AUTHOR=Li Guoyou , Peng Qingjun , Zou Dexu , Yang Jinyue , Shu Zhenqiu TITLE=Fine-grained similarity semantic preserving deep hashing for cross-modal retrieval JOURNAL=Frontiers in Physics VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2023.1194573 DOI=10.3389/fphy.2023.1194573 ISSN=2296-424X ABSTRACT=

Cross-modal hashing methods have received wide attention in cross-modal retrieval owing to their advantages in computational efficiency and storage cost. However, most existing deep cross-modal hashing methods cannot employ both intra-modal and inter-modal similarities to guide the learning of hash codes and ignore the quantization loss of hash codes, simultaneously. To solve the above problems, we propose a fine-grained similarity semantic preserving deep hashing (FSSPDH) for cross-modal retrieval. Firstly, this proposed method learns different hash codes for different modalities to preserve the intrinsic property of each modality. Secondly, the fine-grained similarity matrix is constructed by using labels and data features, which not only maintains the similarity between and within modalities. In addition, quantization loss is used to learn hash codes and thus effectively reduce information loss caused during the quantization procedure. A large number of experiments on three public datasets demonstrate the advantage of the proposed FSSPDH method.