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Cross-modal hashing methods have received wide attention in cross-modal
retrieval owing to their advantages in computational efficiency and storage cost.
However, most existing deep cross-modal hashing methods cannot employ both
intra-modal and inter-modal similarities to guide the learning of hash codes and
ignore the quantization loss of hash codes, simultaneously. To solve the above
problems, we propose a fine-grained similarity semantic preserving deep hashing
(FSSPDH) for cross-modal retrieval. Firstly, this proposed method learns different
hash codes for different modalities to preserve the intrinsic property of each
modality. Secondly, the fine-grained similarity matrix is constructed by using
labels and data features, which not only maintains the similarity between and
within modalities. In addition, quantization loss is used to learn hash codes and
thus effectively reduce information loss caused during the quantization procedure.
A large number of experiments on three public datasets demonstrate the advantage
of the proposed FSSPDH method.
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1 Introduction

As electronic technology and the Internet have advanced, the amount of multimedia
data, such as images, texts, audio, and video, has experienced rapid growth. Therefore, how
to effectively implement cross-modal retrieval has become a hot research field. However, due
to the differences in data distribution and feature representation between different
modalities, it is a huge challenge in cross-modal retrieval to narrow the semantic gap
between multimodal data. Generally, the goal of cross-modal retrieval is to map the original
data into a common potential space to maintain the similarity structure of the original
features and find the most similar samples in the new feature space [1]. In addition, hashing
technology can significantly reduce storage space and computational complexity because it
only requires binary operation. Therefore, it becomes an effective way to solve cross-modal
retrieval of massive data [2–4].

Cross-modal hashing is generally divided into two main categories, which are supervised
hashing and unsupervised hashing. The unsupervised hashing [5,6] aims to project data features
into a common feature space to reduce the difference between modalities. The supervised hashing
methods [7,8] use label information to further enhance the semantic correlation between cross-
modal data. The use of label information significantly narrows the gap between modalities and
achieves excellent retrieval performance. Since deep learning has demonstrated its strong
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advantage in various fields, many deep cross-modal hashing methods
have been proposed in recent years [9–11]. Tu et al. [12] proposed an
end-to-end deep cross-modal hashing method, which obtains the
unified hash codes of the training and the query samples through the
joint learning of hash codes and hash functions. Self-supervised
adversarial hashing (SSAH) [13] adopts two adversarial networks
to jointly model semantic features of different modalities and then
utilizes their semantic correlations to generate binary hash codes. At
present, deep hashing methods have achieved excellent performances
in cross-modal retrieve tasks, but there are still some issues to be
solved urgently: 1) Most existing deep cross-modal hashing methods
ignore the intra-modal and inter-modal similarities to guidance the
hash code learning; 2) Existing hashing methods mainly focus on the
hash code generation stage, and thus hash representations with less
semantic information and spatial correlation cannot generate optimal
hash codes; 3) Many methods often fail to consider the quantization
loss of hash codes, resulting in the loss of semantic information during
hash code learning.

To solve the above problems, we propose a fine-grained
similarity semantic preserving deep hashing (FSSPDH) method
for cross-modal retrieval tasks. Figure 1 shows the framework of
our proposed FSSPDHmethod. Themain contributions of this work
are given as follows.

1) The proposed FSSPDH approach unifies data feature extraction and
hash code learning into an end-to-end deep learning framework. It
can learn different hash codes from different modalities and thus
maintains the intrinsic property of each modality. In addition, the
proposed method combines the high-level semantic similarity

constructed with labels and the low-level semantic similarity
constructed with features to construct a fine-grained similarity
matrix. Compared with traditional similarity constraints, the
fine-grained similarity can effectively maintain inter-modal and
intra-modal similarities to explore the semantic relationship
between modalities and instances.

2) Our FSSPDH method considers the quantization loss in hash
code learning, which further reduces the information loss caused
by the hash code quantization. The quantization loss can make
the learned hash codes with more feature information obtain
more discriminative hash codes.

3) Experimental results conducted on three widely usedmultimodal
datasets indicate that our proposed FSSPDH method achieves
higher accuracy in cross-modal retrieval tasks compared with
other hashing methods.

The remaining parts of this paper are organized as follows:
Section 2 reviews the related works of cross-modal hashing retrieval.
In Section 3, we introduce our FSSPDH approach in detail. Section 4
describes the experimental results and their results. Finally, our work
is drawn in Section 5.

