1 [45]

d = 2 Nine-fold quasiperiodic continuous 0.2290 ± 0.00005 [45] 1 [45] 1/8 [45] 1 [45]

d = 3 cubic discrete 0.1992 ± 0.0002 0.63 ± 0.01 0.310 ± 0.002 1.255 ± 0.005

d = 3 cubic continuous 0.2854 ± 0.0001 0.63 ± 0.01 0.310 ± 0.002 1.26 ± 0.01

mean field Ising ] � 1
2; d = 4 (exact) [49] 1

2 (exact) [49] 1 (exact) [49]

d = 2 Ising 1 (exact) [49] 1
8 (exact) [49]

7
4 (exact) [49]

d = 3 Ising 0.630 ± 0.002 [50] 0.3250 ± 0.0015 [50] 1.2405 ±
0.0015 [50]
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interaction, in the form of a noise, was subsequently introduced in
the model.

However, before going to the discussions on negative
interactions, let us first mention the universality of the LCCC
model under the influence of an external noise [13] (see also Ref.
[14], for effect of external field). The external noise can be
incorporated in the dynamics as follows:

oi t + 1( ) � λoi t( ) + λϵ t( )oj t( ) + ηi (14)

where ηi is a random uncorrelated noise that can be either +1 or −1.
This would destroy the absorbing nature of the disordered phase,
yielding a co-existence of the opinion values of both signs in the
disordered phase. The critical exponents in that case turns out to be
close to those for the Ising model.

2.1 The BChS model

In Ref. [15], a version of the kinetic opinion exchange model
with negative interaction was introduced, where the transition was
governed by a tunable noise. Following the subsequent studies and
following a naming of the model (see, e.g., Refs. [16–19]), the model
is called here by the name BChS model. The evolution in the model
follows binary exchange between the randomly selected ith and jth
agents, with the evolution rule

oi t + 1( ) � oi t( ) + μij t( )oj t( ), (15)

with no sum over j implied. If an extreme end (±1) is reached, then
the opinion values are kept fixed at the extreme value. Here, the
parameter μij signifies the interaction or an ‘opinion relationship’ or
‘alignment index’ between agents i and j, and thus the opinion after
interaction depends on the nature of this relationship as well as the
instantaneous values of the opinions of the pair. μij is generally taken
as independent of i, j, and takes the value −1 with probability p and
+1 with probability 1 − p. Clearly, this is a noise parameter that
allows a negative interaction, i.e., two agents could be on one side of
an issue (having the same sign of the opinion values) but could end
up on different sides of the issue (having different signs of the
opinion values) after the exchange. The parameter p simply
describes the probability of opposing relation that a pair of
agents have at that particular exchange. This is an annealed
variable in general, but for the mean field case the nature of this
variable (quenched/annealed) is irrelevant.

In the mean field limit (any agent can interact with any other
agent), the dynamics are analytically tractable, particularly when the
opinion values are discrete ±1, 0. The fractions of agents having the
three types of opinion values could then be written as f1, f−1 and f0. It
was shown analytically that at the critical point, these three fractions
are equal. This is the key difference between this version and the
earlier models, since in the disordered phase opinion values of
opposite polarities are equally prevalent.

FIGURE 3
Numerical simulation results for the BChS model with continuous, annealed μij model, showing (A) finite size scaling of the Binder cumulant U for
various system sizes N; the critical point is pc =0.3404±0.0002, with the best data collapse for �] � 2.00 ± 0.01. Inset: U as p varies for different system
sizes; (B) finite size scaling of the order parameter O for various system sizes N; best data collapse is for β =0.50±0.01. Inset: O as p varies for different
system sizes; (C) finite size scaling of V for various system sizes N; the best data collapse is for γ =1.00±0.05. Inset: V as p varies for different system
sizes. The number of averages are 3,000 for N =256, 1800 for N =512, 1,000 for N =1,024 and 400 for N =2048. Taken from Ref. [15].

Frontiers in Physics frontiersin.org05

Biswas et al. 10.3389/fphy.2023.1196745

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1196745


It is then straightforward to show that the order parameter
behaves as

O � ±

�������
1 − 4p( )√
1 − p( ) (16)

which implies that near p→ pc = 1/4, O ~
������
pc − p

√
, giving the order

parameter exponent β = 1/2. This result has been confirmed with
extensive numerical simulations, both for the discrete opinion
values, as well as for the continuous opinion values (for which
the critical point changes).

