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An improved algorithmhas been proposed to address the challenges encountered
in object detection using visible and thermal infrared images. These challenges
include the diversity of object detection perspectives, deformation of the object,
occlusion, illumination, and detection of small objects. The proposed algorithm
introduces the concept of contrastive learning into the YOLOv5 object detection
network. To extract image features for contrastive loss calculation, object and
background image regions are randomly cropped from image samples. The
contrastive loss is then integrated into the YOLOv5 network, and the
combined loss function of both object detection and contrastive learning is
used to optimize the network parameters. By utilizing the strategy of
contrastive learning, the distinction between the background and the object in
the feature space is improved, leading to enhanced object detection performance
of the YOLOv5 network. The proposed algorithm has shown pleasing detection
results in both visible and thermal infrared images.
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1 Introduction

Object detection is a crucial area of research in computer vision [1–4] that aims to
identify and localize objects in an image, including both detection and recognition [5–7].
This technology has become increasingly important in various domains of our daily lives,
such as autonomous driving, robotics, and video surveillance.

Currently, deep learning has made significant strides in scientific research, particularly in
the field of object detection, where convolutional neural networks (CNNs) have been
extensively used and have achieved remarkable results [8-12]. Object detection
techniques can be classified into two categories: one-stage object detection algorithms
based on boundary box regression and two-stage object detection algorithms based on the
candidate region. One-stage object detection algorithms typically use a boundary box to
localize objects in an image and then implement classification regression, as exemplified by
the YOLO series algorithm [13, 14], SSD algorithm [15], RetinaNet algorithm [16], etc. The
two-stage object detection is carried out based on the candidate regions of the image feature
extraction and object classification regression, such as R-CNN [17], Fast R-CNN [18], and
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Faster R-CNN [19]. At present, these classical supervised learning
object detection algorithms have achieved promising performance.

Despite the impressive progress made by the supervised object
detection, there are still many challenges, including object
perspective diversity, deformation, occlusion detection,
illumination, and small object detection, which can make it
challenging to extract useful image features [20]. To overcome
these challenges, we propose an improved object detection
algorithm based on YOLOv5 and contrastive learning [21–24].
The basic idea of contrastive learning is to train a network by
comparing the similarity between images based on the images
themselves. This idea is consistent with the process of
differentiating objects from the background during object
detection. The YOLO-series algorithms are renowned for their
high detection speed and excellent performance. Our proposed

algorithm introduces the concept of contrastive learning into the
YOLOv5 object detection network, using a supervised training
strategy. The goal is to increase the distance between the object
and background samples in the feature space, thereby enhancing the
detection performance of the model, as illustrated in Figure 1.

It is worth noting that the proposed improved
YOLOv5 algorithm in this paper is specifically designed to
enhance object detection in both visible and infrared thermal
images [21–25]. Some of the visible light and infrared thermal
images are shown in Figure 2. This is particularly crucial in night
monitoring scenarios where infrared thermal imaging plays a crucial
role in pedestrian detection, forest fire detection, maritime rescue,
public security reconnaissance, etc [26]. The proposed method is
expected to address challenges such as light source interference, air
humidity, occlusion, and other factors that affect object detection
accuracy in infrared thermal images [27]. By implementing this
improved algorithm, a significant enhancement in the detection
accuracy of infrared thermal images is expected.

2 Materials and methods

2.1 Image preprocessing

We propose utilizing contrastive learning to improve the
distinction between the background and object in the feature
space. Given an image, we perform random cropping to obtain
the object and background regions. The object region image serves
as positive samples, while the background region image serves as
negative samples. In this process, we first identify the object’s center
point coordinates and then capture a 64 × 64 image block randomly
using these coordinates as the standard. If the captured image block
contains more than half of the object area, it is considered a positive
sample and represented by a green box in Figure 3. Conversely, if the
captured image block contains less than half of the object area, it is
considered a negative sample or background image and represented
by a yellow box in Figure 3.

Once we obtain the positive and negative samples through
random cropping, we perform image enhancement. Essentially,

FIGURE 1
Contrastive learning makes the same objects (positive samples)
similar in the feature space, and makes the object and background
(negative samples) dissimilar in the feature space.

FIGURE 2
Some of the visible light images and infrared thermal images. Images in the first row are the visible light images, and images in the second row are the
infrared thermal images.
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we derive different images from the same original image while
maintaining its content. However, the derived images have
variations in size, scale, brightness, color, and other
characteristics. In this paper, we use various image enhancement
methods such as cropping, rotation, color adjustment, scale
adjustment, and illumination adjustment. Each operation is
randomly combined to generate diverse images.