2 Related work

At present, cross-modal hashing can be roughly divided into the
unsupervised method and supervised method according to whether
it uses supervised information. This section will give a brief overview
of these two types of methods.

FIGURE 1
The framework of the proposed FSSPDH approach.
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2.1 Unsupervised cross-modal hashing

Since most multimodal data from real life are unlabeled, it is
unrealistic to consume significant labor and time to label these data.
Therefore, unsupervised hashing methods have received extensive
attention in cross-modal retrieval. These methods attempt to learn the
correlation and underlying structure of multimodality data. They can
be further divided into graph-based methods and matrix
factorization-based methods. The former seeks to maintain the
correlation of hash codes by constructing a similarity graph. Linear
cross-modal hashing (LCMH) [14] uses an anchor graph to keep the
similarity within and between models in Hamming space. Hetero-
manifold regularisation (HMR) [15] constructs multiple sub-
manifolds defined by homogeneous data with the help of
supervision information and alleviates the integration complexity
and heterogeneity problems. Fusion similarity hashing (FSH) [16]
constructs an asymmetric graph to model the fusion similarity and
then embeds it into the hash codes. However, matrix factorization-
based methods can explore the correlation in multimodal data
through the potential semantic space, which can avoid the high
training complexity of calculating similarity graphs. Collective
matrix factorization hashing (CMFH) [2] is a typical method
based on matrix factorization, which learns the common
representation from different modality data, and then quantizes it
to obtain their hash codes. Collective reconstructive embedding (CRE)
[17] employs different schema-specific modalities to handle
heterogeneous data, which can dispose of the complex structural
and heterogeneity of multi-modality data.

With the continuous development of deep learning, many deep
hashing approaches have also been for unsupervised cross-modal
retrieval. Liong et al. [18] proposed a three-layer neural network
structure, which seeks multi-level nonlinear transformations to learn
binary codes. Lin et al. [19] put forword to learn discriminative hash
codes by introducing three criterion terms in the last layer of the
network. Do et al. [20] designed a novel deep hashing network to
efficiently learn hash codes by relaxing binary constraints. Similarity
adaptive deep hashing (SADH) [21] alternately trains three modules:
similarity graph updating, deep hashingmodel training and hash code
optimization to obtain high-quality hash codes. Multi-pathway
generative adversarial hashing (MGAH) [22] makes full use of the
representation learning advantages of generative adversarial networks
on unsupervised data to explore the latentmanifold structure of cross-
modal data. Deep graph-neighbor coherence preserving network
(DGCPN) [23] was derived from the graph model to exploit the
consistency of the neighbor graph by integrating the structure
information between the data and its neighbors.

2.2 Supervised cross-modal hashing

Different from the aforementioned unsupervised hashingmethods,
supervised hashing methods try to fully exploit more semantic
correlation from supervised information to improve retrieval
accuracy. Cross-modality metric learning using similarity-sensitive
hashing (CMSSH) [24] employs a binary classification approach to
generate hash codes and employs an enhanced strategy to optimize the
model. Supervised matrix factorization hashing (SMFH) [25] preserves
the similarity by constructing an adjacency matrix and then employs

relaxed discrete constraint to learn binary representation. Fast discrete
cross-modal hashing (FDCH) [26] regresses category information to
learn hash codes and hash functions. Liu et al; [27] proposed a universal
and flexible cross-modal hashing framework, which can handle various
cross-modal retrieval scenarios, including paired or unpaired multi-
modal data retrieval and retrieval scenarios with equal or variable hash
length coding. Different from the linear projection from Hamming
space to label space, subspace relation in semantic labels for cross-
modal hashing (SRLCH) [28] learns the linear transformation from
label space to Hamming space by reverse learning. Its essence is to
regard label information as advanced features and embeds it into hash
codes.

Deep neural networks have also been widely used in supervised
cross-modal retrieval due to their powerful arbitrary nonlinear
representation capabilities. Deep cross-modal hashing (DCMH) [29]
generates hash codes that preserve cross-modal similarity by imposing
a negative log-likelihood loss in an end-to-end deep learning
framework. Adversarial cross-modal retrieval (ACMR) [30] utilizes
an adversarial learning classification approach to distinguish different
modalities and generate binary hash codes. Cross-modal deep
variational hashing (CMDVH) [31] put forward to a two-step
framework to separate hash code learning and hash function
generation. In the first step, CMDVH learns the unified hash codes
of the image-text pairs in the database. Then it uses the learned unified
hash codes to generate hash functions in the second step. Therefore, the
learned hash function in the second stage cannot guide the
optimization of the unified hash codes. Wang et al. [32] proposed a
deep semantic reconstruction hash method with pairwise similarity-
preserving quantitative constraints. This method embeds advanced
semantic affinity in each data pair to learn compact binary codes.

