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In recent years, coronavirus disease 2019 (COVID-19) has plagued the world, causing
huge losses to the lives andproperty of peopleworldwide.How to simulate the spread
of an epidemic with a reasonable mathematical model and then use it to analyze and
to predict its development trend has attracted the attention of scholars from different
fields. Based on the susceptible–infected–recovered (SIR) propagation model, this
work proposes the susceptible–exposed–infected–recovered–dead (SEIRD) model
by introducing a specificmedium havingmany changes such as the self-healing rate,
lethality rate, and re-positive rate, considering the possibility of virus propagation
through objects. Finally, this work simulates and analyzes the propagation process of
nodes in different stateswithin thismodel, and compares themodel prediction results
optimized by the adaptive genetic algorithm with the real data. The experimental
results show that the susceptible–exposed–infected–recovered–dead model can
effectively reflect the real epidemic spreading process andprovide theoretical support
for the relevant prevention and control departments.
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1 Introduction

Epidemic transmission is the spread of various infectious diseases between different
individuals and in most cases endangers human health and safety. For example, the recent
emergence of COVID-19 was caused by an epidemic virus that spread rapidly worldwide due
to its high transmission capacity and difficulty in prevention, resulting in a large number of
infected people and deaths, causing significant negative impacts and economic losses in
countries worldwide. If trends in the number of infected people are predicted in advance by
transmission models and methods, it will make a great contribution to the control of
epidemics and the safety of people in all the countries worldwide [1]. Infectious disease
models have always been an important basis for studying epidemics, and most scholars from
different fields have used infectious disease models to study epidemics. Since the outbreak of
COVID-19, the study of epidemic and infectious disease prediction models has once again
become a hot topic of research. Due to the existence of certain unknowns and variability of
viruses, the factors considered in prediction are gradually increasing, and it is difficult to
obtain the complete details of virus infection by model prediction [2]. This paper introduces
some other factors to the traditional epidemic model SIR so that the new model can be more
applicable to the changes of the actual situation. The addition of latents and deaths to the
original model makes the model more accurate in terms of prediction. Infectious disease
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models focus on the state model and connectivity between
individuals; the state model describes the impact of an infected
person within a susceptible population in time, while connectivity
determines the movement and contact between populations [3]. The
variability of the virus can lead to changes in the mode of
transmission and make outbreak protection more difficult.
Through in-depth understanding of the virus, asymptomatic
infections have also been identified in epidemic prevention and
control. Such infections carry the transmitted virus but have no
significant symptoms and are highly concealed, causing great
inconvenience to the protection efforts [4]. With the
advancement of medical treatment, self-healing patients have
emerged during the treatment process, which also shows that the
treatment greatly differs from patient to patient. This work proposes
a new prediction model to predict the spread and trend of the
epidemic, considering many factor changes, for example, mortality
rate, self-healing rate, and repositive rate.

The choice of parameters in the model prediction has a large
impact on the prediction results, and the parameter variables will
continuously be adjusted using parameter optimization methods
so that the prediction results are constantly close to the target
values. Genetic algorithms are algorithms that provide optimal or
near-optimal solutions to complex problems by simulating
natural evolutionary processes. The algorithm uses computer
simulation in a mathematical way to convert the process of
problem solving into a process similar to the crossover and
mutation of chromosomal genes in biological evolution.
Adaptive genetic algorithms work better than conventional
optimization algorithms in solving complex optimization
problems. Therefore, this article uses the adaptive genetic
algorithm to optimize the model parameters so that the
predicted values of the model are closer to and match with the
true values.

2 Current status of domestic and
international research

2.1 Traditional epidemiological models

Traditional epidemic models are mainly based on the
susceptible–infected–recovered (SIR) model for outbreak
transmission studies. The traditional model can predict the trend
of the number of infections in the short term and provide some
theoretical support for subsequent outbreak prediction. The SIR
model was proposed in 1927 by two epidemiologists, McKendric
and Kenmack, and this model is one of the classical infectious
disease models, specifically used to predict the change in the number
of populations at different moments after an outbreak [5].

As a classical epidemiological model, many scholars have
used the SIR model to predict the trend of infection changes in
regional epidemics. [6] used kinetic differential equations for SIR
to predict future trends in the development of the epidemic; first,
deriving parameter data based on the number of previous
infections and recoveries and obtaining the predictions by
aggregating the parameters. To verify the validity of the
pandemic modeling approach, [7] improved on the traditional
SIR model by maintaining consistency in the total population size

to ensure that the number of susceptible individuals did not
decline monotonically. A final comparative analysis of the
modeling data demonstrates that disease transmission can be
controlled with appropriate restrictions and strong policies, and
likewise, COVID-19 transmission can be controlled in the
communities under consideration. One of the most difficult
problems in traditional infectious disease models is the
presence of a large number of asymptomatic infected
individuals. For this reason, [8] improved the SIR model,
taking into account asymptomatic or undetected infected
individuals in the new model. Furthermore, considering that
the previous model took longer time in infectivity and non-
isolation, it was somewhat shortened and finally agreed well with
the epidemiological data. To study epidemics transmitted within
different regions, [9] introduced a new control variable in the SIR
model, namely, the effectiveness of the travel blocking operation.
The authors also considered an epidemic model based on the
vaccination control, using an asymptotic-regressive discrete
scheme for numerical analysis, allowing this model to be
applied to epidemics that spread within different regions. The
exact solution of the classical SIR model is difficult to obtain in
most cases, [10] and in order to obtain the exact solution more
simply, the authors obtained the exact analytical solution of the
model in a parametric form. The main proposals are the display
model corresponding to the fixed values of parameters and the
proof that numerical solutions can represent analytical solutions,
showing that the general solutions of kinetic models can be
represented in the exact parametric form. To better account
for the dynamic behavior of epidemiology, [11] developed an
SIR model with standardized incidence rates and non-linear
recovery rates that takes into account the effect of resources
available to the public health system. A three-dimensional model
for the co-regulation of total population and disease incidence is
also presented, explaining the epidemiological causes of endemic
complex dynamic behaviors and concluding that adequate public
health resources available are essential for epidemic prevention
and control. To make the model more stable, [12] developed an
epidemiological model of SIR with a latent period and saturation
incidence. On the basis of ensuring that the susceptible
population satisfies the logistic equation, the incidence rate is
set with the susceptible population in a saturated form to find the
threshold of whether the disease will die out automatically.
According to the experimental results, if the threshold is less
than 1, the disease-free equilibrium is globally progressively
stable and the disease gradually disappears, whereas if the
threshold exceeds 1, the disease does not gradually disappear.

