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Information geometry and Markov chains are two powerful tools used in modern
fields such as finance, physics, computer science, and epidemiology. In this survey,
we explore their intersection, focusing on the theoretical framework. We attempt
to provide a self-contained treatment of the foundations without requiring a solid
background in differential geometry. We present the core concepts of information
geometry of Markov chains, including information projections and the pivotal
information geometric construction of Nagaoka. We then delve into recent
advances in the field, such as geometric structures arising from time
reversibility, lumpability of Markov chains, or tree models. Finally, we highlight
practical applications of this framework, such as parameter estimation, hypothesis
testing, large deviation theory, and the maximum entropy principle.
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1 Introduction

Markov chains are stochastic models that describe the probabilistic evolution of a system
over time and have been successfully used in a wide variety of fields, including physics,
engineering, and computer science. Conversely, information geometry is a mathematical
framework that provides a geometric interpretation of probability distributions and their
properties, with applications in diverse areas such as statistics, machine learning, and
neuroscience. By combining the insights and methods from both fields, researchers have, in
recent years, developed novel approaches for analyzing and modeling systems with time
dependencies.

1.1 Outline and scope

As the fields of information geometry and Markov chains are broad, it is not possible to
review all topics exhaustively, and we had to confine the scope of our survey to certain basic
topics. Our focus will be on time-discrete, time-homogeneous Markov chains that take
values from a finite alphabet. In particular, we will not cover time-continuous Markov chains
[1, 2] nor discuss quantum information geometry or hidden Markov models [3, 4]. Our
introduction to information geometry in the distribution setting will be limited to the basics.
For a more comprehensive treatment, we recommend referring to the monographs [5, 6].

This survey is structured into five sections.
Section 1 is a brief introduction that provides an outline, lists the main concepts and

results found in this survey, and clarifies its scope.
In Section 2, we lay out the notation that will be used throughout this paper and provide a

primer on irreducible Markov chains and information geometry in the context of
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distributions. Along the way, we recall how to extend notions of
entropy and Kullback–Leibler (KL) divergence from distributions to
Markov chains.

In Section 3, following Nagaoka [7], we introduce a Fisher
metric and a pair of dual affine connections on the set of
irreducible stochastic matrices, which allows us to define the
orthogonality of curves and parallel transport. We then proceed
to define exponential families (e-families) and mixture families
(m-families) of Markov chains. Importantly, the set of irreducible
stochastic matrices is shown to form both an e-family and
m-family, endowing it with the structure of a dually flat
manifold. We explore minimality conditions for exponential
families and chart transition maps between their natural and
expectation parameters. Additionally, we define geodesics and
their generalizations and conclude the section with a discussion
on information projections and decomposition theorems.
Specifically, similar to the distribution setting, the dual affine
connections induce two notions of convexity, leading to
Pythagorean identities.

In Section 4, we explore some recent developments in the
field. First, we list and analyze the geometric properties of
important subfamilies of stochastic matrices, such as
symmetric or bistochastic Markov chains. The highlights of
this section include the analysis of geometric properties
induced by the time reversibility of Markov chains. This
analysis leads to the establishment of the em-family structure
of the reversible set, the derivation of closed-form expressions for
reversible information projections, and the characterization of
the reversible set as geodesic hulls of contained families. We
continue this section by discussing some notable advancements
in the context of data processing of Markov chains. Mirroring
congruent embeddings in a distribution setting, we present a
construction of embeddings of families of stochastic matrices
that are congruent with respect to the lumping operation of
Markov chains. These embeddings preserve the Fisher metric, the
pair of dual affine connections, and the e-family structure.
Additionally, we explore the establishment of a foliation
structure on the manifold of lumpable stochastic matrices.
Lastly, we conclude this section by presenting results in the
context of tree models.

Section 5 is devoted to applications of the information geometry
framework to large deviations, estimation theory, hypothesis testing,
and the maximum entropy principle.

2 Preliminaries

2.1 Notation

Let X be a finite space of symbols. All vectors will be written as
row vectors. A vector v ∈ RX is non-negative (resp., positive),
indicated by v ≥ 0 (resp., v > 0), when v(x) ≥ 0 (resp., v(x) > 0)
for any x ∈ X . For x ∈ X , the vector ex ∈ RX is defined by ex(x′) �
δ[x � x′] for x′ ∈ X , where δ[·] is the function that takes the value
1 when the predicate in the argument is true and 0 otherwise. For
two vectors u, v ∈ RX , the Hadamard product of u and v is defined
by (u+v)(x) = u(x)v(x), and we will also use the shorthand (u/v)(x) =
u(x)/v(x). For convenience, for k vectors u1, . . ., uk, we write

○k
i�1ui � u1+u2+ . . .+uk, and for vector u and positive real

number α, u+α is such that u+α(x) = u(x)α. For p ≥ 0, we write
‖v‖p � ∑x∈X |v(x)|p( )1/p. We denote by P(X ) the set of all
distributions over X ,

P X( ) ≜ μ ∈ RX : μ≥ 0, μ
���� ����1 � 1{ },

and P+(X) ⊂ P(X ) refers to the positive subset. X ~ μ means that
the random variable X is distributed according to a distribution
μ ∈ P(X), and for μ, ] ∈ P(X ), the absolute continuity of ] with
respect to μ is denoted by ] ≪ μ.

2.2 Irreducible Markov chains

A time-discrete, time-homogeneous Markov chain is a random
process X � Xt{ }t∈N that takes values on the state space X and
satisfies the Markov property. Namely, for t ≥ 2 and for
any x1, . . . , xt, xt+1 ∈ X ,

Pμ Xt+1 � xt+1|Xt � xt, . . . , X1 � x1( ) � P Xt+1 � xt+1|Xt � xt( ),
with P(X1 � x1) � μ(x1) for an initial distribution μ ∈ P(X). The
transition probabilities of the process can be organized in a row-
stochastic matrix P, where P(x, x′) � P(Xt+1 � x′|Xt � x). We
write X ~ (μ, P) for the Markov chain started from μ and with
transition matrix P. Let the vector space F(X) ≜ RX2

, whose
elements can be conveniently represented by real square matrices
of size |X |, simultaneously understood as linear operators on RX .
We introduce the set of all row-stochastic matrices over the
space X ,

W X( ) ≜ P ∈ F X( ): ∀x ∈ X , exP ∈ P X( ){ }. (1)
As we assume |X |<∞, for any member P ofW(X), there exists a
fixed point π ∈ P(X) such that πP = π, and we call π a stationary
distribution for P. Let E ⊂ X 2 define the set of positive probability
transitions on the state space. When (X , E) is a fully connected
digraph, we say that P is irreducible. Algebraically, this means
that for any pair of states x, x′ ∈ X , there exists p ∈ N such that
Pp(x, x′) > 0, or less tersely, there exists a path on the graph (X , E)
from x to x′. When P defines an irreducible Markov chain, the
stationary distribution π is unique and positive. Moreover, when
the initial distribution μ = π, we say that the chain is stationary,
write Pπ(·) for probability statements over a stationary trajectory
and X ~ P as a shorthand for X ~ (π, P). We denote the
irreducible set:

W X , E( ) ≜ P ∈ W X( ): P is irreducible over X , E( ){ }.
It will also be convenient to define F(X , E), the real functions

over E, and identify this set with all functions over X 2 that are null
outside of E. Note that F(X , E) can be endowed with the structure
of a |E|-dimensional vector space. We write F+(X , E) ⊂ F(X , E)
for the positive subset. For n ∈ N, the probability of observing a
stationary path x1 → x2 →/→ xn induced from a π-stationary P is
given by

Q n( ) x1, x2, . . . , xn( ) ≜ Pπ X1 � x1, . . . , Xn � xn( )
� π x1( )∏n−1

t�1
P xt, xt+1( ). (2)
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In particular,

Q ≜ Q 2( ) ∈ P X 2( )
is called the edge measure pertaining to P. Observe that the map
from an irreducible transition matrix P to its edge measure is one-to-
one (see, e.g., [8]) and that the set of all edge measures Q(X , E) can
be expressed as

Q X , E( ) � Q ∈ P X 2( ) ∩ F + X , E( ): ∑
x′∈X

Q x, x′( )⎧⎨⎩
� ∑

x′∈X
Q x′, x( ),∀x ∈ X

⎫⎬⎭. (3)

We refer the reader to Levin et al. [9] for a thorough treatment of
Markov chains.

2.3 Entropy and divergence rates for Markov
chains

Let us first recall the definition of the Shannon entropy of a
random variable. We let μ ∈ P(X) and X ~ μ. The entropy H of the
random variable X, which measures the average level of surprise
inherent to the possible outcomes, is defined by

H X( ) � −∑
x∈X

μ x( )log μ x( ),

and where by convention 0 log 0 = 0. The entropy rate of a stationary
stochastic process X � (Xt)t∈N corresponds to the number of bits to
describe one random variable in a stochastic process averaged over
time. Namely,

H X( ) ≜ lim
n→∞

1
n
H X1, X2, . . . , Xn( ), (4)

where for any n ∈ N, H(X1, X2, . . ., Xn) is the joint entropy of the
random variables X1, X2, . . ., Xn. Particularly, when X forms an
irreducible Markov chain with transition matrix P ∈ W(X , E) and
stationary distribution π, the entropy rate can be written as

H X( ) � − ∑
x,x′( )∈E

Q x, x′( )logP x, x′( ),
where Q is the edge measure pertaining to P. In other words, the
entropy rate of the process is computed from P only. We can thus
overload H to define

H: W X , E( ) → R+
P ↦ H P( ) � H X( ), for X ~ P.

For two random variables X ~ μ, X′ ~ μ′ with μ, μ′ ∈ P(X ), we
define the Kullback–Leibler divergence from X′ to X by

D X‖X′( ) ≜ ∑x ∈Xμ x( )log μ x( )
μ′ x( ) when μ≪ μ′,

∞ otherwise.

⎧⎪⎪⎨⎪⎪⎩ (5)

Extending the aforementioned definition to Markov processes,
the information divergence rate [10] (see also [73, Section 3.5]) of
X ~ P ∈ W(X , E), from another chain X′ ~ P′ ∈ W(X , E′), is
given by

D X‖X′( ) � lim
n→∞

1
n
D X1, X2, . . . , Xn‖X1′, X2′, . . . , Xn′( )

� ∑ x,x′( )∈EQ x, x′( )log P x, x′( )
P′ x, x′( ) when E ⊂ E′,

∞ otherwise,

⎧⎪⎪⎨⎪⎪⎩
which is also agnostic on initial distributions, inviting us to lift the
definition of D to stochastic matrices:

D: W X , E( ) × W X , E′( ) → R+ ∪ ∞{ }
P, P′ ↦ D X‖X′( ) forX ~ P andX′ ~ P′.