3 Our proposed method

3.1 Notations

This proposedmethod adopts the batch strategy to train the model,
where the variables are represented in a batch-wisemanner. Specifically,
letO � o1, o2, . . . ., ok{ } represent k instances in each batch, where oi �
[Ii,T i] is the i-th image-text pair. XI ∈ Rk×d1 and XT ∈ Rk×d2 denote
the feature matrices of Ii and Ti, respectively. Generally, the image
feature dimension d1 and the text feature dimension d2 should satisfy d1
≠ d2. Besides, let BI ∈ −1,+1{ }k×l and BT ∈ −1,+1{ }k×l represent the
hash codes generated for image and text modality, respectively, where l
is the hash code length. In addition, the label matrix is defined as L ∈
Rk×c, where c represents the total category number.

3.2 Framework of our fine-grained similarity
semantic preserving deep hashingmethod

3.2.1 Deep hashing networks for image and text
modalities

The framework of the FSSPDH method is shown in Figure 1,
which mainly consists of two parts: image hashing network and text
hashing network. This network model can not only extract feature
representations containing more semantic information for the two
modalities of images and text, but also establish semantic
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relationships between the two modalities through a semantic
similarity matrix.

1) Image hashing network (ImgNet). As traditional SIFT features
are not sufficient to capture the intrinsic semantic relationships of
images, the proposed model follows previous work in extracting
deep features fromCNNs (pre-trained on ImageNet) to replace SIFT
features. Thus, 4096-dimensional features are extracted from the
fc7 layer (after ReLU) of AlexNet [33] as the image features for each
input image block. Therefore, we use AlexNet as the backbone of
ImgNet and replace the classifier layer fc8 of AlexNet with a new fc
with l hidden units to generate a continuous representation
HI ∈ Rk×l.

2) Text hashing network (TxtNet). For the text modality, LDA
(Latent Dirichlet Allocation) topic vectors or token features are as
XT. In addition, we use multilayer perceptron (MLP) as the
backbone of TxtNet. Due to the diversity and complexity of raw
text descriptions, we directly use topic vectors or label occurrence
features as the input of the MLP and then have 4096 units in the first
fc layer. Besides, the second fc layer with l units generates a
continuous representation HT ∈ Rk×l and ReLU is used as the
activation function.

3.2.2 Constructing fine-grained similarity matrix
To improve the retrieval performance of cross-modal hashing

methods using supervised information, most methods usually
adopt the labels to construct a high-level semantic similarity
matrix. Specifically, the high-level semantic similarity
SH ∈ −1,+1{ }k×k is computed by SH = LLT. If the i-th and j-th
samples share at least one label, then SHij � 1, otherwise SHij � −1.
For multi-label datasets, samples with multiple labels should be
more similar than these with only one label. However, the
similarity only based on labels cannot effectively model this
relationship, and a lot of useful information is discarded. To
solve this issue, we construct a high-level similarity SH and a
low-level similarity SL using labels and features, respectively.
Therefore, samples with the same high-level similarity can be
further ranked according to their low-level similarity. The
construction of the fine-grained similarity can be expressed as:

S � μSH + θSL, (1)
where μ and θ are used to balance high-level similarity and low-level
similarity. In addition, according to the fine-grained similarity
fusion rules described in Ref. [34], the fine-grained similarity
matrix can be represented as follows:

S � μLLT + θ1XtXI
T + θ2XTXT

T

μ + 1
, (2)

where θ1 and θ2 are the weight parameters of image and text,
respectively.