Although there is no energy function akin to a Hamiltonian in these
models, from the symmetry considerations, it is seen to behave like an
Isingmodel, at least in themean field limit (see also Ref. [20]). Specifically,
standard finite size scaling could be done for the order parameter,
susceptibility (fluctuation of order parameter) and the Binder
cumulant (see Figure 3 for the simulation results of the version of the
BChS model with continuous opinion values). For a later comparison
with the exponent values of the BChSmodel in lower spatial dimensions,
it is to be noted that the results for finite size scaling could be written with
a change of variable as N ~ Ld. For the mean field, of course, this would
require the knowledge of the upper critical dimension. Since the upper
critical dimension of the BChS model is not known, we denote the
correlation ‘length’ exponent by �] while writing a scaling form in terms of
the number of agents N = Ld arranged on a hypothetical d- lattice,
implying �] � d]. For example, in the case of the finite size scaling of the
order parameter
O ~ L−β/]F((p − pc)/L1/]) ~ L−βd/�]F((p − pc)/Ld/�]) ~
N−β/�]F((p − pc)/N1/�]) for a d-dimensional lattice.

The effect of damage spreading was also studied by two different
methods for the BChS model showing that the damage spreading

transition takes place at pdwhere pd < pc = 0.25 in the mean field case
for either method [21].

While in the LCCC type models, only active-absorbing
transitions between a dominant state and the indifferent state can
be observed, the built-in disorder or noise in the interactions in the
BChS type models lead to order-disorder transitions and the critical
exponents turn out to be the same as in the Ising model.

1. Extreme switches and exit probability

As mentioned before, the opinion values of either sign are
possible in this model. However, as could be noted by following
the dynamics of the model with discrete opinion values, if an agent is
to switch their opinion value from positive to negative, or vice versa,
they must first switch to the neutral opinion first.

In Ref. [22], a version of the model was introduced where the
magnitude of μ could be 1 or 2. In this version, only positive values of
μwere considered. The interpretation for a larger value of μwould be
to have a stronger influence of one agent on the other. Clearly, for
μ = 2, the opinion value of the ith agent can switch from +1 to −1 if
oj(t) = −1.

If the probability for μ = 2 is denoted by r and that for μ = 1 is 1 −
r, then the results are qualitatively different for r = 1 and r ≠ 1. The
analytical solution, which is valid in the thermodynamic limit, shows
that for r = 1 the dynamics are quasi-conservative as the order
parameter remains constant after a very short transient time. This
indicates that the system does not order fully for any initial
configuration with initial order parameter less than 1. When a
consensus is reached with either all opinions +1 or −1, one can
define what is called an exit probability, which is a measure of the
probability that the system ends up in the state towards which it was

FIGURE 4
A schematic representation of coarse graining in the Ising model. The left hand side figure shows the spatial configuration of the up (orange) and
down (blue) values on a square lattice and the coarse graining boundaries are indicated. The right hand side figure shows a coarse grained picture.
Although initially there weremore up (22,382) than down (21,718) values, after the coarse graining there are more down (25) than up (24) blocks. This is an
instance where coarse graining flips the sign of the average order parameter. This particular case uses two dimensional Ising model. But a similar
picture could arise form the BChS and similar other models. Taken from [43].
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biased initially. The linear behavior of the exit probability is similar
to what is seen for a conservative dynamics, as, for example, in the
Voter model in all dimensions and the Ising Glauber model in one
dimension. This is actually quite interesting, as the present model
does not strictly conserve the order parameter; the saturation value is
not exactly equal to the initial one. But the linear behavior of the exit
probability can still occur if the saturation value of the order
parameter varies linearly with the initial value, which was
checked to be true here. At r = 1 as f0 goes to zero very fast, it
effectively renders the system to a binary opinion model within a
short time scale with the transition rates identical to those in the
Voter model [23, 24]. Like the voter model, here the agent adapts the
opinion of the other agent with whom she interacts irrespective of
her own opinion. It is also found from simulations that the average
consensus time is proportional to N for r = 1, a result valid for the
mean field voter model.