(6)

2.4 Information geometry

We briefly introduce basic concepts related to information
geometry in the context of distributions. The central idea is to
regard P+(X) as a (|X | − 1)-dimensional smooth manifold and
statistical models, i.e., parametric families of distributions
M � μθ{ }θ∈Θ⊂Rd , as smooth submanifolds of P+(X). At each
point μ ∈ P+(X), we define a (0,2)-tensor,

gμ: TμP+ X( ) × TμP+ X( ) → R

Uμ, Vμ ↦ gμ Uμ, Vμ( ) � ∑
x∈X

μ x( ) Uμ log μ x( )( ) Vμ log μ x( )( ),
where TμP+(X) is the tangent plane at the point μ, and Uμ log μ(x)
is the directional derivative of the C∞(P+(X )) function, μ↦ log
μ(x) with respect to the tangent vector Uμ. This leads to the
definition of a Riemannian metric, termed Fisher metric [5,
Section 2.2]:

g: Γ TP+ X( )( ) × Γ TP+ X( )( ) → C∞ P+ X( )( )
U,V ↦ g U,V( ): P+ X( ) → R, μ ↦ g U,V( ) μ( ) � gμ Uμ, Vμ( ),

where Γ(TP+(X)) is the set of all vector fields [5, Section 1.3] and
C∞(P+(X )) the set of all smooth real functions on P+(X). Letting
θ: M → Θ ⊂ R be a chart map1, μθ denote the distribution at
coordinates θ = (θ1, . . ., θd), and zi = z ·/zθi, we write (zi)i∈[d]
for the θ-induced basis of TμθP+(X). We can express the Fisher
metric at coordinates θ as

gij θ( ) � ∑
x∈X

μθ x( )zi log μθ x( )zj log μθ x( ).

In addition to g, we define a pair of affine connections by their
associated covariant derivatives [5, Chapter 1, (1.38)]:

∇(e),∇(m): Γ TP+ X( )( ) × Γ TP+ X( )( ) → Γ TP+ X( )( ).
In the parametrization θ, the connections are specified by their

coefficients (Christoffel symbols):

Γ(e)ij,k θ( ) ≜ gμθ ∇(e)
zi
zj, zk( ) � ∑

x∈X
μθ x( )zizj logμθ x( )zkμθ x( ),

Γ(m)
ij,k θ( ) ≜ gμθ ∇(m)

zi
zj, zk( ) � ∑

x∈X
μθ x( )zizjμθ x( )zk logμθ x( ),

1 As is customary in the literature, θ denotes both the coordinates of a point
in context and the corresponding chart map.
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where ∇(e)
zi
zj is the covariant derivative of zj with respect to zi. The

canonical divergence associated with g,∇(e) and ∇(m) is the
Kullback–Leibler divergence (5). The connections ∇(e) and ∇(m)

are conjugate [5, Chapter 3, (3.1)] in the sense where for any
vector fields U,V,W ∈ Γ(TP+(X)),

Ug V,W( ) � g ∇(e)
U V,W( ) + g V,∇(m)

U W( ).
As a consequence, the curvature tensors associated with ∇(e),∇(m)

vanish simultaneously. In particular, they vanish for P+(X ), and we
say that the manifold is dually flat. A complete review of the
distribution setting, including exponential and mixture families,
is outside the scope of this survey. We refer the reader to Amari
and Nagaoka [5] for a complete treatment of the topic.

3 The dually flat manifold of irreducible
stochastic matrices

Similar to the distributional setting, we regard W(X , E), the set
of irreducible stochastic matrices over some prescribed fully
connected digraph (X , E), as a smooth manifold, on which we
introduce a Riemannian metric together with a dually flat structure
(Section 2.3). In turn, we will define exponential and mixture
families of stochastic matrices. We will further examine notions
of geodesic convexity and information projections.

3.1 The information manifold

Our first order of business is to establish a dually flat structure on
the set of stochastic matrices, following Nagaoka [7]. A smooth
manifold structure can be established on W(X , E), using the map
introduced by Nagaoka [7, p.2], reported in (15). One possible
construction is based on the definition of the informational
divergence between two Markov processes at (6) and gives rise to
a metric and dual affine connections [11, 12].We proceed to confirm
that while the structure can be defined without invoking asymptotic
notions, the obtained Fisher metric and affine connections are
indeed asymptotically consistent with their distributional
counterparts for path measures.

3.1.1 Divergence as a general contrast function
Recall the definition of the information divergence from one

stochastic matrix P′ ∈ W(X , E′) to another P ∈ W(X , E) given at
(6). We henceforth focus on the setting where the supports are
identical E � E′; that is, stochastic matrices P, P′ belong toW(X , E)
and D(P‖P′)<∞. We are interested in parametric families of
irreducible matrices. Namely, for some open and connected
parameter space Θ ⊂ Rd, we define

V � Pθ: θ ∈ Θ{ } ⊂ W X , E( ),
and regard V as a smooth submanifold of W(X , E) with a global
coordinate system θ. For P, P′ ∈ V , for simplicity, let us write θ = (θ1,
. . ., θd) = θ(P), θ′ = θ(P′), zi � z/zθi , and zi′ � z/zθ′i and use the
shorthand D(θ‖θ′) � D(Pθ‖Pθ′). The information divergence rate
D: V × V → R+ we defined in (6) is C3 and satisfies the following
properties of a contrast function:

(i) D(θ‖θ′)≥ 0 for any θ, θ′ ∈ Θ (non-negativity).
(ii) D(θ‖θ′) � 0 if and only if θ = θ′ (identity of indiscernibles).
(iii) ziD(θ‖θ′)θ�θ′ � zj′D(θ‖θ′)θ�θ′ � 0 for any i, j ∈ [d] (vanishing

gradient on the diagonal).
(iv) −zizj′D(θ‖θ′)θ�θ′ � zi′zj′D(θ‖θ′)θ�θ′ � zizjD(θ‖θ′)θ�θ′ is

positive definite.

We call

D*: V × V → R

P, P′( ) ↦ D* θ‖θ′( ) � D θ′‖θ( ),
the dual divergence of D.

3.1.2 Fisher metric and dual affine connections
From any divergence function D on a manifold V verifying the

aforementioned properties (i), (ii), (iii), and (iv), one can construct a
conjugate connection manifold:

V, g,∇,∇*( ),
where the Riemannian metric g and Christoffel symbols of ∇ and ∇*
are expressed in the chart θ: V → Θ and for any i, j, k ∈ [d] as

gij θ( ) � gPθ
zi, zj( ) � −zizj′D θ‖θ′( )θ�θ′,

Γij,k θ( ) � gPθ
∇(e)
zi
zj, zk( ) � −zizjzk′D θ‖θ′( )θ�θ′,

Γij,k* θ( ) � gPθ
∇(m)
zi

zj, zk( ) � −zi′zj′zkD θ‖θ′( )θ�θ′.
(7)

As the metric and connections are derived from the KL
divergence, they all depend solely on the transition matrices and
are, in particular, agnostic of initial distributions. From calculations,
we obtain the Fisher metric [7, (9)]:

gij θ( ) � ∑
x,x′( )∈E

Qθ x, x′( )zi logPθ x, x′( )zj logPθ x, x′( ), (8)

and the coefficients for the pair of torsion-free affine connections∇(e)

(e-connection) and ∇(m) (m-connection) [7, (19, 20)]:

Γ(e)ij,k θ( ) � ∑
x,x′( )∈E

zizj logPθ x, x′( )zkQθ x, x′( ),
Γ(m)
ij,k θ( ) � ∑

x,x′( )∈E
zizjQθ x, x′( )zk logPθ x, x′( ). (9)

On the one hand, the metric encodes notions of distance and
angles on the manifold. In particular, the information divergence D
locally corresponds to the Fisher metric. In other words, for
θ ∈ Θ ⊂ Rd and δθ ∈ Rd such that θ + δθ ∈ Θ,

D θ + δθ‖θ( ) � 1
2
∑

i,j∈ d[ ]
δθiδθjzi′zj′D θ′‖θ( )∣∣∣∣θ′�θ + o δθ‖ ‖22( )

� 1
2
δθg θ( )δθu + o δθ‖ ‖22( ),

D θ‖θ + δθ( ) � 1
2
∑

i,j∈ d[ ]
δθiδθjzi′zj′D θ‖θ′( )∣∣∣∣θ′�θ + o δθ‖ ‖22( )

� 1
2
δθg θ( )δθu + o δθ‖ ‖22( ).

Consider two curves γ, σ: R → V, and suppose that they intersect
at some point P0 ∈ V, achieved without loss of generality at γ(0) and
σ(0). We define the angle between the curves γ and σ at P0 as the angle
formed by the two curves in the tangent space at P0:
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gP0
_γ 0( ), _σ 0( )( ),

and we will say that the two curves are orthogonal at P0 when the inner
product is null. On the other hand, affine connections define notions of
straightness on the manifold. The fact that the connections are coupled
with the metric g introduces a generalization of the invariance of the
inner product under the parallel translation of Euclidean geometry.
Letting Π(e)

γ ,Π(m)
γ : TPV → TP′V denote parallel translations along a

curve γ from P to P′ with respect to ∇(e) and ∇(m), for any U,V ∈ TPV,

gP′ Π e( )
γ U( ),Π m( )

γ V( )( ) � gP U,V( ).

3.1.3 Asymptotic consistency with information
rates

Recall from (2) that a stationary Markovian trajectory has a
probability described by the path measure Q(n). For every n ∈ N, one
can consider the manifold Q(n) ⊂ P(X n) of all path measures of
length n. Computing the limit of the metric and connection
coefficients [7, 13],

lim
n→∞

1
n
g

n[ ]
ij θ( ) � gij θ( ),

lim
n→∞

1
n
Γ n[ ], e( )
ij,k θ( ) � Γ(e)ij,k θ( ),

lim
n→∞

1
n
Γ n[ ], m( )
ij,k θ( ) � Γ(m)

ij,k θ( ),
(10)

where g[n], ∇[n],(e), and ∇[n],(m) are the Fisher metric and e/m-connections
on P(Xn), with gn(θ) � gQ(n)

θ
. Therefore, the Fisher metric for

stochastic matrices essentially corresponds to the time density
of the average Fisher metric, and a similar interpretation can
be proposed for the affine connections.

3.2 Exponential families and mixture families

Similar to the distribution setting, we proceed to define
exponential families (e-families) and mixture families
(m-families) of stochastic matrices.