3.2.3 Hash codes learning
The goal of our FSSPDHmethod is to learn different hash codes

for different modalities and establish relationships between
modalities and instances by similarity matrix. FSSPDH seeks to
map the features of instances to the Hamming space that preserves
semantic similarity. In this space, the hash codes of samples from the
same category should be similar. However, the hash codes of

samples from different categories should also be different.
Therefore, we attempt to preserve the semantic similarity
between the hash codes learned from different modalities and the
hash codes learned from the same instance of the same modality.
Specifically, if Sij = 1 indicates that the hash codes bi and bj are
similar, the Hamming distance between bi and bj should be the
minimum value of 0, which means that bTi bj � c. Otherwise, the
Hamming distance between bi and bj should be the minimum value
of c, which means that bTi bj � 0. In the training stage, to calculate the
gradient in backpropagation, we use the scaled tanh function to
obtain approximate hash codes [35]. Therefore, BI and BT in the
training phase can be calculated by the following formulas:

BI � tanh αHI( ) ∈ −1,+1[ ]k×l, (3)
BT � tanh αHT( ) ∈ −1,+1[ ]k×l, (4)

where α is a smooth parameter and needs to satisfy the following
constraint: lim

α→0
tanh(αx) � sgn(x). sgn (·) is a symbolic function.

1) Fine-grained similarity semantic preserving learning. Our
FDSSPH method considers both the inter-modality similarity
and intra-modality similarity to guide the learning of hash codes.
Therefore, we use Mean Square Error (MSE) to define the hash
loss:

TABLE 1 The MAP values of cross-modal retrieval on WIKI dataset.

Task Methods WIKI

16 32 64 128

T2I CVH - - - -

JIMFH 0.4024 0.4564 0.4630 0.4695

DCH 0.6366 0.6417 0.6518 0.6500

DLFH 0.4268 0.5836 0.6109 0.6478

DCMH 0.5553 0.5742 0.5984 0.5876

SSAH - - - -

DCHUC 0.5224 0.5047 0.5561 0.6392

DJRSH 0.3337 0.3633 0.3782 0.3981

FSSPDH 0.6528 0.6850 0.6614 0.6650

I2T CVH - - - -

JIMFH 0.1430 0.1272 0.1314 0.1353

DCH 0.2115 0.2298 0.2354 0.2443

DLFH 0.1858 0.2090 0.2269 0.2312

DCMH 0.3655 0.3792 0.3842 0.3794

SSAH - - - -

DCHUC 0.2358 0.2490 0.2822 0.3066

DJRSH 0.2756 0.2788 0.3043 0.3148

FSSPDH 0.3753 0.4044 0.3935 0.4054

“−“ denotes an untested value under that specific setting. The bold value mean the best

performance.
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Γs � S − cos BI,BT( )‖ ‖2F+ β1 S − cos BI,BI( )‖ ‖2F + β2 S − cos BT,BT( )‖ ‖2F
s.t. BI,BT ∈ −1,+1[ ]k×l, (5)

where β1 and β2 are the balance parameters of intra-modality
similarity learning items.

2) Quantized loss learning. Hash loss defined by MSE can generate
modal-specific hash representations BI and BT. However, there
are differences between hash codes and hash representations.
Therefore, we add a quantization loss to reduce the information
loss from hash representations to hash codes. The quantization
loss function can be defined as follows:

Γq � λ sgn BI( ) − BI

���� )(
����
2

F
+ sgn BT( ) −BT)
����

����2F)
s. t. BI,BT ∈ −1,+1[ ]k×l, (6)

where λ is a non-negative parameter, and its role is to balance the
weight of the quantization loss term.

3.2.4 Overall objective function
By integrating Eqs 5, 6 into a unified framework, the overall

objective function of the proposed FSSPDH approach is given as follows:
min
BI,BT

Γ�Γs+Γq
� S−cos BI,BT( )‖ ‖2F+β1 S−cos BI,BI( )‖ ‖2F+β2 S−cos BT,BT( )‖ ‖2F
+λ sgn BI( )−BI

���� )(
����
2

F
+ sgn BT( )−BT)
����

����2F)
s.t.BI,BI ∈ −1,+1[ ]k×l.

(7)
Algorithm 1 describes the overall training process of our

proposed FSSPDH approach in detail.

Input: The feature matrices XI and XT, the label matrix L

of the trainingset oi � [Ii,T i]{ }ni�1, the hash code length l

and the parameters ψθ1
, ψθ2

of TxtNetnetwork and ImgNet

network, the size k of training batch.

Output: Hash functions of image and text modalities.

Procedure:

1. Initialize t = 0.

Repeat

2 t � t + 1, α � �
t

√

3 For all training samples enter the model do

4 Randomly select k samples from the training set.

5 Calculate the fine-grained similarity matrix S by Eq. 2.

6 Forward propagation HI � ψθ1
(XI) and HT � ψθ2

(XT).
7 Calculate hash representations BI and BT of image and

text modalities by Eqs 3, 4.