With both r and p ≠ 0 as parameters, the order disorder
boundary in the parameter space is expressed as [25].

p � 1 − r

4
, (17)

while the criticality is again mean-field type.

2. Virtual-walk in opinion space

An interesting aspect of the dynamics was studied in Ref. [26],
where the evolution of the opinion values were associated with a
virtual random walk. If a walker is associated to each of the
individuals of the system in a virtual one dimensional space, then
the position of the ith walker at time step t + 1 in this space can be
written as

Xi t + 1( ) � Xi t( ) + ξ i t + 1( ). (18)

At each step the walker can move to the nearest-neighbor site to its
right or left or it can remain at its present location. Then ξi is a
random number which can take values −1, 0, or +1. In this work, the
displacements ξ were taken to depend on the opinion states. Two
schemes were used to implement the walk.

Scheme I is a Markovian process, i.e., here ξi (t + 1) depends on
the present opinion states only:

ξi t + 1( ) � oi t + 1( ). (19)
Scheme II is a non-Markovian walk where the ξi (t + 1) depends on

the present as well as the previous opinion states in the following way:

ξi t + 1( ) � oi t + 1( ), if oi t + 1( ) � oi t( ),
� oi t + 1( ) − oi t( ), otherwise.

The values of ξ thus chosen are tabulated in Table 1. In either case, Xi

(t = 0) = 0 was taken for all i. It is to be emphasized here that the
evolution of the opinions directly involves the parameter p. The
walks on the other hand are solely determined on the basis of the
opinions in the last one or two steps and p does not directly enter
into the definition of the walk. It was found that both the walks carry
the signature of the phase transition at pc = 0.25.

3. Public-private opinions

It was noted that the publicly expressed opinion might differ
from the privately held beliefs (see, e.g., Ref. [27]). Due to peer
pressure and/or political purposes, an agent can have a private and a
public opinion value, which might differ in magnitude as well as in
sign. In Ref. [28], a version of the kinetic exchangemodel for opinion
was considered, where the two types of opinion values were treated
separately. Particularly, the public opinion values were allowed to
follow the exchange rule mentioned before, while the private
opinion values, denoted by Pi(t), followed

Pi t + 1( ) � Pi t( ) + k oi t + 1( ) − oi t( )( ) (20)
where k is a parameter. This dynamics are not reflected in the public
opinion, until the public opinion value differs from the private
opinion value of a particular agent by more than a tolerance
parameter δ, such that

oi t( ) � sgn Pi t( )( ) (21)
if |oi(t) − Pi(t)| > δi. One could then measure two order parameters,
O(t) for the public opinion values as before and Q(t) � 1

N|∑
i

Pi(t)|
for the private opinions. It was shown numerically that a transition
to disorder happens for a value of p, depending on the values of k
and δ, but a statistically significant difference between the two kinds
of opinion values persists in all phases of the dynamics. While the
critical behavior is Ising-like for high values of δ, for low values of δ,
it was seen to occur with non-Ising exponent values. This is a
signature of the non-Ising nature of the model, which we shall come
back to in the later sections.

4. Contrarians and zealots

In a society, not all agents would follow an opinion ‘exchange’ as
written in Eq. 1. Indeed, they might not enter into an ‘exchange’ at
all, i.e., they can retain their opinion values indefinitely.

FIGURE 5
The finite size scaling of the probability of the minority candidate
winning w as a function of the difference in the population of the two
non-zero opinion values Δ. The inset shows the unscaled data. The
x-axis values of the four cases of the minority candidate winning
in the US presidential elections are indicated using the value of Δ from
historic voting data and the value of the exponent same as that
obtained from the above mentioned finite size scaling. The location of
the x-axis values indicate that there has always been a significant
chance of the minority candidate winning in these elections. Taken
from Ref. [43].
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Alternatively, they could behave contrary to the norm, i.e., take an
opinion value opposite to that dictated by the interaction rule.

A group of agents not following the ‘rules’ defined for most
people in the society have been considered before in many variants
of opinion formationmodels (see, e.g., Ref. [29]). Here, we revisit the
studies that looked into the effect of such group(s) of agents in the
BChS model.