3.2.1 Definition of exponential families

Definition 3.1. (e-family of stochastic matrices [7]). Let Θ � Rd.
We say that the parametric family of stochastic matrices

Ve � Pθ: θ � θ1, . . . , θd( ) ∈ Θ{ } ⊂ W X , E( )

is an exponential family (e-family) of stochastic matrices with natural
parameter θ, when there exist functionsK, g1, . . . , gd ∈ F(X , E) and
R ∈ RΘ×X ,ψ ∈ RΘ, such that, for any (x, x′) ∈ E and θ ∈ Θ,

logPθ x, x′( ) � K x, x′( ) +∑d
i�1

θigi x, x′( ) + R θ, x′( ) − R θ, x( )

− ψ θ( ). (11)

For some fixed θ ∈ Θ, we may write for convenience ψθ for ψ(θ)
and Rθ for R(θ, ·) ∈ RX .

Note that R and ψ are analytic functions of θ and that ψ is a
convex potential function. R and ψ are completely determined from

g1, . . ., gd and K by the Perron–Frobenius (PF) theory, and we can
introduce a stochastic rescaling mapping [7, 13]:

s: F + X , E( ) → W X , E( )
~P x, x′( ) ↦ P x, x′( ) � ~P x, x′( )v x′( )

ρv x( ) ,
(12)

where ρ and v are, respectively, the PF root and right PF eigenvector
of ~P. Following this notation, we can rewrite Definition 3.1 more
simply as

Pθ � s exp K +∑d
i�1

θigi
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

where exp is understood to be entry-wise. In particular, W(X , E)
forms an e-family. Indeed, with X � [m] and m ∈ N in the
parametrization proposed by Ito and Amari [14], we pick an
arbitrary x* ∈ X and write

logP x, x′( ) � ∑m
i�1,i≠x*

log
P(x*, i)P(i, x*)

P(x*, x*)P(x*, x*)
δi x′( )

+ ∑m
i�1,i≠x*

∑m
j�1,j≠x*

log
P i, j( )P(x*, x*)
P(x*, j)P(i, x*)

δi x( )δj x′( )
+ logP(x, x*) − logP(x′, x*) + logP(x*, x*).

(13)
The basis is given by

gi � 1uδi, i ∈ m[ ], i ≠ x*
gij � δui δj, i, j ∈ m[ ], i, j ≠ x*

and the parameters are

θi � log
P(x*, i)P(i, x*)

P(x*, x*)P(x*, x*)
, θij � log

P i, j( )P(x*, x*)
P(x*, j)P(i, x*)

.

We can alternatively define e-families as e-autoparallel
submanifolds of W(X , E) [7, Theorem 6], where a submanifold
V ⊂ W(X , E) is said to be autoparallel with respect to an affine
connection ∇ when for any U,V ∈ Γ(TV), it holds that
∇UV ∈ Γ(TV).

3.2.2 Affine structures and characterization of
minimal exponential families

We define the set of functions [7, 13, 15]

N X , E( ) ≜ f ∈ F X , E( ): ∃ f, c( ) ∈ RX ,R( ), h x, x′( ){
� f x′( ) − f x( ) + c}, (14)

and observe that we can endow N (X , E) with the structure of a
|X |-dimensional vector subspace of the |E|-dimensional space
F(X , E). We can thus define the quotient space of generators

G X , E( ) ≜ F X , E( )/N X , E( ),
of dimension |E| − |X | and the diffeomorphism

Δ: G X , E( ) → W X , E( )
g ↦ Δ g( ) � s exp+g( ), (15)

where + stands here for function composition. Essentially, there is a
one-to-one correspondence between vector subspaces of G(X , E)
and e-families.
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Theorem 3.1. ([7, Theorem 2]). A submanifold V ⊂ W(X , E)
forms an e-family if and only if there exists an affine subspace
A ⊂ G(X , E) such that Δ(A) � V. In this case, dimV � dimA.

As a corollary [7, Corollary 1], W(X , E) is trivially an
exponential family of dimension |E| − |X |. A family V will be
called minimal (or full) whenever the functions g1, . . ., gd in
Definition 3.1 are linearly independent in G(X , E). In this case,
we will say that g1, . . ., gd form a basis for V.

3.2.3 Mixture families
In the stochastic matrix setting, the notion of a mixture family is

naturally defined in terms of edge measures.

Definition 3.2. (m-family of stochastic matrices [15]). We say that
a family of irreducible stochastic matrices Vm is a mixture family
(m-family) of irreducible stochastic matrices on (X , E) when the
following holds.

There exists affinely independent Q0, Q1, . . . , Qd ∈ Q(X , E), and

Vm � Pξ ∈ W X , E( ): Qξ � 1 −∑d
i�1

ξ i⎛⎝ ⎞⎠Q0 +∑d
i�1

ξ iQi, ξ ∈ Ξ
⎧⎨⎩ ⎫⎬⎭,

where Ξ � ξ ∈ Rd: Qξ(x, x′)> 0,∀(x, x′) ∈ E{ }, and Qξ is the edge
measure that pertains to Pξ. Note that Ξ is an open set, ξ is called the
mixture parameter, and d is the dimension2 of the family Vm.

It is easy to verify thatW(X , E) also forms an m-family, and it is
possible to define m-families as m-autoparallel submanifolds of
W(X , E).

3.2.4 Dual expectation parameter and chart
transition maps

For an exponential family Ve with natural parametrization [θi],
following Definition 3.1, one may introduce [7] the expectation
parameter [ηi] as follows. For i ∈ [d] and θ ∈ Θ,

ηi θ( ) � ∑
x,x′( )∈E

Qθ x, x′( )gi x, x′( ) � E X,X′( )~Qθ
gi X,X′( )[ ], (16)

whereQθ is the edge measure corresponding to the stochastic matrix
at coordinates θ. When Ve is minimal, η defines an alternative
coordinate system to the natural parametrization θ for Ve.

Theorem 3.2. [15, Lemma 4.1] The following statements are
equivalent:

(i) The functions g1, . . ., gd are linearly independent in G(X , E).
(ii) The mappings θ+η−1 and η+θ−1 are one-to-one.
(iii) The Hessian matrix [zizjψ(θ)]ij ≻ 0 for any θ ∈ Θ.
(iv) The Hessian matrix [zizjψ(θ)]ij ≻ 0 for θ = 0.
(v) The parametrization θ: V → Θ is faithful.

Defining the Shannon negentropy3 potential function
φ: Rd → R to satisfy

φ η( ) + ψ θ( ) � 〈θ, η〉,

we can express [7, Theorem 4] the chart transition maps (see
Figure 1) between the expectation [ηi] and natural [θi]
parameters of the e-family Ve as

η◦θ−1: Rd → Rd

θ ↦ ηi θ( ) � ziψ θ( ),
θ◦η−1: Rd → Rd

η ↦ θi η( ) � ziφ η( ),
where we wrote zi· = z ·/zηi. We can also obtain the counterpart [13,
Lemma 5] of (16) for θ◦η−1,

θi η( ) � ∑
x,x′( )∈E

ziQη x, x′( ) logPη x, x′( ) −K x, x′( )( ). (17)

3.2.5 Dual flatness
A straightforward computation shows that all the e-connection

coefficients Γ(e)ij,k for an e-family Ve and all the m-connection
coefficients Γ(m)

ij,k for an m-family Vm are null. We say that Ve is
e-flat and that Vm is m-flat. From the conjugacy of the affine
connections, curvature tensors associated with ∇(e) and ∇(m)

vanish simultaneously. As a consequence, for any smooth
submanifold V ⊂ W(X , E),

V ism-f lat5V is e-f lat,

which is sometimes called the fundamental theorem of information
geometry [79, Theorem 3]. In other words, e-families andm-families
are both e-flat and m-flat [7, Theorem 5], and for any V , it is enough
to find an affine coordinate system in which either the e-connection
or m-connection coefficients are null for it to be dually flat. For i, j ∈
[d], recall that gij(θ) � gPθ

(zi, zj). Similarly, we define
gij(η) � gPη

(zi, zj). The coefficients of the Fisher metric and its
inverse are recovered by

gij θ( ) � zizjψ θ( ),
gij η( ) � zizjφ η( ),

gij η( )[ ]ij � gij θ( )[ ]−1
ij
.

(18)

Thus, φ is also strictly convex, and the coordinate systems [θi] and
[ηi] are mutually dual with respect to g. The two coordinate systems
are related by the Legendre transformation, and we can express their
dual potential functions as

φ η( ) � max
θ∈Θ

〈θ, η〉 − ψ θ( ){ }, ψ θ( ) � max
η∈H

〈θ, η〉 − φ η( ){ }.

3.2.6 Geodesics and geodesic hulls
An affine connection ∇ defines a notion of the straightness of

curves. Namely, a curve γ is called a ∇-geodesic whenever it is
∇-autoparallel, ∇ _γ _γ � 0, where _γ(t) is the velocity vector at time
parameter t. The geodesic between two points P0, P1 ∈ W(X , E) is
the straight curve that goes through the two points. As our manifold
is equipped with two dual connections, there are two distinct notions
of straight lines, and the arc between the two points will not
necessarily correspond to the shortest path between the two
elements with respect to the Riemannian metric, unlike in
Euclidean geometry. Specifically, the e-geodesic going through P0
and P1 is given [7, Corollary 2] by

2 In our definition of m-family, we do not allow a redundant choice of Q0,
Q1, . . .,Qd to express Vm; if we allow a redundant choice, Ξ need not be an
open set and d need not coincide with the dimension of Vm .

3 The reason for this name will become clear in (21).
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γ e( )
P0 ,P1

≜ Pt � s P◦1−t
0 ◦P◦t

1( ): t ∈ R{ }, (19)
and the m-geodesic [7, Theorem 7] by

γ m( )
P0 ,P1

≜ Pt: Qt � 1 − t( )Q0 + tQ1, t ∈ R, Qt ∈ Q X , E( ){ }, (20)
where Q(X , E) is the set of all edge measures introduced in (3). A
submanifold V ∈ W(X , E) forms an e-family if and only if for any
two points P0, P1 ∈ V, γ(e)P0 ,P1

lies entirely in V [7, Corollary 3], and a

similar claim holds for m-families. We generalize the
aforementioned objects beyond two points to more general
subsets of W(X , E), by defining geodesic hulls [13] (see Figure 2).

Definition 3.3. (Exponential hull [13, Definition 7]). Let V ⊂ W:

e-hull V( ) � ⎧⎨⎩s ~P( ): ~P � ○k
i�1P

oαi
i , k ∈ N, α1, . . . , αk ∈ R,

∑k
i�1

αi � 1, P1, . . .Pk ∈ V
⎫⎬⎭,

where s is defined in (12).

Definition 3.4. (Mixture hull [13, Definition 8]). Let V ⊂ W:

m-hull V( ) � ⎧⎨⎩P: Q ∈ Q, Q �∑k
i�1

αiQi, k ∈ N, α1, . . . , αk ∈ R,

P1, . . . , Pk ∈ V
⎫⎬⎭,

where Q (resp., Qi) is the edge measure that pertains to P (resp., Pi).
When a family V forms both an m-family and an e-family, we

say it forms an em-family.