8 Calculate overall objective function Γ by Eq. 7.

9 Update the whole parameters using back-propagating

gradient by chain rule.

10 End for

Until convergence.

Algorithm 1 FSSPDH.

3.3 Out-of-sample problem

Since our proposed method can only obtain the hash codes of
training data, it cannot effectively solve the out-of-samples problem.

Therefore, it is still necessary to generate the hash codes of the query
samples that are absent in the training set. To solve this problem, we
can obtain the hash codes of query sample xq by forward
propagation

bq � sgn tanh ψθ xq( )( )( ). (8)

4 Experiments

4.1 Datasets

The WIKI [36] dataset consists of 2,866 image-text
pairs belonging to 10 different categories. For this experiment,
the entire dataset was used as the retrieval dataset, with 2,173 pairs
used for training and the remaining 693 pairs used for querying.

The MIRFLICKR-25K [37] dataset is a multi-label dataset
obtained from the FLICKR website. In this experiment,
20015 samples were selected as experimental samples, each of
which is tagged with at least one of the 24 categories. In this
experiments, 2,243 samples were randomly selected as query
samples, and the remaining 17772 samples were used as retrieval
samples. From the retrieval samples, 5,000 samples were selected for
training.

The NUSWIDE [38] dataset is a multimodal dataset consisting
of 269648 image-text pairs, each of which corresponds to at least one
or more of the 81 categories. Here, the most common 21 categories
and their corresponding 195749 samples were selected to evaluate
the effectiveness of the proposed FSSPDH approach. From these
experimental data, 2000 samples were randomly selected as query
samples, and the remaining samples were used as retrieval samples.
Besides, 10000 samples were selected from the retrieval samples for
traning model.

4.2 Baselines and implementation details

To demonstrate the superiority of the FDSSPH method, we
compared it with several mainstream hashing methods, such as
cross-view hashing (CVH) [39], joint and individual matrix
factorization hashing (JIMFH) [40], discrete cross-modal hashing
(DCH) [41], discrete latent factor model for cross-modal hashing
(DLFH) [3], DCMH [29], SSAH [13], DCHUC [12], and deep joint-
semantics reconstructing hashing (DJRSH) [42]. Besides, we
evaluated these hashing methods on the WIKI, MIRFLICKR-25K
and NUSWIDE datasets for both image-to-text (I2T) and text-to-
image (T2I) retrieval tasks. The lengths of hash codes were set to 16,
32, 64, and 128 bits, respectively. The hyperparameters in the model
were set to β1 = 0.1, β2 = 0.1 and λ = 0.01 according to our empirical
knowledge.

4.3 Evaluation

In this paper, mean average precision (MAP) and TopN-precision
curves are used to evaluate the performances of the proposed method
and baseline methods. MAP is one of the most metrics in cross-modal
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retrieval tasks. Specially, the average precision of a given query sample
and the returned results can be defined as follows:

AP � 1
n
∑
R

r�1
P r( )δ r( ), (9)

where n is the number of true samples returned. P(r) is the precision
of the last r sample returned. If the returned sample is similar to the
query sample, then δ(r) = 1, otherwise δ(r) = 0. In this experiment, R
was empirically set to 1,000. In other words, the accuracy of the first
1,000 retrieved samples was reported. The MAP value is the average
value of AP for all query samples, which is defined as follows:

MAP � 1
Q

∑
Q

q�1
AP xq( ), (10)

where Q is the number of query samples. In addition, TopN-
precision is defined as similar for the first N instances retrieved
from all queries within the Hamming distance. In order to return the
results of a more accurate group, we set N to 1,000.

4.4 Experimental results and discussion

In this section, we conducted different retrieval experiments on
the three datasets to evaluate the proposed FSSPDH method and its

competitors. Table 1, Table 2, Table 3 shows the MAP values of the
proposed method and baseline methods on different multimedia
datasets.

Table 1, Table 2, Table 3 show the mAP values of all methods on
three datasets. Figure 2 shows the Top-N precision curves of the
proposed approach and its competitors. Based on these retrieval
results, we can draw some conclusions as follows.