In Ref. [30] a parameter denoting the fraction of inflexible agents
was introduced to study how it affects the opinion formation (see
also Refs. [31, 32]). Such a fraction of agents do not change their
opinions in any type of interaction. Introduction of this fraction
lowers the value of pc. The inflexible agents could either be chosen
randomly, or could only belong to either of the extreme opinions, or
both. The resulting phase boundary depends on this choice, but the
universality remains unaffected. In contrast to the BChS and the
LCCCmodel in Ref. [33] the conviction parameter λwas chosen as a
random variable with discrete values (either 0, 1 or −1), which gives
rise to a two parameter model. Such a modification does not lead to
any change in the universality class. However, the phase boundary
shows that with the presence of λ = 0 or −1 would lead to a lower pc
value. A similar model was proposed in Ref. [34]. Here, additionally,
the provision of independent selection of opinion by the agents was
considered, irrespective of the states of their own and the agent they
are interacting with. The critical behavior was found to be similar to
the mean field Ising model. There are also similar kinetic exchange
opinion dynamics models [35, 36] which eventually produce order-
disorder transitions with mean field Ising critical exponents. In Ref.
[37] the relaxation behavior of a three-state (±1, 0) opinion
dynamics model on a square lattice was studied. The evolution of
the states of the agents is governed by the dynamical rules similar to
the voter model [2]. In addition to this, Ref. [37] considered a noise
in the system which can change the opinion of any agent to the
neutral state. A similar model with a community structure was
considered in Ref. [38]. In this study, the value of μ = 1 if the

interacting agents belong to the same community and −1 otherwise.
The study accounted for several parameters relevant to the
community structure and links, and eventually identified the
ordered and disordered phases. The role of the inflexible agents
for p = 0 was also studied in this work. In refs. [39, 40] a parameter T
was introduced, which effectively plays a role of “social
temperature”, and captures the degree of randomness in the
behavior of agents. The dynamical equation of the BChS model
was altered by a multiplying factor 1/T in the RHS of Eq. 15 and
finally a hyperbolic tangent was taken on it. The effect of this “social
temperature” manifests in the existence of three phases at p = pc;
symmetric (opinions are symmetrically distributed between +1 and
−1), asymmetric (opinions are asymmetrically distributed between
+1 and −1) and neutral (an absorbing state, the distribution is
peaked about zero) in the pc − T plane. Interestingly, pc shows a slow
rise with temperature at low temperatures, however, as the
temperature is increased beyond a certain value, both the
symmetric and asymmetric phases transit to the neutral one.
Reference [39] reported that the critical behavior of the
absorbing phase transitions belongs to directed percolation
universality class.

2.2 Effect of topology: lattices and networks

Under most circumstances, there are no realistic restriction in
the interaction or opinion exchange due to spatial constraints
usually seen for physical models. However, there could be other
types of constraints that could eventually give rise to a restricted
neighborhood of interaction for an agent. For example, it is widely
known that social networks often have scale-free degree distribution
[41]. Similarly, it is also known that there is a natural bound in the
human brain for maintaining friendship [42], which means a fully
connected graph may not be the ideal topology to implement an
opinion dynamics model. Of course, the fully connected graph is
where the mean field approximation is exact, which is analytically
tractable. But naturally the questions of dimensional dependence or
more generally the topological dependence of the critical exponents
could be raised.

In view of this, the BChS model and its variants have been
studied in lower dimensions (regular lattices), quasi-periodic lattices
and on various networks, where the edges represent interaction
possibilities and the nodes are the locations of the agents. We have
discussed some of these instances in the earlier subsection. However,
here we focus on the systematic studies concerning the critical
exponent values and their variations due to topology.

1. BChS model on lattices: Regular and quasi-periodic

The study of the BChS models and for that matter any other
opinion dynamics model on a regular lattice is primarily motivated
by the assertion of its universality class and thereby determining the
lower and upper critical dimensions. It could also have implications
in growth, dynamics and coarse-graining of similarly opinionated
neighborhoods [43] that do form for various different reasons.