2.2 Improved epidemiological model

The improved infectious disease model is mainly based on the
susceptible–latent–infected–recovered (SEIR) model. The basic model
is not applicable for complex epidemic studies in many aspects, and
some scholars have improved the SIRmodel in order to be closer to the
real spread of the epidemic, and the new improved SEIR adds latent to
the original one, which is infected and carry the epidemic virus but do
not have any evident symptoms themselves, and this stage is also known
as the latent period.
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Against the backdrop of the global outbreak COVID-19,
countries worldwide are looking for better ways to curb the
spread of the epidemic. [13] treated the functions in the model
as fuzzy parameters, constructed the infection rate, recovery rate,
etc., then applied the model parameters to the model, and finally
used thematrix method to verify the stability of the model. Epidemic
models are simplified methods used for describing the transmission
of infectious diseases through individuals. To better investigate the
predictive effect of models on epidemics and the conditions under
which epidemics can spread, [14] applied the basics of models to real
diseases, derived steady-state conditions, and showed that viruses
spread only when the threshold parameter R exceeds 1.
Furthermore, the transmission conditions of viruses were
demonstrated by numerical simulations. Epidemic diseases can
easily constitute a public safety problem, and in order to
investigate whether pandemics will disappear automatically
without human control, [15] modified the model by adding
pathogen movements and human interventions to the model and
using the next-generation matrix approach to determine the basic
reproduction number, while solving the values yielded from the final
result without strong control measures and social distance control.
Since pandemics do not disappear automatically, [16] proposed a
new improved model based on real data. This model applied the
particle swarm optimization algorithm to estimate system
parameters and finally concluded that the parameters of the SEIR
model were different in different scenarios. By introducing seasonal
and random infection, non-linear dynamics were discovered, and
good results were obtained by using the model to demonstrate the
real evolution situation. To numerically visualize the results, [17]
studied a new stochastic epidemic model and quantified the
behavior during an outbreak, then modeled the epidemic using
Markov chains, and provided an effective computational program
for the development of the distribution of outbreak duration. The
expected ratio distribution of the number of individuals in each
category of the model is used to study the evolution of the epidemic
before it disappears, and the resulting results are visually presented
in numbers. As the spread of the epidemic brings serious
consequences and to better estimate the current spread of the
epidemic and predict the change of the epidemic, [18] proposed
a new conceptual mathematical model and took into account the
impact of isolation, hospitalization, panic, and anxiety; established
the boundary and balance; analyzed its stability; and verified the
relevant predictions of the important models through research and
comparison. [19] mainly studied the SEIR model with vaccination
strategies, which determined the different morbidities of exposed
and infected population, and proved the global asymptotically stable
result of disease-free equilibrium using the Lyapunov function and
LaSalle’s invariant set theorem. Finally, the sufficient conditions for
the global stability of local equilibrium are obtained using composite
matrix theory. In addition, the direct numerical simulation of the
system shows that there is a periodic solution when the system has
three equilibrium points. In order to better judge whether the model
is in a stable state theoretically, the new Lyapunov function
constructed by [20] shows that the disease-free equilibrium of the
model is globally asymptotically stable when the basic reproduction
ratio is less than or equal to 1, and the local equilibrium of the model
is also globally asymptotically stable when the basic reproduction
ratio is greater than 1.

3 Model definition and stability analysis

3.1 Definition of the model

This article is based on the infectious disease model and helps
improve the original model by adding some key elements to make it
more consistent with the data changes in real life and taking into
account not only the transmission of objects and self-healing but
also the mortality rate. For real infectious diseases, there are often
some death cases. The introduction of the mortality rate will bring
the prediction result more in line with the actual situation. The new
and improved model (SEIRD) divides the population into five
categories, namely, susceptible (S), exposed(E), infected (I),
recovered (R), and dead (D) [21], with the following meanings:

Susceptible(S) represents those who do not have the disease but
have low immunity and are vulnerable to infection after contact with
an infected person.

Exposed (E) represents a person who has been in contact with an
infected person and has not yet developed significant symptoms but
carries the virus in his or her body.

Infected (I) represents a person who has been infected and can
be transmitted to a susceptible person to cause the disease.

Recovered (R) includes those who have been isolated or are now
immune due to recovery from the illness.

Dead (D) represents a person who has been infected and cannot
be cured in time, and hence, dies.

The SEIRD model contagion mechanism is shown in Figure 1,
and the parameter definitions and explanations in the model are
shown in Table 1.

According to the systemmodeling idea, the relationship between
different populations in the SEIRD model can be described by a
system of differential equations. The total number of users is set to N
and satisfies N(t) = S(t) + E(t) + I(t) + R(t) + D(t), and the system of
equations for susceptible, exposed, infected, recovered, and dead
people over time is as follows [22]:

ds

dt
� −ηS − λSI − λ1SE + θR, (1)

dE

dt
� ηS + λSI + λ1SE − αE − βE, (2)

dI

dt
� αE − γI − ωI, (3)

dR

dt
� γI + βE − θR, (4)
dD

dt
� ωI. (5)

The initial conditions are S(0) > 0, E(0) ≥ 0, I(0) > 0, R(0) ≥
0, D(0) ≥ 0.