3.3 Information projections and
decomposition theorems

The projection of a point onto a surface is among the most
natural geometric concepts. In Euclidean geometry, projecting on a
connected convex body leads to a unique closest solution point.
However, the dually flat geometry on W(X , E) is based on two
different notions of straightness, inducing two different flavors of
geodesic convexity. Furthermore, the divergence function we
consider is not symmetric in its arguments, hence the need for
two definitions of projections as minimizer with respect to the first
and second arguments. This section goes back to and hinges around
the notion of divergence defined in (6), projection, and
orthogonality and explores the Bregman geometry of W(X , E).

FIGURE 1
Natural and expectation parametrizations of an e-family Ve, together with their chart transition maps.

FIGURE 2
E-hull e-hull( P,P′,P″{ }) of three points. It is instructive to note
that although a set of three points forms a zero-dimensional manifold,
we construct a manifold of dimensions possibly up to two.

FIGURE 3
Geometrical interpretation of a Bregman divergence.
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3.3.1 Information divergence as a Bregman
divergence

For a continuously differentiable and strictly convex function
f: Ξ → R on a convex domain Ξ ⊂ Rd, we call Bregman divergence
Bf [16] with generator f (see Figure 3) the function

Bf: Ξ × Ξ → R+
ξ, ξ′( ) ↦ Bf ξ: ξ′( ) � f ξ( ) − f ξ′( ) − ∑

i∈ d[ ]
zif ξ′( ) ξi − ξ i( ).

When we let Pθ , Pθ′ ∈ Ve some e-family following Definition 3.1,
one can verify with direct computations [15, 17] that

D θ‖θ′( ) � ψ θ′( ) − ψ θ( ) − ∑
i∈ d[ ]

ziψ θ( ) θ′i − θi( ) � Bψ θ′: θ( ),
H θ( ) � ψ θ( ) − ∑

i∈ d[ ]
ηiθ

i � −φ η( ). (21)

As ψ and φ are convex conjugate,

D θ‖θ′( ) � Bψ* η: η′( ) � Bφ η: η′( ),
where we used the shorthands η = η(θ) and η′ = η(θ′); hence, the KL
divergence is the Bregman divergence associated with the Shannon
negentropy function, and as any Bregman divergence, it verifies the
law of cosines:

Bφ η, η′( ) + Bφ η′, η″( ) � Bφ η, η″( ) + ∑
i∈ d[ ]

ziφ η″( ) − ziφ η′( )( ) ηi − ηi′( ),
(22)

which can be re-expressed [7, (23)] as

D θ‖θ′( ) +D θ′‖θ″( ) � D θ‖θ″( ) + ∑
i∈ d[ ]

θ′′i − θ′i( ) ηi − ηi′( )
� D θ‖θ″( ) + gPθ′

_γ 0( ), _σ 0( )( ),
for γ an m-geodesic going through Pθ and Pθ′ and σ an e-geodesic
going through Pθ′ and Pθ″.

3.3.2 Canonical divergence
One may naturally wonder whether it is possible to recover the

divergenceD defined at (6) from g and∇(e),∇(m) only. This is referred
to as the inverse problem in information geometry. It is easily
understood that such a divergence is not unique. In fact, there exist
an infinity of divergence functions that could have given rise to the
dually flat geometry on W(X , E) [18]. However, it is possible to
single out one particular divergence, termed canonical divergence
[5], which is uniquely defined from g and ∇(e), ∇(m). For
P, P′ ∈ W(X , E), its expression is given in a dual coordinate
system [θi], [ηi] by

D P‖P′( ) � φ η( ) + ψ θ′( ) − ∑
i∈ d[ ]

ηiθ
′i,

where η = η(P) and θ′ = θ(P′). One can verify from (21) that we
indeed recover the expression at (6).

3.3.3 Geodesic convexity and convexity properties
of information divergence

Geodesic convexity is a natural generalization of convexity in
Euclidean geometry for subsets of Riemannian manifolds and
functions defined on them. As straight lines are defined with
respect to an affine connection ∇, a subset C of W(X , E) is said

to be geodesically convex with respect to ∇when ∇-geodesic joining4

two points in C remain in C at all times. In particular, C is e-convex
(resp., m-convex), when for any P0, P1 ∈ C and any t ∈ [0, 1], it holds
that γ(e)P0 ,P1

(t) ∈ C (resp., γ(m)
P0 ,P1

(t) ∈ C), where γ(e)P0 ,P1
and γ(m)

P0 ,P1
are

defined in (19, 20). An immediate consequence is that an e-family
(resp., m-family) V ⊂ W(X , E) is e-convex (resp., m-convex). On a
geodesically convex domain C ⊂ W(X , E), a function f: C → R is
said to be a geodesically convex (resp., strictly geodesically convex) if
the composition f◦γ: [0, 1] → R is a convex (resp., strictly convex)
function for any geodesic γ: [0, 1] → C contained within C. In
particular, the information divergence defined in (6) is strictly
m-convex in its first argument and strictly e-convex in its second
argument [15, Theorem 3.3]. Namely, for t ∈ (0,1),
P, P0, P1 ∈ W(X , E), with P0 ≠ P1,

D γ m( )
P0 ,P1

t( )‖P( ) < 1 − t( )D P0‖P( ) + tD P1‖P( ),
D P‖γ e( )

P0 ,P1
t( )( ) < 1 − t( )D P‖P0( ) + tD P‖P1( ).

However, for |t|> 1, the opposite inequality holds [13]:

D P‖γ e( )
P0 ,P1

t( )( )> 1 − t( )D P‖P0( ) + tD P‖P1( ).

Unlike in the distribution setting, where the KL divergence is
jointly m-convex, this property does not hold true for stochastic
matrices [21, Remark 4.2].

3.3.4 Pythagorean inequalities
In the more familiar Euclidean geometry, projecting a point P

onto a subset C of Rd consists in finding the point in C that
minimizes the Euclidean distance between P and C. If C is
convex, the minimization problem admits a unique solution and
a Pythagorean inequality holds between the point, its projection, and
any other point in C. Similar ideas are made possible onW(X , E) by
the Bregman geometry induced from D. Let Cm ⊂ W(X , E′) (resp.,
Ce ⊂ W(X , E′)) with E′ ⊂ E be non-empty, closed, and m-convex
(resp., e-convex). We define the e-projection onto Cm as the
mapping

Pe: W X , E( ) → Cm, P ↦ argmin
�P∈Cm

D �P‖P( ),
and the m-projection onto Ce as the mapping

Pm: W X , E( ) → Ce, P ↦ argmin
�P∈Ce

D P‖�P( ).
For a point P in context, we simply write Pe = Pe(P) and

Pm = Pm(P).

Theorem 3.3. (Pythagorean inequalities for geodesic e-convex [21,
Proposition 4.2], m-convex sets [23, Lemma 1]). The following
statements hold.

(i) Pe exists in the sense where the minimum is attained for a unique
element in Cm.

(ii) For P0 ∈ Cm, P0 = Pe if and only if

4 When discussing geodesic convexity in this section, we only consider the
section of the geodesic joining the two points, achieved for parameter t ∈
[0, 1], not the entire geodesic.
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∀�P ∈ C, D �P‖P( )≥D �P‖P0( ) +D P0‖P( ).

(iii) Pm exists in the sense where the minimum is attained for a
unique element in Ce.

(iv) For P0 ∈ Ce, P0 = Pm if and only if

∀�P ∈ C, D P‖�P( ) � D P‖P0( ) +D P0‖�P( ).
3.3.5 Pythagorean equality for linear families

Inequalities become equalities when projecting onto e-families
and m-families.

Theorem 3.4. (Pythagorean theorem for e-families, m-families
[19], [15, Section 4.4]). The following statements hold.

(i) Pe exists in the sense where the minimum is attained for a unique
element in Cm.

(ii) For P0 ∈ Cm, P0 = Pe if and only if

∀�P ∈ C, D �P‖P( ) � D �P‖P0( ) +D P0‖P( ).

(iii) Pm exists in the sense where the minimum is attained for a
unique element in Ce.

(iv) For P0 ∈ Ce, P0 = Pm if and only if

∀�P ∈ C, D P‖�P( ) � D P‖P0( ) +D P0‖�P( ).

3.4 Bibliographical remarks

The construction of the conjugate connection manifold
from a general contrast function in Section 3.1.1 and Section
3.1.2 follows the general scheme of Eguchi [11, 12], which can
also be found in [79, Definition 5, Theorem 4]. The expression
for the Fisher metric at (Eq. 8) and the conjugate affine
connections at (Eq. 8) were introduced by Nagaoka [7, (9),
(19), (20)]. One-dimensional e-families of stochastic matrices
were first introduced by Nakagawa and Kanaya [19], whereas
the general construction in the multi-dimensional setting was
done by Nagaoka [7], who also established the characterization
in Theorem 3.1 of minimal e-families in terms of affine
structures of in [7, Theorem 2]. Curved exponential families
of transition matrices and mixture families make their first
named appearances in Hayashi and Watanabe [15; Section
8.3; Section 4.2]. See also [13, Definition 1] for two
alternative equivalent definitions of an m-family. The
expectation parameter for exponential families in (16) and its
expression as the gradient of the potential function were
discussed on multiple occasions [7, Theorem 4], [19, (28)],
[15, Lemma 5.1]. Theorem 3.2 was taken from [15, Lemma
4.1]. The expression for the chart transition map from
expectation to natural parameters in (17) was obtained from
[13, Lemma 5]. Geodesics discussed in Section 3.2.6 were
introduced in one-dimension in [19] and multiple
dimensions in [7], whereas mixture and exponential hulls of
sets first appeared in [13]. Nagaoka [7] established the dual
flatness of the manifold discussed in Section 3.2.5 and matched

the information divergence with the canonical divergence. The
expression of the informational divergence and entropy for
exponential families in (21) was given in [15, 17]. The law of
cosines was also mentioned by Adamčík [20] for general
Bregman projections. The convexity properties of the
divergence appeared in Hayashi and Watanabe [15, Theorem
3.3] and Hayashi and Watanabe [15, Lemma 4.5], and their
strict version was discussed in [21, Section 4] together with the
case |t|> 1. The Pythagorean inequality for projections onto
m-convex sets [Theorem 3.3 (i), (ii)] was shown to hold by
Csiszár et al. [23, Lemma 1]. The inequality for the “reversed
projection” onto e-convex sets was found in [21]. The equality
in the Pythagorean theorem for e-families and m-families was
first found in [19, Lemma 5] for the one-dimensional setting and
in [15, Corollary 4.7, Corollary 4.8] for multiple dimensions.