In Figure 3, after enhancing the object image, different views
generate Xquery1 and Xkey1

0 , while different views of the background
image generate Xkey

1 and Xkey
2 . Since Xquery1 and Xkey1

0 are enhanced
from the object image, the former is used as the original reference
image, and the latter is used as the positive sample image that is
inputted into the contrastive learning network for training.
Conversely, Xkey

1 and Xkey
2 images, which are enhanced from the

FIGURE 3
Image preprocessing and feature extraction for the positive and negative samples. Then, the generated positive and negative samples are input into
the contrastive learning network to calculate the contrastive loss.

FIGURE 4
Overall network structure of the proposed method. The left part represents the improved YOLOv5 algorithm, and the right part represents the
encoder network structure of contrastive learning.
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background images, serve as negative sample images that are inputted
into the contrastive learning network to participate in training.

2.2 Overall network structure

The overall network structure contains two types of network
structures, i.e., the YOLOv5 network structure and the contrastive
learning network structure, as shown in Figure 4. The YOLOv5 network
structure and the contrastive learning network structure encoder are
both composed of several convolution layers, pooling layers, and fully
connected layers. The YOLOv5 network structure ismainly divided into
four parts: input, backbone, neck, and prediction.

We use theMoCo contrastive learning network to participate in the
improvement of the YOLOv5 network architecture. The MoCo
network structure includes three modules: image enhancement,
feature extraction, and loss calculation. In the image enhancement
phase, the images are randomly enhanced, including cropping, rotation,
color adjustment, scale adjustment, and illumination adjustment. The
images in the datasets can be randomly combined with various
enhancement methods, and then, the pictures Xquery and Xkey

0 with
different views can be obtained and participate in the network training.
In the feature extraction phase, two identical ResNet residual networks

are mainly used to extract image features as the query encoder
(EncoderQ) and the momentum encoder (EncoderK), whose
corresponding parameters are θQ and θK, respectively. After that,
Xquery will be fed into the query encoder as the object image to
extract the feature and then Xkey

0 as the positive sample; the image
set {Xkey

1 ,Xkey
2 ,Xkey

3 . . .. . .} is fed into the momentum encoder as
negative samples for feature extraction. By minimizing the
contrastive loss, the characteristic distance between the same kinds
of samples can be reduced continuously and the distance between
different kinds of samples can be increased continuously. The calculated
contrastive loss is directly fed back to the query encoder and
momentum encoder to update their network parameters θQ and θK.

We use a ResNet-style module as the encoder to extract image
features, as depicted in Figure 5. The input is an image with a
resolution of 1 × 64 × 64 pixels, followed by convolution and
pooling operations. The size of the spatiotemporal kernel (depth,
height, and width) of the convolution layer is [7, 7, and 7], the
step size is 2, and the filling size is 3. The pooling layer utilizes a
3 × 3 maximum pooling operation with a step size of 2 and
padding of 1. The resulting feature map is then fed into a residual
block with 64 channels. Subsequently, the feature map undergoes
four consecutive convolution operations with a spatial kernel size
of [3, 3, and 3], a stride of 1, and padding of 1, resulting in a
feature map size of 64 × 16 × 16. As the channel size is 64, the
residuals are connected via solid lines at this stage. One side of
the feature map is then up-sampled and down-sampled to obtain
a size of 128 × 8 × 8, followed by four convolution operations on
the other side. The first convolution layer has a spatial kernel size
of [3, 3, and 3], a stride of 2, and padding of 1, while the last three
convolution layers have a spatial kernel size of [3, 3, and 3], a
stride of 1, and padding of 1. The feature map after the
convolution operation is then added to the up-sampled feature
map to obtain a feature map size of 128 × 8 × 8.

2.3 Loss function

The YOLOv5 loss function is composed of three parts,
i.e., Lossbox (rectangular frame loss), Lossconf (confidence loss),
and Losscls (classification loss). The rectangular frame loss
function calculates the discrepancy between the predicted frame
and the object label frame, while the confidence loss function
determines the level of certainty of a given predicted frame.
Lastly, the classification loss function evaluates the model’s ability
to correctly identify the object category. The overall loss function of
YOLOv5 is obtained by taking a weighted sum of these three
individual losses as follows:

LossYOLO � αLossconf + βLossbox + γLosscls (1)
1 � α + β + γ. (2)

The contrastive loss is defined by the following equation:

Li � −log exp qk+/τ( )
∑k

i�1exp q.ki/τ( )
, (3)

where q represents the feature extracted by the query encoder from
the object image, ki represents the feature extracted by the
momentum encoder, k+ represents the feature of the positive

FIGURE 5
P-R curve for the improved and original YOLOv5 networks on the
experiment of COCO2017 datasets, respectively. (A) P-R curve for the
improved YOLOv5 network. (B) P-R curve for the original
YOLOv5 network.
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sample (assuming there is only one), and τ is used as a hyper-
parameter to adjust the aforementioned contrastive loss.