3.2 Equilibrium point solving and analysis

According to the actual background of the model, in order to
analyze the stability of the model, the equilibrium point of the model
should be considered in the bounded region. The equilibrium point
is mainly the point with or without disease transmission and the
local equilibrium point. When variables E and I are both 0 (there is
no infected person or sleeper), we call such a point as the disease-free
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equilibrium point. To determine the disease-free equilibrium point,
we can make the set of equations as 0, dS/dt = 0, dE/dt = 0, dI/dt = 0,
and dR/dt = 0, in which we obtain the system of equation non-zero
solutions, from which it follows that

−ηS − λSI − λ1SE + θR � 0, (6)
ηS + λSI + λ1SE − αE − βE � 0, (7)

αE − γI − ωI � 0, (8)
γI + βE − θR � 0. (9)

Then, by calculation, the solution of the system of equations is the
equilibrium point of S, E, I, and R. For the case of the disease-free
equilibrium point E = I = 0, according to Equations 6–9, we can obtain

S � θ

θ + η
, (10)

S � η

θ + η
. (11)

Then, the disease-free equilibrium point of the model is

K0 � S, E, I, R( ) � θ

θ + η
, 0, 0

η

θ + η
( ). (12)

However, the disease-free equilibrium is a disease-free state, which is
not the case we are interested in the real world, so the internal
equilibrium is not focused on in this article. When neither E nor I is
0 (i.e., there are infected persons and exposed persons), we use the
local equilibrium point to represent the possibility of disease
transmission, a relatively stable equilibrium point in the epidemic
transmission. When S ≠ 0, E ≠ 0, I ≠ 0, R ≠ 0, we can obtain the
solution of the internal equilibrium point through programming
calculation, according to (6)–(9).

The Jacobi matrix is obtained according to Equations 1–4 [23]:

J �
−η − λI − λ1E −λ1S −λS θ
η + λI + λ1E λ1S − α − β λS 0

0 α −γ − ω 0
0 β γ −θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

In turn, the eigenvalues of the Jacobi matrix in the equation can
be found from the aforementioned equation as

def μI − J( ) � μ + η + λI + λ1E λ1S λS −θ
−η − λI − λ1E μ − λ1S + α + β −λS 0

0 −α μ + γ + ω 0
0 −β −γ μ + θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(14)

Then, we substitute (10) and E = 0 and I = 0 into Eq. 14 to obtain

μ + η λ1
θ

θ + η
λ

θ

θ + η
−θ

−η μ − λ1
θ

θ + η
+ α + β −λ θ

θ + η
0

0 −α μ + γ + ω 0

0 −β −γ μ + θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0 (15)

After simplifying, we can turn this equation into a polynomial.
The polynomial on μ can be obtained after collation (see the
appendix for details), with A denoting the coefficient of μ3, B
denoting the coefficient of μ2, C denoting the coefficient of μ,
and D denoting the algebraic equation without μ. Then, the
equation can be transformed as follows:

FIGURE 1
Diagram of the SEIRD model transmission mechanism.

TABLE 1 Definition and interpretation of model parameters.

Model parameter Parameter interpretation

η Infection rate of object transmission

λ Infection rate of infected people

λ1 Infection rate of latent people

α Infection rate of the latent person to the infected person

γ Recovery rate of infected individuals

θ Recurrence rate in recovered individuals

β Self-healing rate of latent individuals

ω Mortality rate of infected individuals
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μ4 + Aμ3 + Bμ2 + Cμ +D � 0. (16)
Since the Cartesian sign rule can be used to determine the

number of positive or negative roots of a polynomial, it follows from
the Cartesian sign rule [24] that the number of negative roots of the
characteristic equation is equal to the number of changes in the sign
of the coefficients such that the equation satisfies the condition of
Eq. 16 to have four negative values, i.e., μ1 < 0, μ2 < 0, μ3 < 0, μ4 < 0,
and satisfy the conditions A > 0, B > 0, C > 0, andD > 0. The roots of
the characteristic equations of the resulting model are all negative, so
the model is globally convergent.

3.3 Basic regeneration number and
equilibrium steady state

According to the research related to the infectious disease model,
there exists a threshold value R0 in the transmission of infectious
diseases, and this threshold is also called the basic regeneration
number; when R0 ≤ 1, the transmission of infectious diseases will die
out naturally with time; while R0 > 1, the infectious disease will break
out within a certain period of time. Since the next-generation matrix
method [25] is widely used in epidemiology and the calculation of
the basic regeneration number, in dynamic populations, this paper
mainly uses the next-generation matrix method to calculate R0.
There are two compartments in the model proposed in this paper,
namely, E(t) and I(t). According to Eqs 1–5, the vector of X can be
obtained by applying the next-generation matrix method, and then,
the expressions on F, V are written based on the obtained vectors as
follows:

X � E t( )
I t( )[ ] � F1,2 E, I( ) − V1,2 E, I( ), (17)

� ηS + λSI
0

[ ] − λ1SE − αE − βE
αE − γI − ωI

[ ]. (18)

Finding the Jacobi matrix for F, V, we obtain

F � Jacobian F1,2 E, I( )( ) � 0 λS
0 0

[ ], (19)

V � Jacobian V1,2 E, I( )( ) � λ1S − α − β 0
α −γ − ω

[ ]. (20)

The SEIRD model corresponding to R0 is the maximum
eigenvalue of FV−1:

ρ FV−1( ) � αλS

λ1S − α − β( ) γ + ω( ). (21)

Furthermore, according to the next-generation matrix method,
we can obtain

R0 � λαθ

λ1θ − α + β( ) θ + η( ) γ + ω( ). (22)

Theorem 1: The system model in the system of Equations 1–4 is
globally asymptotically stable if R0 ≤ 1. Theorem 2: If R0 > 1, then the
system model in the system of Equations 1–4 is not globally
asymptotically stable. Proof: First, we assume that δ is an
eigenvector of the matrix F and that

R0 � ρ FV−1( ) � ρ V−1F( ). (23)
Under the condition of V-1F = R0, we obtain

δR0 � δV−1F. (24)
Let Lyapunov function [26] be

_L � δV−1X. (25)
So,

d _L

dt
� δV−1dX

dt
� δV−1 F − V( )X. (26)

Organize

d _L

dt
� δR0 − δ( )X � δ R0 − 1( )X. (27)

Here, if R0 ≤ 1, then d _L
dt � 0, that is, δX = 0. The result is E = I = 0,

which is simply dE
dt � dI

dt � 0. From this equation, we obtain

ηS + λSI + λ1SE − αE − βE − αE − γI − ωI � 0. (28)
If we substitute E = 0, then we can obtain

ηS + λSI − γI − ωI � 0, (29)
ηS + R0

λ1θ − α + β( ) θ + η( ) γ + ω( )
αθ

SI − γI − ωI � 0, (30)

ηS + I γ + ω( ) R0
λ1θ − α + β( )

α
− 1( ) � 0, (31)

namely,

R0 − 1 ≈ 0. (32)
Then, it can further be obtained that when R0 ≤ 1, then d _L

dt � 0.
This proves the global asymptotic stability of the model system.
Conversely, if R0 > 1, then within the defined neighborhood, d _L

dt > 0.
According to Lyapunov stability theory, the system is not
asymptotically stable under this condition.