3.4.1 Timeline
The idea of tilting or exponential change of measure, which

gives rise to e-families in the context of distributions, can be
traced back to Miller [22]. However, in this section, we focused
on the milestones toward the geometric construction of Nagaoka
[7], and we deferred the history of the development of the large
deviation theory to Section 5.2. The first to recognize the
exponential family structure of stochastic matrices is Csiszár
et al. [23] by considering information projections onto linearly
constrained sets and inferring exponential families as the
solution to the maximum entropy problem, as discussed in
more detail in Section 5.1. The notion of an asymptotic
exponential family was implicitly described by Ito and Amari
[14] and was formalized by Takeuchi and Barron [24] and
Takeuchi and Kawabata [25]. A later result by Takeuchi and
Nagaoka [26] proved that asymptotic exponential families and
their non-asymptotic counterparts are in fact equivalent.

3.4.2 Alternative constructions
Some alternative definitions of exponential families of Markov

chains include [27–32]. However, they do not enjoy the same
geometric properties as the one of Definition 3.1. Thus, we do
not discuss them in detail.

4 Recent advances

One area of recent progress has been the analysis of the
geometric properties of significant submanifolds of W(X , E). In
Section 4.1, we briefly discuss symmetric, bistochastic, and
memoryless classes. In Section 4.2, we turn the spotlight onto the
structure-rich family of irreducible and reversible stochastic
matrices. In Section 4.3, we mention some recent progress in
connecting the dually flat geometry of Section 3.1 to the theory
of lumpability of Markov chains. We end with a discussion on finite
state machine (FSMX) models in Section 4.4.
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4.1 Symmetric, bistochastic, and
memoryless stochastic matrices

In this section, we briefly survey known geometric properties of
notable submanifolds of W(X , E). We also refer the reader to
Table 1, adapted from [13, Table 1], for a more visual classification.

4.1.1 Memoryless class
We say that a stochastic matrix P ∈ W(X) is memoryless, when

it can be expressed as

P �
—— π ——
—— π ——
—— π ——

⎛⎜⎝ ⎞⎟⎠,
for π ∈ P(X ). We note that π is the stationary distribution of P, and
that for such P to be irreducible, it is necessary that π > 0; hence,
P ∈ W(X ,X 2). Markov chains defined by a memoryless stochastic
matrix correspond in fact to an iid process. We write W iid(X ,X 2)
for the set of all memoryless stochastic matrices.

Lemma 4.1. ([13, Lemma 7, Lemma 8]). The two following
statements hold:

(i) W iid(X ,X 2) forms an e-family of dimension |X | − 1.
(ii) W iid(X ,X 2) does not form an m-family.

Recall the parametrization of Ito and Amari [14], reported in
(13). Coefficients θij in the expression represent memory in the
process, and thus vanish. For X � [m] and an arbitrary x* ∈ [m], we
can re-write

logP x, x′( ) � ∑m
i�1
i≠x*

θigi x, x′( ) + log π(x*), (23)

where for i ∈ [m], i ≠ x*,

θi � log
π i( )
π(x*)

, gi x, x′( ) � δi x′( ).

4.1.2 Bistochastic class
Bistochastic matrices, also called doubly stochastic matrices, are

row- and column-stochastic. In other words, P ∈ W(X) is bistochastic
if and only if the transposition Pu ∈ W(X ). In particular, the
stationary distribution of a bistochastic matrix is uniform. We
denote Wbis(X ,X 2) as the set of positive bistochastic matrices.

Lemma 4.2. The two following statements hold:

(i) Wbis(X ,X 2) forms an m-family of dimension (|X | − 1)2 [15,
Example 4].

(ii) For |X |> 2, Wbis(X ,X 2) does not form an e-family [13,
Lemma 10].

4.1.3 Symmetric class
A symmetric stochastic matrix P satisfies P(x, x′) = P(x′, x) for

any pair of states x, x′ ∈ X . Writing Wsym(X ,X 2) for the set of
positive symmetric matrices, note that Wsym(X ,X 2) lies at the
intersection of reversible (see Section 4.2) and doubly stochastic
matrices, enjoying all their properties (e.g., uniform stationary
distribution, self-adjointness). However, perhaps surprisingly,
Wsym(X ,X 2) does not form an e-family.

Lemma 4.3. ([13, Lemma 9, Lemma 10]). The two following
statements hold:

(i) Wsym(X ,X 2) forms an m-family of dimension |X |(|X | − 1)/2,
(ii) For |X |> 2, Wsym(X ,X 2) does not form an e-family.

4.2 Time-reversible stochastic matrices

In Section 4.2.1, we begin by briefly introducing time reversals
and time reversibility in the context of Markov chains. In Section
4.2.2, we proceed to analyze geometric structures that are invariant
under the time reversal operation. In Section 4.2.3, we inspect the
e-family and m-family nature of the submanifold of reversible
stochastic matrices and reversible edge measures. In Section 4.2.4
and Section 4.2.5, we, respectively, discuss reversible information
projections and how to generate the reversible set as a geodesic hull
of structured subfamilies.

4.2.1 Reversibility
Consider a Markov chain (Xt)1≤ t≤ n with transition matrix

P ∈ W(X , E), started from its stationary distribution π. When we
look at the random process in reverse time (Xn+1−t)1≤ t≤ n, the
Markov property is still verified. In fact, the transition matrix P*
of this time-reversed Markov chain is given by P*(x, x′) = π(x′)P(x′,
x)/π(x). The time reversal P* shares the same stationary distribution
as the original chain, and irreducibility is preserved, although
P* ∈ W(X , E*), where E* � (x′, x): (x, x′) ∈ E{ } is the
symmetric image of the connection digraph E. When P* = P, the
transition probabilities of the chain forward and backward in time
coincide, and we say that the chain is time-reversible. Equivalently,
we may say that P verifies the detailed balance equation:

π x( )P x, x′( ) � π x′( )P x′, x( ).
We write Wrev(X , E) for the set of reversible chains that are

irreducible with connection digraph (X , E). Note that the edge set
must necessarily satisfy E � E*; otherwise, Wrev(X , E) � ∅.

Time-reversibility is a central concept across a myriad of
scientific fields, from computer science (queuing networks [33],
storage models, Markov Chain Monte Carlo algorithms [34], etc.) to
physics (many classical or quantum natural laws appear as being

TABLE 1 Geometry of submanifolds of irreducible Markov kernels for |X |≥3.

Manifold m-family e-family Dimension

W(X , E) Yes Yes |E| − |X |

W(X ,X 2) Yes Yes |X |(|X | − 1)

Wrev(X ,X 2) Yes Yes |X |(|X | + 1)/2 − 1

Wbis(X ,X 2) Yes No (|X | − 1)2

Wsym(X ,X 2) Yes No |X |(|X | − 1)/2

W iid(X ,X 2) No Yes |X | − 1
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time-reversible [35]). The theory of reversibility for Markov chains
was originally developed by Kolmogorov [36, 37], and we refer the
reader to [38] for a more complete historical exposition.

Reversible Markov chains enjoy a particularly rich mathematical
structure. Perhaps first and foremost, reversibility implies self-
adjointness of P with respect to the Hilbert space ℓ2(π) of real
functions over X endowed with the weighted inner product
〈f, g〉π � ∑x∈Xf(x)g(x)π(x). Key properties of reversible
stochastic matrices induced from self-adjointness include a real
spectrum, control from above and below the mixing time by the
inverse of the absolute spectral gap [9, Chapter 12], and stability of
spectrum estimation procedures [39]. Reversibility has also been
explored in the context of algebraic statistics [40] or Bayesian
statistics [41]. In this section, we focus on the properties of
reversibility and families of reversible stochastic matrices from an
information geometric viewpoint.

4.2.2 Geometric invariants
The time reversal operation is known to preserve some

geometric properties of families of transition matrices. Consider
V ⊂ W(X , E), a family of irreducible stochastic matrices. The time-
reversal family [13, Definition 3], denoted as V*, is defined by

V* ≜ P*: P ∈ V{ }.

Lemma 4.4. ([13, Proposition 1]). Let Ve (resp., Vm) be an e-family
(resp., m-family) inW(X , E). Then, Ve (resp., Vm) forms an e-family
(resp., m-family) in W(X , E*).

Moreover, the time reversal operation leaves the divergence
between stochastic matrices unchanged [80, Proof of Proposition 2]:

P1, P2 ∈ W X , E( ) 0 D P1‖P2( ) � D P1*‖P2*( ). (24)
When Vr ⊂ Wrev(X , E), we say that the family Vr is reversible,

and in this case Vr* � Vr, with E* � E. From the definition of an
e-family Ve, it is possible to determine whether Ve is reversible. It is
convenient to first introduce the class of log-reversible functions [13,
Definition 4, Corollary 1]:

F rev X , E( ) ≜ h ∈ F X , E( ): ∃f ∈ RX ,∀x, x′ ∈ X , h x, x′( ){
� h x′, x( ) + f x′( ) − f x( )}. (25)

Lemma 4.5. ([13, Theorem 2]). Let Ve ⊂ W(X , E) be an e-family
that follows the expression of (11). Then V � V* if and only if E � E*
and K ∈ F rev(X , E) and for all i ∈ [d], gi ∈ F rev(X , E).

4.2.3 The em-family of reversible stochastic
matrices

The class of functions F rev(X , E) introduced in (25) can be
endowed with the structure of a vector space [13, Lemma 4], which
verifies the following inclusions:

N X , E( ) ⊂ F rev X , E( ) ⊂ F X , E( ),
where N (X , E) was defined in (14). Immediately,
|X |≤ dimF rev(X , E)≤ |E|, and this enables us to further define
the quotient space of reversible generators:

Grev X , E( ) ≜ F rev X , E( )/N X , E( ).

It is possible to verify that

Wrev X , E( ) � Δ Grev X , E( )( ),
where Δ is the diffeomorphism defined in (15). The following result
is then a consequence of Theorem 3.1.

Theorem 4.1. ([13, Theorem 3, Theorem 5, Theorem 6]).
Wrev(X , E) forms an e-family and an m-family of dimension

dimWrev X , E( ) � E| | + ℓ E( )| |
2

− 1, (26)

where ℓ(E) ≜ (x, x′) ∈ E: x′ � x{ } is the set of loops in the
connection graph (X , E).

Theorem 4.2. ([13, Theorem 4, Theorem 5]). Let P ∈ Wrev(X , E),
with stationary distribution π. Pick an arbitrary element
e* � (x*, x*′) ∈ E\ℓ(E), and define

T E( ) ≜ { x, x′( ) ∈ E: x′≤ x, x, x′( ) ≠ e*},
g* ≜ δux*

δx*′ + δux*′
δx

*
.

For (i, j) ∈ T(E), the collection of functions

gij � δui δj + δuj δi,

forms a basis for Wrev(X , E). We can write P as a member of the
m-family of reversible stochastic matrices by expressing its edge
measure Q as

Q � g*
2
+ ∑

i,j( )∈T E( )
gij − g*( ) Q i, j( )

1 + δi j( ),
and we can write P as a member of the e-family,

logP x, x′( ) � ∑
i,j( )∈T E( )

1
2 1 + δi j( )( ) log P i, j( )P j, i( )

P(x*, x*′)P(x*′, x*)
gij x, x′( )

+1
2
log π x′( ) − 1

2
log π x( ) + 1

2
logP(x*, x*′)P(x*′, x*),

when (x, x′) ∈ E, and P(x, x′) = 0 otherwise.