After the contrastive loss of positive samples and negative
samples is calculated, the next step is to calculate the cross
entropy loss function. It is worth noting that the contrastive loss
of positive samples and negative samples is taken as loss samples to
calculate the cross entropy loss function, whose calculation formula
is defined by the following equation:

LossCL � ∑
n

i�1
Li logL̂i, (4)

where n represents the number of samples between positive and
negative samples, Li represents the ith expected contrastive loss, and
L̂i represents the ith contrastive loss calculated by the networkmodel. It
should be emphasized that L̂1 is the contrastive loss between the positive
sample and the sample image, while L̂2, L̂3. . .are the contrastive losses
between the negative samples and the sample image. Then, with step by
step iterative operation, L̂i gradually approaches Li. In each epoch, the
loss function is calculated to enable the samples to fulfill the objective of
pulling in positive samples and pulling out negative samples. The
positive and negative region images are cropped from the original
images and then enhanced. The resulting enhanced object and
background images are fed into the encoder to extract their features.
The resulting contrastive loss is used to update the network parameters
of the contrastive learning encoder and is also added to the
YOLOv5 loss for overall training. The final loss is defined by the
following equation:

Loss � ξLossYOLO + λLossCL. (5)
The aforementioned equation is the overall optimization object

function for the proposed method, where LossYOLO represents the
YOLOv5 object detection loss and LossCL represents the contrastive
learning loss.

3 Results

The PyTorch deep learning framework is used in the experiment.
TheCUDAversion used is 11.3. YOLOv5 confidence loss weight α is set

to 0.4, and the rectangular frame loss and classification loss weights β
and γ are both set to 0.3 The network training utilized asynchronous
random gradient descent with a momentum term of 0.973. The initial
learning rate for weight is set to 0.01, and the attenuation coefficient is
set to 0.0005. A batch size of 128 is used, and a total of 200 batches were
trained. In the global loss function, the weight ξ of the YOLOv5 loss
function is set to 1, and the weight λ of the contrastive learning loss
function is set to 0.001.

3.1 Experiment on the COCO2017 dataset

The MS COCO dataset is used for the evaluation of our method.
This dataset is funded and annotated by Microsoft; it is a large-scale
dataset that can be utilized for image detection, semantic
segmentation, and image captioning. It consists of over
330,000 images, out of which 220,000 are annotated, containing
1.5 million objects and 80 object categories, such as pedestrians, cars,
and elephants. Additionally, it includes 91 material categories such
as grass, walls, and sky. Each image in the dataset is accompanied by
five descriptive sentences, and there are 250,000 pedestrians with key
points available for analysis.

In the first experiment, we select the COCO2017 dataset as the
experimental dataset. Specifically, 118,287 images are chosen as the
training set, 40,670 images are chosen as the testing data, and
5,000 sets are chosen as the validation set while keeping their
original label files intact. The datasets are divided into training,
validation, and testing sets in the ratio of 118,287:40,670:5,000. It is
ensured that the training and test sets are independent of each other
during the experiment. Finally, the dataset is fed into the improved
YOLOv5 network for training.

TABLE 1 Comparison results between the improved YOLOv5 and the original
YOLOv5 algorithms on the COCO2017 dataset.

Model Precision Recall mAP50 (%) mAP50−95 (%)

YOLOv5 0.719 0.526 58.4 36.9

Our 0.724 0.527 58.7 37.2

FIGURE 6
Detection results by the improved YOLOv5 and original YOLOv5 algorithms on the COCO2017 dataset. The upper layer is the detection result of the
original YOLOv5 algorithm, and the lower layer is the detection result of the improved YOLOv5 algorithm. It is worth noting that the fourth image is the
detection result for small objects, which shows that the method used in this article is also applicable for detecting small objects.
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The performance of the model is evaluated using precision P),
recall(R), average precision (AP), and mean average precision
(mAP) for all categories of AP values. The calculation formula
for each index is as follows:

P � TP

TP + FP
, (6)

P � TP

TP + FN
, (7)

AP � ∑nP

M
× 100%, (8)

mAP � ∑N
i�1AP
N

× 100%, (9)

where TP is the true case, FP is the false case, FN is the missed case,M
is the total number of samples, and N is the number of categories. To
create a P-R curve, we will use the recall rate as the horizontal axis
and the precision rate as the vertical axis. The area under this curve is
known as the average precision (AP) value. This experiment is
focused on 80 classes, so N = 80 and the mAP value is equal to the
average sum of the AP values of 80 classes. The detection accuracy of
the improved YOLOv5 network is compared with that of the original
YOLOv5 network, and the detection performance of the network
before and after the improvement is analyzed.