4 Experimental results and analysis

4.1 Simulation

In order to get the experimental results closer to the real situation in
the real world, at the same time, we can better observe the change trend
and change quantity of each stage of the infection model. The
simulation experiment [27] considers the number of people in a big
city as the standard and sets the initial total population asN= 107. At the
same time, considering the initial approximate number of each
population, we set the initial population density as follows:

S(0) = 107 − 1, E(0) = 0, I(0) = 1, R(0) = 0, and D(0) = 0.

At the same time, through observation, we found that when E(t) =
I(t) = 0, there is no infection case in the model, and we can assume that
the model has reached a stable state at this time. Figure 2 is a simulation
diagram of the SEIRD model, through which we can witness the
relationship between the density of five types of individuals and time
in the propagation process. It can be seen from the following figure that
at the beginning of the epidemic spread, the number of each population
has hardly changed, which is quite consistent with the difficulty in
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finding the epidemic at the beginning. In the middle period of the
epidemic spread, that is, the sudden period of epidemic, the number of
people began to change significantly. In a short period of time, the
number of susceptible people rapidly decreased, while the number of the
infiltrator and infected people increased sharply. Mapped to reality, the
epidemic situation has attracted the attention of government
departments and the general public at this time, and began to carry
out epidemic prevention and control in a strategic and organized way.
The outbreak period was ushered in a short time after the outbreak
period, the number of infected people reached its peak, and then, death
cases began to appear. Because effective treatment and safety measures
have been considered this time, the number of infected people begins to
decrease after reaching the peak, and the number of recovered people is
gradually increasing. Because themodel also considers that the recovered
patients may be re-infected after a period of recovery, the number of
recovered patients will decrease and the number of susceptible people
will increase in the later period. At the same time, the number of infected
people will approach 0, the number of dead people will no longer
increase, and the model will reach a stable state.

In the real process of spreading the epidemic, each factor is very
important for the final result. Therefore, in simulation training, some
important parameters should be simulated with different values, such as
cold chain transmission probability, infected person transmission
probability, rehabilitation rate, and recovery rate, and the results of
numerical simulation should be compared and analyzed to achieve
better prediction results. In the spread of the epidemic, the number of
the lurker and infected people is very important for the prevention and
control of the epidemic, so in the simulation experiment, we focus on
observing the changing trend of the lurker and infected persons so as to
obtain an ideal prediction result of the epidemic.

4.2 Influence of object propagation
probability η on the epidemic spread

Object transmission [28] mainly means that viruses can also
spread to various people along with external media. At the beginning
of the epidemic, people did not realize that the virus could spread in

FIGURE 2
Simulation diagram of the SEIRD model simulation experiment.
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the cold chain. Later, after the local epidemic spread was blocked,
many clustered epidemics occurred in various places. Finally,
through investigation and study, novel coronavirus has strong
viability on the surface of frozen products, and the continuous
low temperature and humid cold chain environment also provide
necessary conditions for the survival of novel coronavirus. Then,
people began to pay attention to the prevention and control of object
transmission. Figure 3 shows a simulation chart of the influence of
object transmission probability η on epidemic transmission.

From the information observed in the figure, it can be found that
different object transmission probability values will also have
different impacts on the experiment. The greater the object
transmission probability value, the faster the epidemic spread,
and then the infiltrator and infected people will peak earlier, that
is, enter the outbreak period faster. At the same time, we find that the
increase in object propagation probability will lead to the peak
appearing ahead of time, but it will not change the peak basically. It
can be seen that reducing the spread of objects can help us slow
down the spread of the epidemic. Usually, we strictly control
overseas food and disinfect public places in order to reduce the
spread probability of objects, thus slowing down the spread speed.

4.3 Influence of contact probability λ of
infected persons on the epidemic spread

The virus infection rate is mainly divided into the infection rate
of the infiltrator to the susceptible person and the infection rate of

the infected person to the susceptible person. Figure 4 shows a
simulation chart of the influence of the virus infection probability λ
on the spread of the epidemic situation.

It can be seen from the aforementioned figure that the infection rate
has a significant impact on the epidemic situation. The probability of
virus infection can not only affect the peak time of the lurker and
infected people but also affect their peak value. It can also be observed
from the figure that the number of infected people increases rapidly
when the number of the infiltrator reaches its peak, so the growth trend
of infected people can be judged by the number of the infiltrator. We
found that the greater the value of infection probability, the earlier the
change of each population, and the infection rate has different degrees
of influence on each population, including the number of recovered
patients and susceptible people in the later stage of infection. On one
hand, this also explains the importance of wearing a mask because
wearing a mask can effectively reduce the probability of infection as it
not only reduces the number of infected people but also delays the onset
time of infected people and reduces the probability of infection, which is
more conducive to our prevention and control of the epidemic.

4.4 Influence of contact probability λ1 of
lurkers on the epidemic spread

In addition to the great influence of infection probability on the
spread of the epidemic, the probability of contact with susceptible
people in the infiltrator is also very important for the spread of the
epidemic. Because the infected person is an individual who has been

FIGURE 3
Simulation diagram of the influence of object propagation probability on the epidemic. (A)General map of simulated trends in different populations
for different values of the parameters of object propagation; (B) trends in the number of susceptible persons for different parameter values of object
propagation; (C) trends in the number of latent persons for different values of the parameters of object transmission; (D) trends in the number of infected
persons for different values of the parameters of object transmission; and (E) trends in the number of recovered persons for the different values of
the parameters of object transmission. (F) Trends in the number of fatalities for different values of object propagation parameters.

Frontiers in Physics frontiersin.org07

Chen et al. 10.3389/fphy.2023.1195087

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1195087


diagnosed and has taken relevant isolation measures, this person
does not have the ability of contact and transmission for the time
being, and the contact probability is mainly for the infiltrator.
Figure 5 shows a simulation chart of the influence of contact
probability in the infiltrator on the epidemic spread.

