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Introduction: The recent discovery of coherent elastic neutrino-nucleus scattering
(CEvNS) has created new opportunities to detect and study neutrinos. The interaction
cross section in CEvNS scales quadratically with the number of neutrons, making
heavy-nuclei targets such as active lead-based detectors ideal. Lead perovskites have
emerged in the last decade as revolutionary materials for radiation detection due to
their heavy and flexible element composition and their unique optoelectronic
properties that result in an excellent energy resolution at an economic cost.

Methodology: In this study, we discuss, for the first time, the physics potential and
feasibility of building neutrino detectors using semiconductor lead perovskite
crystals as a target.

Results and Discussion: We indicate that existing data with x-rays suggest the
suitability of existing lead perovskite sensors to study CEvNS using neutrinos from
π decay at rest (π- DAR) sources. Although dedicated research and development
will be necessary, we have found significant benefits and no inherent obstacles for
the development of lead perovskites as CEvNS detectors.
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1 Introduction

Neutrinos are the only known fermions carrying exclusively weak charges and, therefore,
are clean probes of the weak interaction and unique messengers of dense matter
environments, unaffected by strong and electromagnetic interactions. These appeals,
however, result in notably suppressed interaction cross sections, hampering the study of
neutrino physics and rendering most applications impractical.

In 1974, the existence of coherent elastic neutrino-nucleus scattering (CE]NS) was
pointed out as a consequence of the standard model [1]. In CE]NS, a neutrino transfers
momentum to a whole nucleus via the exchange of a virtual Z boson, forcing it to recoil. The
interaction cross section for this process is

dσCE]NS

dER
� G2

F

8π · (Zc)4(N + (1 − 4 sin2θW)Z)2

·mN · (2 − ERmN/E2
])|f(q)|2

(1)

where GF is the Fermi constant, N (Z) is the number of neutrons (protons), θW is the Weinberg
angle, andmN and ER are the nucleon mass and its recoil energy, respectively. The nuclear form
factor f(q) characterizes the loss of coherence as a function of the transferred momentum q =�������
2mNER

√
/Z, and it is close to unity for small q, associated with typical neutrino energies E] ≲
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50MeV. Notably, given that 4 sin2θW ~ 1, σCE]NS~∞ N2 [2]. This
remarkable interaction cross section enhancement, however, offers a
very challenging detection signal as the nucleon recoil needs to be
identified. The maximum recoil energy scales as Emax

R ≈ 2E2
]/mN so

that detectors need to be able to measure recoil energies of, at most,
several tens of keV. Thanks to recent advancements in detector
technology, experimentally studying CEvNS has become possible
recently, as demonstrated by the COHERENT collaboration using a
CsI target [3] and an Ar target [4].

2 Motivations

The discovery of CE]NS and its enhanced cross section shows
potential to mitigate the elusiveness of neutrinos and therefore
revolutionize their study at energies on the order of a few tens of
MeV, which include geoneutrinos [5], reactor neutrinos [6], accelerator
neutrinos from meson decays at rest [7-10], solar neutrinos [11], and
supernova neutrino bursts [12]. Characterizing the cross section of CE]
NS is also essential for dark matter searches as CE]NS constitutes an
irreducible background, the so-called neutrino floor [13]. Being
mediated by flavor-insensitive neutral currents, the detection of CE]
NS provides extended sensitivity to sterile neutrinos [14-16] and other
new physics signatures [17-20], and allows the study of the neutrino
magnetic moment [21, 22], its effective charge radius [23], and the
nuclear neutron form factor [24, 25]. Applications, such as deploying
neutrino detectors to increase nuclear security [26, 27], might also be
possible. Moreover, CE]NS is relevant to theoretical astrophysics as a
key actor during stellar collapse [28-30].

3 CE]NS experiments

Because of the aforementioned findings, an increasing number
of CE]NS detector technologies have been proposed [31-42], and
several experiments are ongoing or have been proposed:
COHERENT [43], using CsI, NaI, high-purity Ge (HPGe), and
liquid-Ar targets; CONUS [44], NCC-1701 [45, 46], and ]GEN [47]
using cryogenic HPGe; MINER [48], using cryogenic HPGe/Si;
NUCLEUS [49], using cryogenic CaWO4 and Al2O3; CONNIE
[44], using Si charge-coupled devices (CCDs); TEXONO [50],
using p-type point-contact Ge; RES-NOVA, using cryogenic
PbWO4 [51, 52]; RICOCHET [53], using cryogenic HPGe
bolometers; and RED100 [54], using liquid-Xe.