In Ref. [44], the BChS model was studied in two and three-
dimensional lattices numerically (there is no transition at finite noise
in one dimension). Both the cases of μij(t) having discrete and

FIGURE 6
The probability of the minority candidate winning is plotted
against the coarse graining block size b scaled by the linear system
size, in the BChS model for different values of p. The vertical arrows
indicate the positions of the x-axis where the actual minority
candidate winning incidences have occurred, if the b/L ratio is taken as
the electoral college size and voter size ratio in the US for those
4 years. It seems that almost for any value of p, the electroral college
sizes are such that the minority candidate winning probability is
significantly high. Taken from Ref. [56].
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continuous values were considered. Correspondingly, the opinion
values are discrete ±1, 0 or continuous. While the critical points
depend on this, the critical exponent values do not depend on
discrete or continuous values of μij(t) or oi(t).

In Ref. [45], the BChS model was studied on quasi-periodic
lattices (see also Refs.– [46, 47]). The authors considered Penrose,
and Ammann-Beenker lattices. They also considered 7-fold and 9-
fold quasi-periodic lattices. In general, it is expected that the
universality class is not altered in quasi-periodic lattices. Here,
the authors also confirm the same, i. e., the exponent values
remain the same as the two-dimensional lattice.

In Ref. [48], the model was studied on triangular, kagome and
honeycomb lattices. It is interesting to note that in this case, the
exponent values were slightly different from those seen for two-
dimensional regular lattices. In Table 2, the exponents values are
summarized.

2. Networks

As mentioned before, an important aspect of the study of
opinion dynamics model is its implementation on realistic social
network structures viz., scale free networks. The BChS model was
studied on different network topologies. Particularly, in Ref. [17],

the critical behavior of the BChS model simulated on a directed
Barabási-Albert Networks (DBAN) (see also, Refs. [19, 51, 52]) was
investigated. It was shown that the value of pc as well as the ratios of
β/] and γ/] change non-monotonically with the connectivity. It was
also reported that the universality class of the BChSmodel on DBAN
is same as of majority-vote model (MVM). In Ref. [16] the
nonequilibrium BChS model on Erdös-Rényi random network
(ERRG) and directed ERRG random network were studied. The
numerical results indicate that the critical behavior of the BChS
model on such graphs is different from the MVM realized on same
networks. The universality class is also different from the
equilibrium Ising universality class.

3 Applications

3.1 Coarse grained information: US elections

The 2016 US Presidential election revealed an intriguing aspect:
the candidate who received a greater share of the popular vote lost
the election. This can be attributed to the electoral college system of
the US, where in most states the winner of the popular vote in a state
wins all of its electoral college votes as well. Essentially, this is a

FIGURE 7
Comparisons between Brexit and the BChS model data. (A) The figure shows various opinion surveys and referendum on the question of the UK
leaving the EU from the date of its joining (1 January 1973 to the then European Communities) as the origin (t =0). The vertical line denotes the time of the
last referendum (23 June 2016). (B) The rank-plot of the interval of the zero-crossing of the net opinion value (difference between remain and leave
fractions) is shown. The tail of the rank plot shows an exponent close to −0.60±0.02. (C) The distribution D(I) of intervals of zero crossing for the
BChS model (circles) and its fitting with an exponent −1.5, implying that the cumulative (seen for the real data in (b)) would give an exponent value −0.5.
Taken from Ref. [59].
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process of coarse graining. While the renormalization group theory
of critical points shows that coarse graining near a critical point does
not change the scaling behavior of a system, the sign of the order
parameter can be flipped due to the coarse graining. In the case of
the 2016 US elections, if we consider the electoral college as a spatial
coarse graining of the popular vote, a flip of the sign of the order
parameter (average opinion value) occurred (see Figure 4). The
probability of such an event (flip) happening is significant when the
underlying system (here the popular vote) is near a critical point,
i.e., having no clear winning opinion and strong spatial correlation
in the spatial organization of the opinion states [43]. Indeed, there
are four instances of the minority candidate winning in the US
presidential elections: 1876, 1888, 2000 and 2016.