From the aforementioned figure, it can be found that the greater the
contact probability, the greater the probability of infection to susceptible
persons. This also explains why once more infected people are found,
measures such as reducing travel and isolating at home are adopted
because some symptoms of the infiltrator have not been found yet, but it
may spread to other people, so it is necessary to reduce the contact
probability at this time. The greater the contact probability, the higher the
possibility that the susceptible person will be infected. At the same time,
the faster and shorter the time required for the susceptible person to
become the infiltrator, which will eventually lead to a higher peak value in
the infiltrator, that is, the number of the infiltrator will greatly increase.
The sharp increase in the number of infected people will bring great
challenges to the prevention and control of the epidemic, so when the
outbreak is serious, travel is generally restricted and contact is reduced.

4.5 Influence of recovery probability γ on the
epidemic spread

Recovery probability is one of the most important factors in
epidemic prevention and control. As long as the recovery probability
is relatively high in the process of epidemic spread, the epidemic can end

quicker, and the losses caused are relatively small. It can be seen that
recovery probability is very important for us to study the spread of an
epidemic. The recovery probability in this work means that the virus
carrier does not carry the virus after treatment or autoimmunity and
can no longer spread to others. The self-healing probability of the
incubation period and the successful treatment probability of infectious
patients belong to recovery probability. Figure 6 shows a simulation
chart of the impact of recovery probability γ on the epidemic spread.

As can be seen from the aforementioned figure, the higher the
probability of recovery, the quicker the epidemic will end; the peak
value of the infiltrator and infected people will decrease tremendously,
and the time to reach the peak value will be delayed, and the number
of dead people will also decrease significantly. Therefore, it can be
concluded that under the condition of a relatively high recovery rate,
all groups in the spread of the epidemic are developing toward a more
ideal situation. From this figure, it can be concluded that constantly
studyingmore effective therapeutic drugs and encouraging the general
public to vaccinate are all aiming at improving the self-healing and
healing abilities so that we can take more initiative in epidemic
prevention and control.

4.6 Influence of re-positive probability θ on
the epidemic spread

The repositive rate [29] refers to the probability that patients
are re-infected with viruses and become virus carriers after a

FIGURE 4
Simulation diagram of the influence of object propagation probability on the epidemic. (A) General graph of simulated trends in the probability of
viral infection for different populations at different parameter values; (B) trends in the number of susceptible persons at different parameter values of the
probability of viral infection; (C) trends in the number of latent persons at different parameter values of the probability of viral infection; (D) trends in the
number of infected persons at different parameter values of the probability of viral infection; and (E) trends in the number of convalescent persons at
different parameter values of the probability of viral infection. (F) Trends in the number of deaths for different values of the probability of viral infection
parameter.
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period of recovery. In the early stage of the epidemic, the rate of
recovery did not attract great attention. With the deepening of
research and strict control, it was gradually found that the
recovered patients still had the probability of becoming
infected after a period of time. Figure 7 is a simulation chart
of the influence of repositive probability θ on the epidemic
spread.

From the aforementioned figure, it can be concluded that in the
early stage of the epidemic, the reactivation rate will not affect the
number change of each population, but in the middle stage of the
epidemic, with the increase in the number of recovered patients, the
reactivation rate begins to affect the number change of the
population. The higher the recovery rate, the number of
recovered patients will gradually decrease, and the peak value of
recovered patients will be advanced and reduced. For susceptible
people, the number of this population will increase in the later
period, but it can be seen that the repositive rate has little impact on
the lurker and infected people and will only slightly increase the
number of infected people in the later period, which also shows from
the side that the repositive and the first-time infected people have
almost the same impact in epidemic prevention and control.
Therefore, mapped to the actual epidemic prevention, even if
there are some antibodies in the recovered patients, they still
carry out the same management as ordinary susceptible people in
the epidemic control.

5 Parametric optimization method
based on the genetic algorithm

5.1 Adaptive genetic algorithm

The genetic algorithm (GA) was first proposed by John Holland. It
is an algorithm that helps find the optimal solution or approximate
optimal solution to complex problems by simulating the process of
natural evolution. The algorithm is designed according to the evolution
of organisms in nature. Through mathematical methods and computer
simulation operations, the algorithm converts the problem solving
process into processes similar to the crossover and variation of
chromosome genes in biological evolution. When solving more
complex combinatorial optimization problems, compared with some
conventional optimization algorithms, better optimization results can
usually be obtained relatively quickly. At present, genetic algorithms
have been widely used in various fields.

Compared with traditional optimization algorithms, the genetic
algorithm uses probability rules instead of certain rules. Therefore,
the genetic algorithm has the characteristics of global optimization
and simple operation, which is suitable for solving complex
optimization problems. In this work, the genetic algorithm is
used to analyze the impact of different types of population on
disease dynamics, optimize model parameters, and consider the
changes of objective factors such as the gradual improvement of

FIGURE 5
Simulation of the impact of sleeper contact probability on the epidemic. (A)General plot of simulated trends in the probability of latent exposure for
different populations for different parameter values; (B) trends in the number of susceptible persons for different parameter values of the probability of
latent exposure; (C) trends in the number of latent persons for different parameter values of the probability of latent exposure; (D) trends in the number of
infected persons for different parameter values of the probability of latent exposure; and (E) trends in the number of convalescent persons for
different parameter values of the probability of latent exposure. (F) trends in the number of deaths for different parameter values of the probability of
latent exposure.

Frontiers in Physics frontiersin.org09

Chen et al. 10.3389/fphy.2023.1195087

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1195087


isolation measures in the early and late stages of the epidemic. Using
the simulation software application MATLAB, an improved SEIRD
epidemic prediction model was built. First, we consider that the
incubation period is contagious and rehabilitative, and second, we
consider that the recovered person is repositive and the infected
person is fatal. Finally, the epidemiological transmission trends with
different probability in different periods are simulated so that the
prediction results are obtained.