1) It is clear from Table 1 that our proposed FSSPDH method
outperforms other baseline methods on three multimedia
datasets. Specifically, compared with the results with 128 bits,
our FSSPDH method performs almost 2.2% better than the
second best DLFH method in the T2I task on the WIKI
dataset. On the MIRFLICKR dataset, our FSSPDH method
performs nearly 2.0% better than the second best DLFH
method. On the NUSWIDE dataset, the FSSPDH method has
a performance improvement of almost 1.0% over the second-best
method. Therefore, we can known from the retrieval results that
the proposed FSSPDHmethod has greater advantages over other
hashing methods in cross-modal retrieval tasks.

2) In addition, the experiments on the three different datasets also
show that the FSSPDH approach improves the retrieval accuracy
to some extent in the I2T task. Compared with the three data sets,
we can find that the method on the MRIFLICKR-25K data set is
higher than other two data sets. This is because the data

TABLE 2 The MAP values of cross-modal retrieval on MIRFLICKR-25K dataset.

Task Methods MIRFLICKR-25K

16 32 64 128

T2I CVH 0.6240 0.6323 0.6364 0.6374

JIMFH 0.6659 0.6591 0.6424 0.6900

DCH 0.7246 0.7546 0.7730 0.8028

DLFH 0.7795 0.8059 0.8262 0.8379

DCMH 0.7993 0.8117 0.8218 0.8206

SSAH 0.8286 0.8311 0.8338 0.8251

DCHUC 0.7745 0.7939 0.8202 0.8207

DJRSH 0.6317 0.7213 0.7590 0.7733

FSSPDH 0.8558 0.8509 0.8559 0.8653

I2T CVH 0.6174 0.6154 0.6154 0.6129

JIMFH 0.6506 0.6453 0.3657 0.6862

DCH 0.6647 0.6865 0.7063 0.7268

DLFH 0.6803 0.7002 0.7158 0.7310

DCMH 0.7704 0.7581 0.8073 0.8104

SSAH 0.8236 0.8296 0.8450 0.8662

DCHUC 0.7619 0.7953 0.8162 0.8176

DJRSH 0.7133 0.7605 0.7889 0.7979

FSSPDH 0.8268 0.8496 0.8691 0.8776

The bold value mean the best performance.

TABLE 3 The MAP values of cross-modal retrieval on NUSWIDE dataset.

Task Methods NUSWIDE

16 32 64 128

T2I CVH 0.5820 0.5734 0.5621 0.536

JIMFH 0.6337 0.6704 0.6916 0.7123

DCH 0.7028 0.7205 0.7687 0.7839

DLFH 0.6662 0.7445 0.7569 0.7686

DCMH 0.6845 0.6931 0.7053 0.7067

SSAH 0.6734 0.6621 0.6206 0.6445

DCHUC 0.6491 0.6973 0.7178 0.6982

DJRSH 0.5629 0.7019 0.7027 0.7694

FSSPDH 0.7154 0.7712 0.7816 0.7766

I2T CVH 0.5561 0.5452 0.5383 0.5201

JIMFH 0.6528 0.6719 0.6802 0.6875

DCH 0.6174 0.6752 0.6849 0.6854

DLFH 0.6174 0.6752 0.6849 0.6854

DCMH 0.6740 0.6901 0.7314 0.7611

SSAH 0.6841 0.7054 0.7361 0.7334

DCHUC 0.7469 0.7549 0.7911 0.7637

DJRSH 0.6193 0.7173 0.7178 0.7936

FSSPDH 0.7554 0.7723 0.8059 0.7943

The bold value mean the best performance.
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distribution, division and size of the data set can affect the
retrieval performance of the proposed method.

3) We can see that all methods cannot achieve excellent performances
on the WIKI dataset. This is because this dataset contains fewer
samples and lower data dimensionality for text modality features.
Therefore, most deep hashing approaches cannot fully leverage the
advantages of deep learning and thus lead to poor retrieval
performance in general. However, our proposed FSSPDH
method can still achieve the best performance among all cross-
modal retrieval methods on this dataset.

4) It can be found from the experimental results that the
performances of most methods can improve with the increase
of hash code length. The main reason is that the longer hash
codes usually contains more semantic information. However, the
performance of some methods decreases when the hash code

length ranges from 64 bits to 128 bits. The possible reason is that
the learned hash codes contains more useless information, which
leads to the decline of retrieval performance.

5) It is clear to see from Figure 2 that our FSSPDH method achieves
the best performance among the compared methods from the
perspective of TopN-precision. In addition, we can observe that
the TopN-precision curve results are basically consistent with the
MAP value results, as they are both calculated based on the
Hamming distance. This indicates that our proposed FSSPDH
method also achieves the best results in the Hamming
ranking task.