The coarse graining process was applied to the kinetic
exchange opinion model studied on a square lattice, which
involved examining the time series of order parameter values
before and after the process. During this process, the behavior
resembled that of a noisy channel, where certain values may
have been flipped, resulting in a change of sign. One can
subsequently quantify the loss of information from a
measurement of the mutual information between the two
time series [43].Particularly, if Δ is the difference between
the two signs of the (extreme) opinion values in the BChS
model in two dimensions, then from the time series of the
order parameter and that of the coarse grained lattice (with
49 blocks) one can estimate the fraction of the times when a flip
of sign have occurred due to coarse graining. This is the
probability of the minority candidate winning w. When
measured near the critical point pc ≈ 0.12 of the two
dimensional BChS model, this quantity shows a finite size
scaling (see Figure 5) of the form w � G(Δ/NαBChS

v ), where Nv

is the number of agents having non-zero opinion values (about
80% of the total population for the BChS model in two
dimensions near the critical point) and αBChS ≈ 0.7 [43].

As noted above, the process of coarse graining essentially implies
a loss of information, much like a noisy channel [53]. Here the input
signal is the sign of the majority of N agents (denoted byN ) and the
output signal is the sign of the majority of the coarse grained system
(M). The mutual information I) transferred from the input to the
output is then given by

I N ,M( ) � H N( ) +H M( ) −H N ,M( ), (22)
where

H X( ) � − ∑
i∈ 0,1{ }

p X � i( ) logp X � i( ),
H X, Y( ) � − ∑

i,j∈ 0,1{ }
p X � i ∧ Y � j( ) logp X � i ∧ Y � j( )

where p (X = i) is the probability of input being i and so on. The
relative mutual information R is then given by [54, 55].

R N ,M( ) � H N( ) +H M( ) −H N ,M( )
H N( ) +H M( )[ ]/2 (23)

which is a measure of the reduction in the uncertainty of the
input, given the knowledge about the realization of the output,
relative to the average uncertainty of the input and output. The
value of R is 1 below the critical point, which implies that the

output is fully predictable from the input. Above the critical
point, R sharply drops to zero, where all information is lost.

Furthermore, this loss of information is found to be dependent
on the size of the coarse graining blocks [56]. It can be easily
understood that the limit of unit block size and a system wide block
size would give back the original system, implying no loss in
information. However, for intermediate sizes, there will be loss of
information which will be maximum for a particular size.
Interestingly, at the current state of the block (states of
United States of America) sizes, the loss is near the maximum
(see Figure 6). This may call for proper attention, not the least while
making pre-poll predictions of such results.

3.2 Brexit: a long route to consensus

The question of the UK leaving the European Union has been a
debated topic for half a century. The reason that the issue remained
active in the UK politics (or for that matter the EU politics) is the
lack of consensus regarding the two choices. Of course this is an
interesting issue which was addressed in opinion dynamic models
elsewhere (see, e.g., [57, 58]), but in the present context, it can be
thought of as a binary choice opinion evolution.

In the BChS model, if the noise parameter is set to zero (p = 0),
then coarsening will happen (similar to T = 0 in the Ising model) and
the system will eventually go to a consensus (all up or all down) state,
at least on the lower spatial dimensions. If the initial state is
disordered, then there will be competition between up and down
domains. Interestingly, the domain boundaries will be separated by
neutral agents. This is in contrast with what one observes in Ising
model.

It is noted [59] that approximately one-third of the
configurations go to a trapping state, where the dynamics are not
frozen, but the domain sizes of opposite signs remain comparable for
a very long time. These configurations take a longer time (different
scaling with system size) than the remaining two-third, which reach
consensus much more quickly. If averaged over all configurations,
this would be reflected as a two-stage consensus process, similar to
what was also seen in the voter model. Such a longer route to the
consensus has analogs in society, where some contentious issues
divide people in such a way that finding an overall consensus may
remain elusive for decades. The question of the UK leaving the
European Union is/has been one such issue. Interestingly, there are
data for opinion polls going back many decades. These data show
that the overall population remained divided almost equally on this
issue, with remain/leave campaigns marginally gaining over each
other without any clear dominance. Indeed, the distribution of the
zero crossing could be plotted and compared with the same in the
BChSmodel in two dimensions with p = 0 (see Figure 7). The scaling
behavior of the theoretical results and the real data show promising
agreement.