In the face of complex non-linear optimization problems, the
traditional genetic algorithm is prone to insufficient optimization
ability, causing the algorithm to fall into a local optimal solution. In
this article, an improved adaptive genetic algorithm (AGA) is used
to change the heterogeneity and crossover rate through the adaptive
adjustment of genetic parameters to achieve the retention of
excellent individuals of offspring, which not only improves the
convergence accuracy of genetic algorithms but also accelerates
the convergence speed. In AGA, the cross probability Px and the
variation probability Pm are adaptively adjusted according to the
following:

Px �
k1

fmax − f′
fmax − favg

, f′≫favg

k3, f′<favg,

⎧⎪⎪⎨⎪⎪⎩ (33)

Pm � k2
fmax − f

fmax − favg
, f≫favg

k4, f<favg.

⎧⎪⎪⎨⎪⎪⎩ (34)

In the formula, fmax represents the maximum adaptation
value in the population, favg represents the average adaptation
value of each generation of population, f′ represents the larger
of the adaptation values of two individuals to cross, f
represents the adaptation value of the individual to be
mutated, and k1, k2, k3, and k4 consider the value of the
(0,1) interval.

It can be seen from the formula that as the population evolves,
the solution may be aggregated to the optimal solution, and favg
gradually approaches fmax so that the cross-probability Px and the
variation probability Pm gradually decrease, which helps
maintain the excellent structure that the population has
formed. In the same generation of populations, the probability
of crossover and mutation of different individuals changes
linearly with their own adaptation values. The lower the
probability of crossover and variation in individuals with
higher adaptability, the greater the probability of crossover
and variation in individuals with lower adaptability. When the
adaptive value of an individual is equal to the optimal adaptation
value fmax in the contemporary population, its crossover and
variation probabilities are calculated to be 0 by a formula, which
allows these excellent individuals to be preserved, but it is likely
that these excellent individuals will grow exponentially in the
evolutionary process, resulting in an excessive convergence. In
order to solve this problem, we choose to search for the global
optimal solution by individuals with less than average adaptive
values in the population.

FIGURE 6
Simulation diagram of the influence of recovery probability on an epidemic situation. (A) General graph of simulated trends in the probability of
recovery for different populations at different parameter values; (B) trends in the number of susceptible persons at different parameter values of the
probability of recovery; (C) trends in the number of latent persons at different parameter values of the probability of recovery; (D) trends in the number of
infected persons at different parameter values of the probability of recovery; and (E) trends in the number of recovered persons at different
parameter values of the probability of recovery. (F) trends in the number of deaths at different parameter values of the probability of recovery.
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5.2 Algorithm steps

1) Algorithm steps. Randomly select an initial group and represent
each individual in the population with a string, and then evaluate the
adaptation value of the randomly generated initial group, according to
the adaptability function. If the optimal individual in the group does not
improve for several consecutive generations, let the individual’s
adaptability be the optimal adaptation value, and if the optimal
adaptation value is not reached, it will enter the next round of
evolution. When selecting the operation, select individuals from the
population to inherit according to the optimal preservation strategy and
the rules of roulette wheel selection, and pass on excellent individuals
directly to the next generation or cross-generate new individuals
through pairing and then to the next generation. In the crossover
operation, choose two as parents in the population and randomly set an
intersection point. The structure behind the point is interchangeable to
generate two new individuals until the crossover stops after reaching the
best. During the mutation operation, an individual in the population is
randomly selected and the gene values on some locus in the individual
chromosome coding string are replaced with other alleles of the locus
until the mutation process stops after reaching the best value, forming a
new individual. Calculate the adaptability function value of individuals
in the new generation of population and replace the individuals with the
worst adaptive individuals. If the best adaptation value is not reached,
the improvement strategy will return to continue to evolve, and if the
best adaptation value is reached, the best results will be output.

The main steps and flowchart of the genetic algorithm are shown
in Figure 8 below:

Input: M individuals, number of iterations t, and initial
group P(t).

Output: New group P*(t).

1) Express the individual as a string, randomly generate the initial
biological group P(t) comprising M individuals, and set the
number of iterations t.

2) Assess the adaptability of each individual in the initial group.
3) Choose the best solution for improvement (selection, crossover,

and variation).
4) Perform selection operations to inherit optimized individuals

directly to the next generation or generate new individuals to the
next generation by pairing intersections.

5) Perform cross-operations and act on the cross-operations on the
group.

6) Carry out mutation operations and act on the mutation operator
on the group. After selection, crossover, and mutation operations,
group P(t) obtains the next-generation group P(t + 1).

7) Set the termination condition. If t = T, then use the individuals
with maximum adaptability obtained during the evolutionary
process as the optimal solution output to form a new group P*(t),
and terminate the calculation.

2) Determination of adaptability function. In the evaluation of
the adaptability function, in order to reflect the individual’s
adaptability, it is necessary to introduce an adaptability function
that can measure the individual’s adaptability. In the genetic
algorithm for solving the parameters of the infectious disease

FIGURE 7
Simulation diagram of the influence of the probability of relapse on the epidemic. (A)General graphs of simulated trends in different populations for
the different parameter values of the repositive probability; (B) trends in the number of susceptible persons for different parameter values of the repositive
probability; (C) trends in the number of latent persons for different parameter values of the repositive probability; (D) trends in the number of infected
persons for different parameter values of the repositive probability; and (E) trends in the number of recovered persons for different parameter values
of the repositive probability. (F) Trends in the number of deaths for different values of the repositive probability parameter.
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model, the sum of the error square of the predicted and real values of
the number of infected people infected in the infectious disease
model is F � ∑r

i�1∑ni
j�1(Xij −Xi)2 is the adaptation objective

function, and the least square method is used to ensure that the
feasible solution and actual solution errors of the number of infected
people are minimal.

3) Select the determination of the operator. The purpose of the
selection is to inherit optimized individuals directly to the next
generation or cross-generate new individuals through pairing and
cross-generation so as to improve the global computing efficiency
and adaptability. In this paper, a wide range of optimal storage
strategies and roulette wheel selection are selected. The roulette
gambling method selects a new population based on the probability
proportional to the adaptability value (that is, the probability of each
individual being selected is directly proportional to the value of its
adaptability function). Each individual has the opportunity to be
selected, which can improve the average adaptability value of the
whole population without destroying the diversity of the population.
However, this method is based on probability selection, with
statistical errors. Sometimes even individuals with high

adaptability are eliminated, and it is easy to converge to a local
maximum. Another choice is the optimal preservation strategy,
which sorts the individuals in the population according to the
adaptability size, and then selects the most adaptive individuals
to maintain them. This behavior can ensure that the optimal
individual is not eliminated by random operations. However,
because the selection of individuals is determined according to
the sorting value, the optimization efficiency depends on the
optimal individual.