4.2.4 Reversible information projections
Let P ∈ W(X , E) with E* � E. We recall the definitions (see

Section 3.3) of the m-projection Pm and the e-projection Pe of P
onto Wrev(X , E),

Pm ≜ argmin
�P∈Wrev X ,E( )

D P‖�P( ), Pe ≜ argmin
�P∈Wrev X ,E( )

D �P‖P( ).
There are known closed-form expressions for Pm and Pe.

Moreover, the fact that Wrev(X , E) forms an em-family
(Theorem 4.1) leads to a pair of Pythagorean inequalities (see
Figure 4), and the invariance of D under time reversals
highlighted in (24) implies a bisection property.

Theorem 4.3. ([13, Theorem 7, Proposition 2]). Let P ∈ W(X , E)
with E* � E:

Pm � P + P*
2

,

Pe � s ~Pe( ), with ~Pe x, x′( ) � ###############
P x, x′( )P* x, x′( )√

,
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where s is defined in Eq. (12). Moreover, for any �P ∈ Wrev(X , E), Pm
and Pe satisfy the following Pythagorean identities:

D P‖�P( ) � D P‖Pm( ) +D Pm‖�P( ),
D �P‖P( ) � D �P‖Pe( ) +D Pe‖P( ).

Furthermore, the following bisection property holds

D P‖Pm( ) � D P*‖Pm( ), D Pe‖P( ) � D Pe‖P*( ).
Finally, we mention that the entropy production σ(P) for a

Markov chain with transition matrix P, which plays a central role in
discussing irreversible phenomena in non-equilibrium systems, can
be expressed in terms of the canonical divergence [81, (22)] as
follows:

σ P( ) � 1
2
∑

x,x′∈X
Q x, x′( ) − Q x′, x( )( )logQ x, x′( )

Q x′, x( )
� 1
2

D P‖P*( ) +D P*‖P( )( ).

4.2.5 Characterization of the reversible family as
geodesic hulls

It is known that the set of bistochastic matrices—also known
as the Birkhoff polytope—is the convex hull of the set of
permutation matrices (theorem of Birkhoff and von Neumann
[42–44]). By recalling from Section 3.2.6 the definition of
geodesic hulls (Definition 3.3, Definition 3.4) of families of
stochastic matrices, results in a similar spirit are known for
generating the positive and reversible family as geodesic hulls of
particular subfamilies.

Theorem 4.4. ([13, Theorem 9, Theorem 10]). It holds that

(i)

m-hull W iid X ,X 2( )( ) � Wrev X ,X 2( ),
where W iid(X ,X 2) is the family of memoryless stochastic matrices
discussed in Section 4.1.1.

(ii) For |X |≥ 3,5

e-hull Wsym X ,X 2( )( ) � Wrev X ,X 2( ),
where Wsym(X ,X 2) is the family of positive symmetric stochastic
matrices discussed in Section 4.1.3.

4.3 Markov morphisms, lumping, and
embeddings of Markov chains

In the context of distributions, Čencov [45] introduced Markov
morphisms in an axiomatic manner as the natural mappings to
consider for statistics. The Fisher information metric can then be
characterized as the unique invariant metric tensor under Markov
morphisms [45–47]. In the context of stochastic matrices, we saw that
themetric and connections introduced in Section 3 were asymptotically
consistent with Markov models. This section connects with the
axiomatic approach of Čencov and proposes a class of data
processing operations that are arguably natural in the Markov setting.

4.3.1 Lumpability
Webriefly recall lumpability in the context of distributions and data

processing. Consider a distribution μ ∈ P(Y), and let Y1, Y2, . . ., be a
sequence of random variables independently sampled from μ. Suppose
we define a deterministic, surjectivemap κ: Y → X , whereX is a space
not larger than Y, and we inspect the random process defined by
(κ(Yt))t∈N. Note that κ induces a partition of the space Y � ⋃x∈XSx,
x ≠ x′ 0 Sx ∩ Sx′ � ∅ with Sx � y ∈ Y: κ(y) � x{ } � κ−1( x{ }).
The new process is again a sequence of independent random
variables sampled identically from the push-forward distribution
κ(μ) = μ◦κ−1, where we used an overloaded definition
κ: P(Y) → P(X). Namely, the probability of the realization x ∈ X
is the probability of the preimage Sx; for x ∈ X ,

FIGURE 4
Information projections onto Wrev(X , E), and illustrations of Pythagorean identities and bisection property of Theorem 4.3.

5 For |X | � 2, Wsym(X ,X2) itself is an e-family, which is a strict submanifold
of Wrev(X ,X2) � W(X ,X2).
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κ μ( ) x( ) � ∑
y∈Y

δ κ y( ) � x[ ]μ y( ).
When X � Y, symbols are merely being permuted. As with any

data-processing operation, monotonicity of information dictates
that two distributions can only be brought closer together with
respect to D by the action of κ:

D κ μ( )‖κ ]( )( )≤D μ‖]( ).
Crucially, in the independent and identically distributed setting,

the lumping operation can be understood both as a form of
processing of the stream of observations and as an algebraic
manipulation of the distribution that generated the random process.

For Markov chains, the concept of lumpability is vastly richer. The
first fact one must come to terms with is that a Markov chain may lose
itsMarkov property after a processing operation on the data stream [48,
49], even for an operation as basic as a lumping. A chain is said to be
lumpable [50] with respect to a lumping map κ: Y → X , when the
Markov property is preserved for the lumped process.

Theorem 4.5. ([50, Theorem 6.3.2]). Let P ∈ W(Y, E). P is
lumpable if and only if for all x, x′ ∈ X and for all y1, y2 ∈ Sx, it
holds that P(y1,Sx′) � P(y2,Sx′), where for
y ∈ Y,S ⊂ Y, P(y,S) � ∑y′∈SP(y, y′).

The subset of W(Y, E) of all lumpable stochastic matrices is
written Wκ(Y, E). We overload the operation
κ: Wκ(Y, E) → W(X ,D) and the κ-lumped stochastic matrix is
denoted as κ(P) with, for any x, x′ ∈ X ,

κ P( ) x, x′( ) � P y,Sx′( ), y ∈ Sx.

4.3.2 Embeddings of Markov chains
Embeddings of stochastic matrices that correspond to conditional

models were proposed and analyzed in [51–53]. However, the question
of Markov chains, where one considers the stochastic process, was only
recently explored in [21]. Looking at reverse operations to lumping, we
are interested in embedding an irreducible family of chains
V ⊂ W(X ,D) into a space of irreducible chains W(Y, E) defined
on a larger state space Y, with some compatible edge set E. In [21], it is
postulated that natural morphisms should satisfy the following
requirements:

A.1 Morphisms should preserve the Markov property.
A.2 Morphisms should be expressible as algebraic operations on
stochastic matrices.
A.3 Morphisms should have operational meaning on trajectories
of observations.

The following definition of a Markov morphism was proposed
in [21].

Definition 4.1. (Markov morphism for stochastic matrices [21,
Definition 3.2]). A map λ: W(X ,D) → Wκ(Y, E) is called a κ-
compatible Markov morphism for stochastic matrices when for
any y,y′ ∈ E,

λ P( ) y, y′( ) � P κ y( ), κ y′( )( )Λ y, y′( ),
where Λ ∈ F +(Y, E), and for any y ∈ Y, x′ ∈ X , it holds that

κ y( ), x′( ) ∈ D 0 Λ y, y′( )( )y′∈Sx′
∈ P Sx′( ).

The constraints on the function Λ in Definition 4.1 ensure that
the objects produced by λ are stochastic matrices and are κ-
lumpable. Furthermore, given the full description of P and Λ,
one can directly compute the embedded λ(P), thereby satisfying
A.1 and A.2. Alternatively, when given a sequence of observations
Xt{ }1≤ t≤ n ~ P and without even knowing P, one can apply a random
mapping ϕΛ on the trajectory and simulate a trajectory
ϕΛ(Xt){ }1≤ t≤ n ~ λ(P) generated from the embedded chain,
essentially satisfying axiom A.3. A key feature of a Markov
morphism λ is that the divergence between two points and their
image is unchanged [21, Lemma 3.1]. Namely, for two
points P, P′ ∈ V ⊂ W(X ,D),

D λ P( )‖λ P′( )( ) � D P‖P′( ).
As a consequence, the Fisher metric and affine connections are

preserved [21, Lemma 3.1] (see Figure 5), in the sense where
for UP,VP ∈ TPV,

gP UP, VP( ) � gλ P( ) λ* UP( ), λ* VP( )( ),
and for any vector fields U,V ∈ Γ(TV),

FIGURE 5
Markov morphisms (Definition 4.1) preserve the Fisher metric and the pair of dual affine connections.
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λ* ∇ m( )
U V( ) � ∇ m( )

λ* U( )λ* V( ),
λ* ∇ e( )

U V( ) � ∇ e( )
λ* U( )λ* V( ),

where

λ*: TPV → Tλ P( )λ V( )

defined by (λ*(UP))λ*(P) � (dλ)P(UP) is the pushforward map
associated with the diffeomorphism λ. Furthermore, Markov
morphisms are e-geodesic affine maps [21, Theorem 3.2].
Namely, for any P0, P1 ∈ W(X ,D),

λ γ e( )
P0 ,P1

( ) � γ e( )
λ P0( ),λ P1( ).

However, they are nom-geodesic affine, whichmeans that generally

λ γ m( )
P0 ,P1

( ) ≠ γ m( )
λ P0( ),λ P1( ).

A more restricted class of embeddings, termed memoryless
embeddings, preserve m-geodesics [21, Lemma 3.6], whereas
e-geodesics are even preserved by the more general class of
exponential embeddings [21, Theorem 3.2]. The concept of
lumpability is easily extended to bivariate functions [21, Definition 3.3].

Definition 4.2. (κ-lumpable function). f ∈ F(Y, E) is a κ-
lumpable function if and only if for any x, x′ ∈ X and for any
y1, y2 ∈ Sx, it holds that

f y1,Sx′( ) � f y2,Sx′( ).
The set of all κ-lumpable functions is denoted as F κ(Y, E).
Lumpable functions F κ(Y, E) form a vector space of dimension

|E| + |D| −∑(x,x′)∈D|Sx| [21, Lemma 3.3].

Definition 4.3. (Linear congruent embedding). A linear map
ϕ: F(X ,D) → F κ(Y, E) is called a κ-congruent embedding when

it is a right inverse of κ and satisfies the two following monotonicity
conditions. For any lumpable function f ∈ F(X ,D),

f≥ 0 0 ϕ f( )≥ 0,
f> 0 0 ϕ f( )> 0.