3.3 Tax evasion dynamics

An interesting application of the three state kinetic opinion
formation is in the case of tax evasion dynamics [60, 61]. There have
been earlier studies on tax evasion dynamics with opinion models,
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particularly the Zaklan model [62], where two opinion states were
considered, representing the tax payers and the tax evaders. A
similar parallel is drawn for the BChS model as well, i.e., the
opinion value oi(t) = +1 would imply that the ith agent is a tax
payer at time t, and oj(t) = −1 would imply that the jth agent is a tax-
evader at time t. However, it is interesting to note the effect of the
neutral agents with opinion values 0, who represent the undecided
fraction of agents. They can change their state to tax payers or tax
evaders depending on their subsequent interactions.

A punishment rule is then applied, which means that a
randomly selected fraction of the tax evaders are audited and
changed to the tax payers state for some subsequent time steps.
After that time period, they can again participate in the opinion
dynamics as before and can switch to tax evaders state.

In the ordered phase of the model, the punishment rule does not
affect the state of the system significantly. However, in the
disordered state, where all three fractions are usually present in
the same fraction, the enforcement of the punishment rule can
significantly reduce the tax evader fraction.

4 Discussion and conclusion

The kinetic exchange models of opinion formation have made
significant contribution in understanding how a society reaches or
does not reach a collective decision. In this review, we have provided
an up-to-date overview of the opinion formation models within this
category, as the research in this area remains quite active. Our focus
has been mainly on the Biswas-Chatterjee-Sen (BChS) model [15]
proposed in 2012 and its variants and later developments.

An interesting issue in this class of opinion formation models is the
existence of phase transitions between symmetric and symmetry broken
phases governed by suitable driving parameters. In the BChS model,
where a negative interaction can occur between agents, such a phase
transition was shown to take place above a critical fraction of negative
interactions on a fully connected network. Later more parameters have
been introduced to include various features like the presence of inflexible
or contrarian agents, independent opinion formation, random opinion
changes, extreme switches, etc., all of which occur with certain
probabilities. These usually produce additional noise in the system.
We have discussed these cases in sec IIA.

An important aspect in studies on social phenomena is the
topology of the network on which the agents are placed; this decides
the connectivity of the agents. The results are strongly dependent on
the topology.While exact results are only available for the mean field
cases for the BChS model, in later works, approximate results and
simulations have been made on finite dimensional regular networks,
random graphs, scale free networks, etc. A short review of such
models, some of which also incorporated other possible sources of
noise, has been made in sec IIB.

The nature of the phase transition and the universality class (when
one has a continuous phase transition) have also been investigated for
thesemodels. The LCCC typemodelsmay be regarded as predecessors of
the BChSmodel. In the former, the disordered phase is absorbing. But the
noise parameter in the BChS type models makes it close to the Ising
universality class. Therefore, in most of the cases, one finds the critical
exponent values to be very close to those of the Ising model, although
whether in general the BChS model belongs to the Ising critical class has

not yet been established. This is because, for example, in the mean field
case, one has to assume an effective dimension equal to 4 in order to get
correspondence with respect to all the critical exponents.

The kinetic exchange model including the BChS model differs
intrinsically from the Ising model and binary opinion dynamics
models like the Voter model as it allows more than two opinion
states even in the discrete version. As a result there can be an
absorbing state also when all opinions become zero - it is disordered
as the order parameter is zero, on the other hand it differs strongly from
the symmetric phase. In the cases where one has transition to this
absorbing state, a directed percolation (DP) like universality has also
been claimed. These discussions have also been included in sec IIB.

For an opinion dynamics model to be truly useful and acceptable,
one needs to show that it works reasonably well when comparedwith real
data. The success of the BChS model lies in the fact that one can indeed
get consistency with real data in at least two cases, namely, the US
Presidential election and Brexit, using appropriate topology and
parameters. These applications have been discussed in detail in sec III,
in the context of coarse graining in the US presidential election and the
subsequent probability of aminority candidatewinning (IIIA), the scaling
behavior of the consensus time in binary choices applied to the case of
Brexit (IIIB) and application to tax evasion models (IIIC).

In short, we have consolidated here the results available for the
BChS model and its modified versions as of now, and expect to see
research in several directions based on these models in future.
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