The specific implementation step of the selection operator is a
combination of roulette and optimal selection. Let the initial group
size be n (even), and the adaptability function value of individual i is
F(i). In the process of selecting individuals to inherit to the next
generation, the idea of the optimal preservation strategy is adopted
to sort individuals from high to low according to F(i), and the first n/
2 individuals in the ranking are directly copied to the next-
generation population. At the same time, the roulette selection
method is used to select n/2 individuals from all individuals to
inherit to the next generation so that the probability of individual
i being selected to be inherited to the next-generation group is

FIGURE 8
Algorithm step flowchart.
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Pi = Fi/∑(i � 1)nFi, and then, a random number between 0 and 1 is
generated and matches the probability of each individual inherited
to the next generation and finally determines whether the individual
is inherited to the next-generation group until n/2 individuals are
selected. This method uses the scientific probability method to
maintain a good diversity of individuals in the population in
iteration and also ensures that the best individuals can evolve to
the next generation without being eliminated by the randomness of
genetic operations, that is, by adding the optimal retention operation
to randomness to ensure the convergence of the algorithm.
Compared with the simple roulette selection method, this
combination strategy runs slightly faster and shows better
performance.

4) The selection of crossover and variability. When applying the
genetic algorithm, the reasonable selection of the crossover rate and
variability is an important factor affecting the efficiency of the
algorithm. However, most genetic algorithms give an interval
range when setting the crossover and mutation rates, of which
the crossover rate is generally greater than 0.9 and between
0.9 and 0.99, and the mutation rate is relatively low, generally
below 0.1, between 0.0001 and 0.1, but there is a lot of
uncertainty and blindness in determining the approximate range
of the cross rate and variability based on the empirical method.

5.3 Evaluation indicators

In order to compare the influence of the application of the
parameter optimization method of the adaptive genetic algorithm
on the prediction accuracy of the propagation model, it is necessary
to evaluate the prediction accuracy of the propagation model. In this
paper, three indicators, namely, root mean square error (RMSE),
average absolute error (MAE), and decision coefficient (R2), are used
to evaluate the predictive accuracy of the model.

RMSE is another commonly used evaluation indicator,
indicating that in the process of model fitting, it reflects the gap
between the model prediction results and the actual results. The
lower the RMSE, the more accurate the model is. However, it reflects
an objective standard deviation. RMSE can be calculated according
to the following formula:

RMSE �
�������������
1
m

∑m
i�1

yi − ŷi( )2√
. (35)

MAE is another indicator used to evaluate the accuracy of model
prediction results, which represents the gap between model
prediction results and the actual results. MAE can be calculated
by the following formula:

RMSE � 1
m

∑m
i�1

| yi − ŷi( )|. (36)

Among them, the value range of MAE is (0, +), which is equal to
0 when the predicted value exactly matches the real value, which is
the perfect model; the greater the error, the greater the value.

The deciding coefficient (R2) indicates the fitting optimization of
the regression model coefficient evaluated after linear regression. R2

reflects the proportion of all variations of model-dependent
variables being interpreted by independent variables through the

regression model. The larger the value of R2, the greater the variation
in linear return model interpretation. R2 can be calculated according
to the following formula:

R2 � ∑n
i�1 yi

e − ye( ) yi
0 − y0( )( )������������∑n

i�1 yi
e − ye( )2√ ������������∑n

i�1 yi
e − y0( )2√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦2. (37)

When R2 is 1, it shows that there is no error between the prediction
and the real observation values of the model, indicating that the
interpretation of the independent variable to the dependent variable
in the regression analysis is better; when R2 is 0, each prediction value of
the sample in the model is equal to the mean; when R2 is close to 0, it
indicates that the prediction ability of the model is poor, and the
prediction effect is close to using the average of the observed value as the
model prediction value. This means that the wrong model may have
been used or the assumptions of the model are unreasonable.

5.4 Results and analysis

By consulting the parameters of relevant case data inWuhan, we
set the number of people in close contact with normal people every
day at p = 20. Because the infected person will have some symptoms,
only half of the number of people are seen to be in close contact with
normal people. In the process of simulation of the model by the
adaptive genetic algorithm, the values of each parameter are set
within a certain dynamic range, and then, the value of the model
parameters is continuously optimized and improved through the
algorithm to achieve the best prediction effect. The value of the
model parameters is finally determined as follows:

η = 0.01, λ = 0.03, λ1 = 0.02, α = 0.14,
γ = 0.1, θ = 0.02, β = 0.005, and ω = 0.02.

At the same time, in order to verify the effectiveness of the
method on the model, the text compares the actual data on the
2020 Wuhan epidemic [30] officially released by the China Health
Commission with the trend based on the status of SEIRD nodes to
further analyze the difference between the predicted and real values.
Figure 9 shows a trend chart that shows the state of each node under
real data based on the SEIRD model.

From the figure, it can be seen that the data changes of the
number of confirmed cases, and the number of recovered people and
deaths in real situations are very similar to the trend of our
prediction trend, so it can be shown that after the optimization
of adaptive genetic algorithms, the SEIRD model can be applied to
the spread of the real epidemic.

At the same time, it can be seen from the figure that the number
of confirmed cases increased rapidly in the early stage, and the
change trend was evident. However, with a series of measures, such
as isolation and wearing masks, the number of confirmed cases
gradually decreased, and the number of recovered cases gradually
increased, and finally, the number of confirmed cases gradually
returned to 0. The trend curve of the recovered patients is also in line
with our prediction, and the number of recovered patients is
gradually increasing, but in the end, due to the existence of the
recovered patients, there will be a slight decline in the end. The trend
of death tolls is basically consistent with our predicted results, which
first increases slowly and finally tends to be stable. By comparing the
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actual data with the predicted data, it can be found that the SEIRD
model can effectively simulate the spread trend of the actual
epidemic situation and provide theoretical support for relevant
departments.