Theorem 4.6. (Characterization of Markov morphisms as
congruent linear embeddings). Let ϕ: W(X ,D) → Wκ(Y, E). The
two following statements are equivalent:

(i) ϕ is a κ-congruent linear embedding.
(ii) ϕ is a κ-compatible Markov morphism.

Theorem 4.6 is a counterpart for a similar fact for finite measure
spaces in the distribution setting, which can be found in Ay et al. [6,
Example 5.2].

As Markov morphisms and linear congruent embeddings can be
identified, it will be convenient to refer to them simply as Markov
embeddings. We proceed to give two examples of embeddings.

4.3.2.1 Hudson expansions
Let Xt{ }t∈N be a Markov chain with transition matrix

�P ∈ W(X ,X 2). The stochastic process (Xt,Xt+1){ }t∈N also forms
a Markov chain on state space X 2. Considered by Kemeny and Snell
[50] to be the natural reverse operation of lumping, the Hudson [21,
50] expansion can be expressed as a Markov embedding [21,
Theorem 3.4]. In particular, this yields an example of an
embedding that is not m-geodesically convex [21, Lemma 3.4].

4.3.2.2 Symmetrization embedding for grained reversible
stochastic matrices

Suppose a given stochasticmatrix �P ∈ Wrev([n],D)with stationary
distribution �π(x) � p(x)/m for p ∈ Nn and m ∈ N. The embedding
λ: W(X ,D) → Wκ(Y, E) constructed [21, Corollary 3.2] by

κ j( ) � argmin
i∈ n[ ]

∑i
k�1

p k( )≥ j⎧⎨⎩ ⎫⎬⎭, j ∈ m[ ],

Λ j, j′( ) � δ κ j( ), κ j′( )( ) ∈ D[ ]
p κ j′( )( ) ,

is such that λ(�P) ∈ Wsym([m], E), with
E � (j, j′) ∈ [m]2: (κ(j), κ(j′)) ∈ D{ }. The constructed
embedding is memoryless, thus m-geodesically affine. This
approach can be used to reduce inference problems in Markov
chains from a reversible to a symmetric setting [54].

4.3.3 The foliated manifold of lumpable stochastic
matrices

There is generally no left inverse for a lumping map κ. However,
for any κ-lumpable P0 ∈ Wκ(Y, E), there always exists a Markov
morphism λ(P0): W(X ,D) → Wκ(Y, E), termed canonical
embedding [21, Lemma 3.2], such that

P0 � λ P0( )◦κ( ) P0( ). (27)

For fixed �P0 ∈ W(X ,D) and P0 ∈ W(Y, E), it is interesting to
introduce the two following submanifolds:

L �P0( ) ≜ κ−1 �P0{ }( ),
J P0( ) ≜ λ P0( ) W X ,D( )( ).

FIGURE 6
Mutually dual foliated structure on Wκ(Y, E).
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Less tersely, L(�P0) corresponds to the set of stochastic matrices
that lump into �P0, whereas J (P0) is the image of the entire set
W(X ,D) by the canonical embedding (27) associated with P0. It can
be shown [21, Lemma 5.1] thatL(�P0) andJ (P0), respectively, form
an m-family and an e-family in W(Y, E), of dimensions

dimL �P0( ) � D| | − X| |,
dimJ P0( ) � E| | − ∑

x,x′( )∈D
Sx| |.

It is not hard to show that the submanifoldWκ(Y, E) ofW(Y, E) is
generally not autoparallel with respect to either the e-connection or the
m-connection. Perhaps surprisingly, it is nevertheless possible to
construct a mutually dual foliated structure onWκ(Y, E) (see Figure 6).

Theorem 4.7. ([21, Theorem 5.1]). Let �P0 ∈ W(X ,D). Then,
Wκ Y, E( ) � ⋃

P0∈L �P0( )
J P0( )

∀P0, P0′ ∈ L �P0( ), P0,≠ P0′ 0 J P0( ) ∩ J P0′( ) � ∅,
dimWκ Y, E( ) � E| | − ∑

x,x′( )∈D
Sx| | + D| | − X| |.

The following Pythagorean identity [21, Theorem 5.2] follows as
a direct application of Theorem 4.7. For �P0 ∈ W(X ,D),
P0, P0′ ∈ L(�P0), and P′ ∈ J (P0),

D P0′‖P′( ) � D P0′‖P0( ) +D P0‖P′( ),
and P0 is both the e-projection onto L(�P0) and the m-projection
onto J (P0) (see Figure 6).

4.4 Tree models

For a finite alphabet Y, let Yp � {ϵ} ∪ Y ∪ Y2 ∪/ be the set of
all finite length sequences on Y, where ϵ is the null string. For a
string yn

1 � (y1, . . . , yn), strings yn
1 , y

n
2 , . . . , y

n
n−1, yn and ϵ are called

postfixes of yn
1. A finite subset T ⊂ Yp is termed a tree if all postfixes

of any element of T belong to T. An element of T is termed a leaf if it
is not a postfix of any other element of T. The set of all leaves of T is
denoted by zT.

For a string s ∈ Yp, let γ(s) be the element of zT that matches a
postfix of s, if it exists. We refer to γ(s) as the context of the string s,
and |s| denotes the length of the string s. When |s|≥ max

s′∈zT
|s′|, γ(s) is

uniquely defined.

Definition 4.4. (Tree model). For a given tree T and

k � max
s′∈zT

|s′|, (28)

let us consider the set W(Yk, E) of kth order Markov transition
matrices, where

E � y1, . . . , yk( ), y1′, . . . , yk′( )( ): yi � yi−1′ ∀i � 2, . . . , k{ }. (29)
The tree model induced by the tree T is

MT ≔ P ∈ W Yk, E( ): ∀yk, ~yk ∈ Yk, γ yk( ) � γ ~yk( ){
0P yk, ·( ) � P ~yk, ·( )}. (30)

The tree model is a well-studied model of Markov sources in
the context of data compression [55, 56], and it can be

categorized based on the structure of the underlying tree as
follows:

Definition 4.5. (Finite State Machine X (FSMX) model). For a tree
modelMT induced by tree T, if zT satisfies the condition that γ(sy) is
defined for all (s, y) ∈ zT × Y (this means that sy is not an internal
node of T for every (s, y) ∈ zT × Y), then the tree model MT is
referred to as FSMX model. If a tree model is not FSMX, it is referred
to as non-FSMX (see Figure 7).

Theorem4.8. ([25, 57]).A tree modelMT is an e-family if and only
if it is an FSMX model.

5 Applications

In this section, we give details of some application domains of
the geometric perspective.

5.1 Maximum entropy principle

Recall that the maximum entropy probability distribution over a
fixed alphabet X is uniform. In the Markovian setting, for a fixed
fully connected digraph (X , E), the stochastic matrix U ∈ W(X , E),
which maximizes the entropy rate [58–61] of the process H defined
in (4), is given by s(δE), where δE : X → 0, 1{ } is defined by
δE(x, x′) � δ[(x, x′) ∈ E], and where s is the stochastic rescaling
map introduced in (12). Let L ⊂ W(X , E) be an m-family of
stochastic matrices. One can express L as a polytope generated
by a set of linear constraints:

L � P ∈ W X , E( ): ∀i ∈ d[ ], ∑
x,x′( )∈E

Q x, x′( )gi x, x′( ) � ci
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭.

It is known [23] that the e-projection (Section 3.3) of an
arbitrary P ∈ W(X , E) onto L belongs to an e-family. Namely,
for ξ ∈ R, let

Pξ � s ~Pξ( ), ~Pξ � P o exp ∑
i∈ d[ ]

ξ igi
⎛⎝ ⎞⎠,

and write ψ(ξ) for the logarithm of the PF root of ~Pξ . By the Lagrange
multiplier method, the solution to the minimization problem is readily
obtained to be at ξ* � argmaxξ∈Rd 〈ξ, c〉 − ψ(ξ){ }. By rewriting,

argmin
�P∈L

D �P‖P( ) � argmax
�P∈L

H �P( ) + E X,X′( )~ �Q logP X,X′( ){ },
and observing that for P = U the maxentropic chain
E(X,X′)~ �Q logP(X,X′) is a function of the edge graph (X , E)
only6, we obtain that

argmin
�P∈L

D �P‖U( ) � argmax
�P∈L

H �P( ).

6 Note that log U is of the form f(x′) − f(x) + c for some function f and
constant c.
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In other words, the e-projection onto L follows the principle of
maximum entropy.

5.2 Large deviation theory

The topic of large deviation theory is the study of the probabilities
of rare events or fluctuations in stochastic systems, where the
likelihood of these events occurring is exponentially small in the
system parameters. In this context, we provide a concise overview of
the classical asymptotic results and offer references to recent
developments of finite sample upper bounds for the probability of
large deviations. ForX1, . . .,Xn, a Markov chain started from an initial
distribution μ andwith transitionmatrix P, a functionf: X → R, and
for some η≥Eπf, we are interested in the rate of decay of the
following probability:

Pμ
1
n
∑n
t�1

f Xt( )≥ η⎛⎝ ⎞⎠.
Similar in spirit to the heart of the approach taken in the iid

setting, we proceed with an exponential change of measure (also
known as tilting or twisting) of P and define for θ ∈ R,

~Pθ x, x′( ) � P x, x′( )eθf x′( ).
We denote by ρθ the Perron–Frobenius root of the matrix ~Pθ , its

logarithm by ψ(θ) = log ρθ, and its associated right eigenvector by vθ.
We then define Pθ � s(~Pθ) ∈ W(X , E) and note that Pθ{ }θ∈R
corresponds to constructing a one-dimensional exponential
family of transition matrices generated by f.

5.2.1 Asymptotic theory
The large deviation rate is given by the convex conjugate

(Fenchel–Legendre dual) of the log-Perron–Frobenius eigenvalue
of the matrix ~Pθ.

Theorem 5.1. ([64, Theorem 3.1.2]). For η≥Eπf,

lim
n→∞

−1
n
logPμ

1
n
∑n
t�1

f Xt( )≥ η⎛⎝ ⎞⎠ � R* η( ) � sup
θ∈R

θη − ψ θ( ){ }.

Theorem 5.2. ([75, Theorem 6.3]). When

sup
θ∈R

θη − ψ θ( ){ } � R* η( ),
is achieved for θ = θ*, as n → ∞,

Pμ
1
n
∑n
t�1

f Xt( )≥ η⎛⎝ ⎞⎠ ~
EX~μ vθ* X( )[ ]
θ*

######
2πnσ2θ*
√ e−nR* η( ),

where σ2θ* � z2ψ(θ)θ�θ* is the asymptotic variance7 of f, and vθ* is the
right Perron–Frobenius eigenvector of ~Pθ*.