After feeding the COCO2017 dataset into both the
YOLOv5 network and the improved YOLOv5 network for
training 200 epochs, the loss function begins to converge.
Figure 5A displays the P-R curve for the improved
YOLOv5 network. On the other hand, Figure 5B shows the P-R
curve for the original YOLOv5 network. In addition, the precision,
recall, and mAP data pairs of the two models are shown in Table 1.
mAP50 indicates the mAP of the IOU between the preselection box
and the groundtruth box is greater than 0.5, andmAP50−95 indicates
the mAP of the IOU between the preselection box and the
groundtruth box is between 0.5 and 0.95.

From Table 1, we can see that the precision value of the original
YOLOv5 model is 0.719, while the precision value of our model is
0.724, an increase of 0.005. The recall value of the original
YOLOv5 model is 0.526, while the recall value of our model is
0.527, an increase of 0.001. The mAP50 value of the original
YOLOv5 model is 58.4%, while that of our model is 58.7%, an
increase of 0.3%. ThemAP50−95 value of the original YOLOv5 model
is 36.9%, while that of our model is 37.2%, an increase of 0.3%. As
observed from Figure 5 and Table 1, the improved algorithm in this
study outperforms the original algorithm on the COCO datasets.

FIGURE 7
P-R curve for the improved and original YOLOv5 networks on the
experiment of LLVIP datasets. (A) P-R curve for the improved
YOLOv5 network. (B) P-R curve for the original YOLOv5 network.

FIGURE 8
Detection results by the improved YOLOv5 and original
YOLOv5 algorithms on the LLVIP datasets. (A) Detection results by the
improved YOLOv5 algorithm. (B) Detection results by the original
YOLOv5 algorithm.
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Figure 6 displays the detection results of the improved YOLOv5 and
the original YOLOv5 algorithms.

3.2 Experiment on the LLVIP datasets

To validate the accuracy of the improved YOLOv5 object
detection network for infrared thermal imaging, we apply the
algorithm to infrared images using the LLVIP dataset. This
dataset consists of 15,488 pairs of infrared images captured in
26 real-time scenes, with a majority of them taken in low-light
conditions using a wavelength band of 8–14 μm. In the experiment,
we select 100 images successively from 18 scenes in the original
LLVIP dataset, resulting in a total of 1,800 images as the training
sets. We also select 50 images successively from four scenes in the
original LLVIP dataset, resulting in a total of 200 images as the
testing and validation sets. The evaluation metrics, precision P),
recall(R), and mean average precision (mAP) of all categories of AP
values are used to evaluate the performance of the model.

After training the LLVIP datasets on both the YOLOv5 network
and the improved YOLOv5 network for up to 100 epochs, the loss
function starts to converge. Figure 7A displays the P-R curve for the
improved YOLOv5 network after the loss function has converged.
Meanwhile, Figure 7B shows the P-R curve for the original
YOLOv5 network after the loss function has converged.

From Table 2, we can see that the precision value of the original
YOLOv5 model is 0.989, while the precision value of our model is
0.994, an increase of 0.005. The recall value of the original
YOLOv5 model is 0.970, while the recall value of our model is
0.983, an increase of 0.013. The mAP50 value of the original
YOLOv5 model is 99.0%, while that of our model is 99.6%, an
increase of 0.6%. ThemAP50−95 value of the original YOLOv5 model
is 74.7%, while that of our model is 76.0%, an increase of 1.3%. The
detection results of the improved YOLOv5 and the original
YOLOv5 algorithms can be viewed in Figure 8A and Figure 8B,
respectively.

3.3 Comparison with other algorithms

In order to further prove the effectiveness of our improved
YOLOv5 algorithm, this paper conducted experimental
comparisons with several current mainstream object detection
algorithms, including YOLOv3, SSD, Faster R-CNN, mask
R-CNN, and R-FCN. We unified the configuration environment
and initial training parameters in all experiments; the experimental
data are the same as that of the experiment, MS COCO dataset. The
dataset is still guaranteed to include 118,287 training sets,
40,670 testing sets, and 5,000 verification sets. The experimental
data results are shown in Table 3.