5.5 Comparative analysis of models

The different types of infectious diseases each have different
characteristics in transmission, and this paper is to establish a model
to analyze from the perspective of the transmission mechanism. In
order to verify the effect of this model in the transmission of new
coronavirus causing pneumonia, this paper optimizes different
models on the adaptive genetic algorithm and analyzes the data
on the optimized classical model and this model, such as the SIR
model, SEIR model, and the basic SEIRD model.

The SIR model is one of the most basic of infectious disease
models, where S denotes susceptible, I denotes infected, and R
denotes recovered. Transmission mechanism: at first, all nodes
are in their susceptible state, some nodes reach the infected state
after contacting the information, and the infected nodes infect other
nodes or reach the recovered state. According to the system
modeling idea, the relationship between different populations in
the SIR model can be described by a system of differential equations.
The total number of users is set as N and satisfies N(t) = S(t) + I(t) +
R(t), and the system of equations of susceptible, infected, and
recovered people over time is as follows:

ds

dt
� −λSI, (38)

dI

dt
� λSI − γI, (39)
dR

dt
� γI. (40)

The initial conditions are S(0) ≥ 0, I(0) > 0, R(0) ≥ 0.
The SEIR model is an improvement on the SIR model with the

addition of the incubator E. Healthy people who have been in
contact with a patient do not get sick immediately but become

carriers of the pathogen. According to the system modeling idea, the
relationship between different populations in the SEIR model can be
described by a system of differential equations. The total number of
users is set as N and satisfies N(t) = S(t) + E(t) + I(t) + R(t), and the
system of equations for susceptible, exposed, infected, and recovered
people over time is as follows:

ds

dt
� −λSI, (41)

dE

dt
� λSI − αE, (42)

dI

dt
� αE − γI, (43)
dR

dt
� γI. (44)

The initial conditions are S(0) ≥ 0, E(0) ≥ 0, I(0) > 0, R(0) ≥ 0.
The basic SEIRD model is also improved on the basis of the SEIR

model by adding the number of dead people, i.e., the number of people
who died from the infection of the epidemic, and this model is more in
line with the spread of the real epidemic. According to the system
modeling idea, the relationship between different populations in the
SEIRD model can be described by a system of differential equations.
The total number of users is set asN and satisfiesN(t) = S(t) + E(t) + I(t)
+ R(t) + D(t), and the system of equations for susceptible, exposed,
infected, recovered, and dead people over time is as follows:

ds

dt
� −λSI, (45)

dE

dt
� λSI − αE, (46)

dI

dt
� αE − γI − ωI, (47)
dR

dt
� γI, (48)

dD

dt
� ωI. (49)

The initial conditions are S(0) ≥ 0, E(0) ≥ 0, I(0) > 0, R(0) ≥
0, D(0) ≥ 0.

FIGURE 9
Change trend of nodes with different states over time. (A) Trend diagram of state nodes based on the SEIRD model. (B) Chart of epidemic trends in
the real dataset.
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This model not only increases the number of dead people but
also takes into account the object transmission, the re-positive rate
of the recovered people, and the self-healing rate of the latent people,
which is very close to the real transmission process of the new
coronavirus causing pneumonia.

After the optimization of the adaptive genetic algorithm, the
simulation trend of multiple models is shown in Figure 10.

As can be seen in Figure 10A, the trend of infected persons
predicted by each model is basically similar, the SIR model does not
have an incubation period, and healthy people become infected
immediately after contacting infected persons, so it causes the
number of infected persons predicted by the SIR model to reach
the peak in a relatively short period of time, which leads to the
prediction results being very different from the actual infection data.
The number of infected persons predicted by the SEIR model is very
close to that of the real data, but the number of infected persons has a
large gap compared with the real data, which is very close to the real
data, but the number of infected people has a large gap compared
with the real data, particularly because the SEIR model does not take
into account the object transmission and repositive positivity rate,
which leads to the actual number of infected people being more than
predicted by the model. The underlying SEIRD model also does not
take into account object transmission and the repositive positivity
rate, and due to the death of some of the infected people, resulting in
a lower number of predicted infected people compared to the real
infected people. As can be seen from Figure 10B, there is a large
difference in the number of recovered persons predicted by each
model because the SIR and SEIR models do not take into account
those who die, so the number of recovered persons predicted by the
model is much higher than the actual number of recovered persons.
The underlying SEIRD model also results in a lower number of
recovered people than the real data due to the lower number of
infected persons predicted by the model. Figure 10C shows that both
the base SEIRD model and this model predict the number of deaths
which are close to the real number of deaths but both are slightly
higher in trend than the real death data; this is because the real data
comprise the number of deaths after medical and drug interventions,
which results in the predicted data to be higher than the real data. As

can be seen in Figure 10, the improved model in this paper is more
accurate in predicting the number of infections, recoveries, and
deaths than other models, and is also more in line with the real data
compared to the real data.

6 Conclusion

The mechanism of virus transmission is relatively complex in
epidemic prevention and control, which requires a more accurate
model. In this paper, a SEIRD epidemic transmission model is
proposed, which includes factors such as object transmission, self-
healing ability, recovery rate, and mortality. Based on this model, this
work conducted simulation experiments on each influencing factor to
analyze the impact of different factors on the spread of the epidemic. The
experimental results show that although the cold chain input probability
does not affect thefinal number of infected people, it will affect the time to
reach the peak; the ability to heal is critical in determining the impact of
infection, not only affecting the number of infected people but also
accelerating the cycle of infection; although the recovery rate will not
cause an increase in the number of infected people, it will affect the
number of different groups in the later stage of the epidemic; mortality in
epidemic prevention and control is closely related to the number of
infected people. When the number of infected people is large and
treatment is not timely, more deaths will occur. Finally, this work also
improves and optimizes the model parameters through the adaptive
genetic algorithm, simulates and analyzes the trend of the epidemic from
many aspects, and compares and analyzes the real data. The results show
that the model optimized by the algorithm can effectively predict the
spread of the epidemic, and at the same time, it can bring certain
theoretical reference values to epidemic prevention and control.
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