5.2.2 Finite sample theory
Moulos and Anantharam [62] achieved the most recent and

tightest result. They established a finite sample bound with a
prefactor that does not depend on the deviation η, which holds
for a large class of Markov chains, surpassing the earlier results [17,
63, 64].

Theorem 5.3. ([62, Theorem 1]). Let P ∈ W(X ,X 2), with
stationary distribution π and a function f: X → R. Then,
for η≥Eπf,

P
1
n
∑n
t�1

f Xt( )≥ η⎛⎝ ⎞⎠≤C P, f( )e−nR* η( ),

FIGURE 7
Example of an FSMX tree (left) and a non-FSMX tree (right).

7 The fact that the second derivative of ψ(θ) coincides with the asymptotic
variance was clarified in [15].
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with

C P, f( ) ≜ max
x,x′,x″∈X

P x, x′( )
P x, x″( ).

Lastly, the subsequent uniformmultiplicative ergodic theorem is
known to hold.

Theorem 5.4. ([62, Theorem 3]). For P ∈ W(X ,X 2)
and f: X → R,

sup
θ∈R

ψn θ( ) − ψ θ( )∣∣∣∣ ∣∣∣∣≤ logC P, f( )
n

,

where ψn is the scaled log-moment-generating-function,

ψn θ( ) ≜ 1
n
logEμ exp θ∑n

t�1
f Xt( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

and C(P, f) is the constant defined in Theorem 5.3.
For a more detailed exposition of the aforementioned results in a

broader context, please refer to [62].

5.2.3 Timeline

5.3 Parameter estimation

Let g: X 2 → R, and suppose we wish to estimate
E(X,X′)~Q[g(X,X′)], from one trajectory X1, . . ., Xn from a
stationary Markov chain with transition matrix P ∈ W(X , E) and
stationary distribution π ∈ P+(X ). An important special case is when
there existsf ∈ RX such that for anyx,x′ ∈ X , g(x, x′) = f(x′). Then, the
quantity of interest is simply Eπf. The sample mean evaluated on a
stationary Markov trajectory X1, . . ., Xn is defined by

f̂n X1, . . . , Xn( ) � 1
n
∑n
t�1

f Xt( ).

The statistical behavior of f̂n is of particular interest for the topic of
Markov Chain Monte Carlo methods. By using the strong law of large
numbers, the almost sure convergence to the true expectation holds:

f̂n X1, . . . , Xn( ) →a.s. Eπf X1( ).
Furthermore, defining the asymptotic variance of f as

σ2∞ f( ) ≜ lim
m→∞

Var
1##
m

√ ∑m
t�1

f Xt( )⎡⎣ ⎤⎦, (31)

the followingMarkov chain version of the central limit theorem [65]
holds

#
n

√
f̂n X1, . . . , Xn( ) − Eπf( ) →a.s. N 0, σ2∞ f( )( ).

Although asymptotic analysis may be of mathematical interest,
for modern tasks, it is crucial to have a finite sample theory that

explains the behavior of the sample mean. With regard to the
original bivariate function problem, the sample mean for a
sliding window of pairs of observations can be defined as follows:

ĝn X1, . . . , Xn( ) ≜ 1
n − 1

∑n−1
t�1

g Xt,Xt+1( ).

One can construct by exponential tilting the following one-
dimensional parametric family of transition matrices:

Ve � Pθ x, x′( ) � P x, x′( )exp θg x, x′( ) + Rθ x′( ) − Rθ x( ) − ψ θ( )( ): θ ∈ R{ },
whereRθ andψ are fixed using the PF theory (see Section 3.2). Essentially,
Ve is a one-dimensional e-family of transitionmatrices, and for θ = 0, the
original P is recovered. At any natural parameter θ ∈ R, the quantity of
interest E(X,X′)~Qθ

[g(X,X′)] is the expectation parameter η(θ) of Pθ.
Recall from (18) that the Fisher information at coordinates θ can be
expressed as the second derivative of the potential function, that is,
z2ψ(θ) � g(θ). There exists [15, Lemma6.2] a constantC ∈ R such that

1
n
g 0( ) 1 − C#

n
√( )2

≤Var ĝn X1, . . . , Xn( )[ ]≤ 1
n
g 0( ) 1 + C#

n
√( )2

.

Defining the asymptotic variance for the bivariate g as

σ2∞ g( ) ≜ lim
m→∞

Var
1##
m

√ ∑m−1

t�1
g Xt, Xt+1( )⎡⎣ ⎤⎦,

it follows that

σ2∞ g( ) � g 0( ).
Note that it coincides with the reciprocal of the Fisher

information with respect to the expectation parameter; see Eq.
18. Essentially, this establishes that the sample mean evaluated
on pairs of observations ĝn(X1, . . . , Xn) is asymptotically
efficient; it attains the Markov counterpart of the Cramér–Rao
lower bound. Similar results for the multi-parametric case, non-
stationary case, and curved exponential families are obtained in [15].

5.4 Hypothesis testing

We let P0, P1 ∈ W(X , E) be two irreducible stochastic matrices
with respective stationary distributions π0 and π1. We call P0 the null
hypothesis and P1 the alternative hypothesis. We observe a trajectory
X0, X1, . . ., Xn sampled from an unknown Markov chain (P0 or P1).
A randomized test function is defined by

T n: X n → 0, 1[ ]
x0, x1, . . . , xn( ) ↦ T n x0, x1, . . . , xn( ).

We interpret T n as the probability of rejecting the null
hypothesis8 under a random experiment [76, p.58]. In particular,
if the range of T n is 0, 1{ }, the randomized test becomes
deterministic. The set of all test functions will be denoted by

Tn X( ) ≜ T n: X n → 0, 1{ }{ }.

8 Note that Nakagawa and Kanaya [19] used a different notation convention,
where T n outputs the probability of accepting the null hypothesis.
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We write P0,P1,E0,E1 to denote probability statements and
expectations under the null and alternative hypotheses. We define
the error probability of the first kind α (also known as the size of the
test, type I error, or significance) and second kind β (type II error),
respectively, as follows:

α T n( ) ≜ E0 T n X0, . . . , Xn( )[ ]
β T n( ) ≜ E1 1 − T n X0, . . . , Xn( )[ ].

Then, 1 − β is called the power of the test. Fixing �α ∈ R+, we
define the most powerful test to be the test function T n* that
maximizes the power under the size constraint α(T n)≤ �α:

(i) α(T n)≤ �α.
(ii) β(T n*)≤ β(T n) for any T n ∈ Tn(X ).

The Neyman–Pearson lemma asserts the existence of a test,
which can be achieved through the likelihood ratio test.

Lemma 5.1. [78]. There exist T n* ∈ Tn(X) and η ∈ R+ such that

(i) (a)α(T n*) � α.

(b)T n*(x0, x1, . . . , xn) �
P1 X0 � x0, . . . , Xn � xn( )
P0 X0 � x0, . . . , Xn � xn( )> η

P1 X0 � x0, . . . , Xn � xn( )
P0 X0 � x0, . . . , Xn � xn( )≤ η,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ii) If T n ∈ Tn(X) satisfies (a) and (b) for η ∈ R+, then T n is most

powerful at level α.
If we ignore the effect of the initial distribution that is negligible

asymptotically, the Neyman–Pearson accepts the null hypothesis if

1
n
∑n−1
t�1

log
P0 xt, xt+1( )
P1 xt, xt+1( )≥ η

for a threshold η and observation (x1, . . ., xn). Employing the
large deviation bound (e.g., [17, Section 8]), we can evaluate the
Neyman-Pearson test’s performance in terms of rare events as
follows:

lim
n→∞

−log P0
1
n
∑n−1
t�1

log
P0 Xt,Xt+1( )
P1 Xt,Xt+1( )≤ η

⎛⎝ ⎞⎠ � D Pθ η( )‖P0( ),
lim
n→∞−log P1

1
n
∑n−1
t�1

log
P0 Xt,Xt+1( )
P1 Xt,Xt+1( )> η

⎛⎝ ⎞⎠ � D Pθ η( )‖P1( ),
where

Ve ≜ Pθ x, x′( ) ≔ s exp θ logP0 x, x′( ) + 1 − θ( )logP1 x, x′( )( )[ ]: θ ∈ R{ }
is the exponential family passing through P0 and P1 (see Figure 8),
and Pθ(η) ∈ Ve is the intersection of Ve and the mixture family Vm

given by

Vm ≜ P ∈ W X , E( ): ∑
x,x′( )∈E

P x, x′( )logP0 x, x′( )
P1 x, x′( ) � η

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭.

Note that the e-family Ve and the m-family Vm are orthogonal in
that the Pythagorean identity holds

D P‖Pθ( ) � D P‖Pθ η( )( ) +D Pθ η( )‖Pθ( ),
for any P ∈ Vm and Pθ ∈ Ve. The Neyman–Pearson test can be
understood as a method that bisects the spaceW(X , E) by means of
an m-family, which is perpendicular to the e-family that links the
two hypotheses. For a given 0 < r < D(P0‖P1), if we set the threshold
η = η(r) so that D(Pθ(η(r))‖P0) = r, the Neyman–Pearson test attains
the exponential trade-off:

lim
n→∞

−logP0
1
n
∑n−1
t�1

log
P0 Xt,Xt+1( )
P1 Xt,Xt+1( )≤ η r( )⎛⎝ ⎞⎠ � r,

lim
n→∞

−logP1
1
n
∑n−1
t�1

log
P0 Xt,Xt+1( )
P1 Xt,Xt+1( )> η r( )⎛⎝ ⎞⎠ � D Pθ η r( )( )‖P1( ).

In fact, it can be proved that D(Pθ(η(r))‖P1) is the optimal
attainable exponent of the type II error probability among any
tests such that the type I error probability is less than e−nr.
Furthermore, it also holds that

D Pθ η r( )( )‖P1( ) � min D P‖P1( ): P ∈ W X , E( ), D P‖P0( )≤ r{ },

and the optimal exponential trade-off between the type I and type II
error probability can be attained by the so-called Hoeffding test. For
a more detailed derivation of these results and finite length analysis,
see [17, 19].

5.4.1 Historical remarks and timeline

Binary hypothesis testing is one of the well-studied problems
in information theory. The use of the Perron–Frobenius theory in
this context can be traced back to the 1970s and 1980s [63,
66–68]. The geometrical interpretation of the binary hypothesis

FIGURE 8
Geometric interpretation of the Neyman–Pearson test as the
orthogonal bisector to the e-geodesic passing through both the null
and alternative hypotheses.
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testing for Markov chains was first studied in [19]. More recently,
the finite length analysis of the binary hypothesis testing for
Markov chains was developed in [17] using tools from the
information geometry. The binary hypothesis testing is also
well studied for quantum systems; for results on quantum
systems with memory, see [69].
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