In Table 3, we assess the accuracy of the frame regression task.
The accuracy of the frame is generally measured by the intersection
ratio (IOU), AP represents the IOU interval of 0.5 up to 0.95, after
the average is taken. AP50 represents that the IOU value is 0.5, then
taking the average value. AP75 represents that the IOU value is 0.75,
then taking the average value. Table 3 indicates that when the same
datasets are input into our improved YOLOv5 algorithm and the
other mainstream object detection algorithms, the various AP values
of our improved YOLOv5 algorithm are all improved. These
findings verify the effectiveness of our improved
YOLOv5 algorithm in object detection tasks.

4 Discussion

4.1 Previous research on object detection

Object detection is a fundamental task in computer vision that
involves identifying the presence of objects and their location in
images or videos. Over the years, there have been many advances in
object detection algorithms, resulting in two main categories: two-
stage algorithms, such as R-CNN [17], Fast R-CNN [18], and Faster
R-CNN [19], and one-stage algorithms, such as SSD [15] and YOLO
series [13, 14]. Although R-CNN represented a significant
improvement over traditional algorithms, its candidate area box
calculation in the CNN led to increased computation, significantly
affecting the test speed. Fast R-CNN reduced computation but still
could not achieve true real-time performance or end-to-end training
and testing. Therefore, Faster R-CNN is proposed to integrate
feature extraction, candidate box selection, classification, and
boundary box regression into a single framework, improving
accuracy and speed, and achieving end-to-end object detection.
However, there is still a gap between real-time object detection
and Faster R-CNN, leading to the emergence of one-stage
algorithms such as SSD and YOLO. Although the YOLO series
solved object detection as a regression problem, it suffered from a
positioning error compared to Faster R-CNN. YOLOv2 improved
the original algorithm while maintaining its speed advantage, while

TABLE 2 Comparison results between the improved YOLOv5 and the original
YOLOv5 algorithms on the LLVIP dataset.

Model Precision Recall mAP50 (%) mAP50−95 (%)

YOLOv5 0.989 0.970 99.0 74.7

Our 0.994 0.983 99.6 76.0

TABLE 3 Comparison results between various classical object detection
algorithms and our improved YOLOv5 algorithm on the MS COCO dataset.

Algorithm Backbone AP AP50 AP75

Faster R-CNN+++ ResNet-101-C4 34.9 55.7 37.4

Mask R-CNN ResNet-101-FPN 38.2 60.3 41.7

Cascade R-CNN ResNet-101 42.8 62.1 46.3

R-FCN ResNet-101 27.6 48.9 –

RetinaNet ResNet-101 39.1 59.1 42.3

FPN ResNet-50 38.6 60.4 42.0

SSD VGG16 23.2 41.2 23.4

YOLOv2 DarkNet-19 21.6 44.0 19.2

YOLOv3 DarkNet-53 33.0 57.9 34.4

Our CSPDarkNet-53 37.2 58.7 39.3
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YOLOv3 used a deep residual network to extract image features. The
YOLOv5 algorithm is the latest version and has a streamlined
architecture and improved performance on object detection tasks,
achieving good detection speed and accuracy by adopting adaptive
anchor box computing and the multi-semantic fusion detection
mechanism to quickly and effectively integrate high-level semantic
information and low-level location information.

4.2 Discussion on the proposed method

In this paper, we propose an improved object detection algorithm
by integrating contrastive learning into the YOLOv5 network, to
further improve the performance of current object detection methods.
Even there are many ready-made contrastive learning methods such
as SimCLR [28], MoCo [29], BYOL [30], SwAV [31], and SimSiam
[32], we use MoCo as the contrastive learning structure to build our
model since MoCo is one of the best contrastive learning networks at
present and it is relatively simple to be implemented. By
simultaneously constraining the object detection loss and
contrastive loss, our method can compact the distribution of
similar objects in the feature space and enlarge the distribution
distance between the object and the background in the feature
space, thereby enhancing the distinction between the object and
the background. Experimental results on COCO and LLVIP
datasets demonstrate that our proposed method outperforms the
original YOLOv5 network in terms of object detection performance in
both visible and thermal infrared images. Moreover, our proposed
method is a general framework as the contrastive learning mechanism
can be applied not only to the YOLOv5 object detection model but
also to other deep learning-based object detection methods, such as
the Faster R-CNN series, SSD, and SPP-Net.
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