6) We can find that the TopN-precision curves of all methods on
three datasets show slightly different decreasing rates.
Specifically, the WIKI dataset includes the least amount of
data, and its curve decline rate is obviously higher than these
of the other two datasets. Note that the NUSWIDE dataset
contains the most data, so its TopN-precision curve is
relatively flat. However, our proposed method considers the
semantic similarity between and within modalities by
constructing a fine-grained similarity matrix, thereby
achieving the best results on three different scale datasets.

4.5 Ablation experiment and analysis

To verify the effectiveness of each component in the proposed
FSSPDH approach, we constructed four variants of FSSPDH,
i.e., FSSPDH-II, FSSPDH-TT, FSSPDH-IT, and FSSPDH-Q.

FIGURE 2
The TopN-precision curves of FSSPDH and its competitors on three datasets.

TABLE 4 Ablation results of our FSSPDH approach on the MIRFlickr dataset.

Methods I2T T2I

FSSPDH-II 0.8706 0.8736

FSSPDH-TT 0.8711 0.8690

FSSPDH-IT 0.5052 0.5649

FSSPDH-Q 0.8717 0.8705

FSSPDH 0.8726 0.8746

The bold value mean the best performance.
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FSSPDH-II was constructed by removing the intra-modal similarity
learning for the image modality. FSSPDH-TT discarded the intra-
modal similarity learning for the text modality. FSSPDH-IT removed
the inter-modal similarity learning for both image and text modalities,
while FSSPDH-Q discarded the hashing quantization loss term. These
ablation experiments were conducted on the MIRFlickr dataset to
validate the impact of each component on retrieval performance.
Here, the hash code length was set to 128 bits in this experiments.
Table 4 shows the retrieval performances of FSSPDH and its variants
on two retrieval tasks.

It can be seen from Table 4 that FSSPDH-IT cannot outperform
other variants on different retrieval tasks, which indicates that inter-
modal similarity learning is crucial for retrieval performance in our
method. In addition, the performances of the FSSPDH-II, FSSPDH-
TT, and FSSPDH-Q variants are also lower than that of FSSPDH in
different retrieval tasks. It shows that both intra-modal similarity
learning and hashing quantization loss can be beneficial in enhancing
retrieval performance.

4.6 Parameter sensitivity analysis

Our FSSPDH method mainly includes three hyperparameters: β1,
β2 and λ. This subsection discusses the impact of different
hyperparameter values in our proposed model. In this experiment,
the length of the hash codes was designated as 128 bits. Specifically, we
change the values of only one hyperparameter by fixing the values of the
other two hyperparameters. Figure 3 plots the results of the proposed
FSSPDH approach with different parameter settings on three datasets.
We can see from Figure 3 that the performances of FSSPDH on the
WIKI dataset and MIRFLICKR-25K dataset are relatively stable within
a large range of hyperparameter values. Besides, our FSSPDH approach
has fluctuated to a certain extent on the NUSWIDE dataset with
different hyperparameter values. Fortunately, we can see that the
FSSPDH approach can also obtain relatively stable performances
within a certain range. Therefore, it can be found that our FSSPDH
approach is insensitive to the hyperparameters from the parameter
experiments.

FIGURE 3
The retrieval performances of the FSSPDH method with different parameter settings.
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5 Conclusion

In this paper, we introduce a novel approach called fine-
grained similarity semantic preserving deep hashing (FSSPDH)
for cross-modal retrieval. Firstly, the FSSPDH approach
attempts to learn a set of binary hash codes for each
modality and thus effectively preserves the characteristics of
each modality. In addition, our FSSPDH approach constructs a
fine-grained semantic similarity matrix by using labels and
features, which not only preserves the inter-modal similarity
but also maintains the intra-modal similarity. Therefore, the
fine-grained similarity preserving strategy is used to embed
more semantic information into hash codes. Compared with
other hashing methods, it can preserve the inter-modality
similarity and maintain the semantic relationships between
instances by the intra-modality similarity, simultaneously,
thus narrowing the heterogeneous gap between different
modalities. Additionally, to reduce the information loss from
the continuous hash representation to discrete hash codes, our
FSSPDH approach incorporates hash quantization loss to
further improve the retrieval performance. A series of
experimental results have demonstrated that the proposed
FSSPDH method achieves superior performances in cross-
modal retrieval tasks on different multimedia datasets.
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