To get the most from CE]NS, an ideal detector should be
inexpensive to produce and operate, have excellent energy
resolutions to identify nuclear recoils with an energy of a few
keV, and be made of heavy nuclear targets to exploit the
quadratic scaling of the cross section. In this study, we point out,
for the first time, the excellent prospects of lead perovskites to build
up future CE]NS detectors and discuss their experimental feasibility
in light of existing measurements.

4 Lead perovskites

Lead halide perovskites (LHPs) are novel semiconductors with
exceptional optoelectronic properties, a versatile chemical composition,

and low-cost synthesis. They typically consist of crystals with structure
APbX3, as shown in Figure 1, where A is CH3NH3+ (MA+), CHNH+

3

(FA+) or Cs+; B is Pb2+; and X is Cl−, Br−, and I− [55].
The study of halide perovskites as photosensors was sparked

about a decade ago in the context of solar cell development [56] and
quickly emerged as an active field of research due to record energy
conversion efficiencies [57-64]. Along the process, much has been
learned about the basic properties of this material, which combines a
low exciton binding energy on the order of few meV [65] with
exceptionally long electron–hole diffusion lengths exceeding 1 μm
[66], a tunable band gap in the range of 1.2–2.4 eV [67-68], and a
high bulk resistivity of 107−10Ω·cm at room temperature [69]. The
aforementioned combination is unique as it pairs efficient charge
carrier production andmobility at a low voltage bias with a high bulk
resistivity and orders of magnitude higher than those of Si and Ge,
suppressing dark current and noise. Moreover, LHPs naturally allow
for the manufacture of crystals with very high atomic numbers, such
as CsPbI3, and the design of application-specific perovskite sensors
by means of stoichiometry engineering [70, 71]. Furthermore, the
synthesis of LHPs is easy and flexible through techniques such as
solution processing and melt growth, and single crystals with sizes >
1cm3 can be routinely built [72]. The production cost is also low,
with an estimated price of <0.3$/cm3 [55], namely, at a density of
4 g/cm3 and an inexpensive cost of 75 $/kg. Finally, LHPs can be
operated inexpensively at room temperature.

5 Perovskites as radiation detectors

Lead perovskites’ striking performance as solar cells and their
high atomic numbers1 quickly attracted the interest of the medical
imaging community toward this material as x/γ-ray detectors [73-
81]. In 2015, MAPbI3 was proven to detect γ-rays from 137Cs [82],
and the first x-ray images were obtained [83]. Since then, a steady

FIGURE 1
Schematic representation of the perovskite ABX3 crystal
structure.

1 Photon attenuation increases ∝ Z4, where Z is the atomic number.
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improvement in x/γ-ray performance metrics and achievements has
been reported over time [72, 74, 83, 84], including the best x-ray
sensitivities yet achieved in any material [85, 86]. Other radiation
types have also been studied with perovskites, specifically neutrons
[87] and α [88, 89] and β [90] particles. For a recent review, see [91].
Moreover, perovskite nanoparticles show enormous potential as
wavelength shifters, for a review see [92], making them interesting
doping materials (≈1 g/L) to build nanocrystal-doped liquid
scintillators, with applications in neutrino detection [93]. In this
study, nevertheless, we focus on solid lead perovskite crystals as a
target, i.e., a detector where 100% of the active volume is made of
lead perovskite, enhancing the cross section of CE]NS enhanced due
to the presence of lead. As crystals, despite the many achievements
that are previously listed, all reported precision measurements
involving low-energy O (10–100) keV particles have been based
on the detection of recoiling electrons induced by x-ray interactions.
Possibly because of this finding, no mentions exist in the literature
about the possibility of measuring CE]NS using perovskites. In CE]
NS, a nuclear recoil, instead of an electron recoil, needs to be
measured. For Ge, it has been measured that nuclear recoils
generate about a third of the ionization signal of their electronic
counterparts [94]. For lead perovskites, this fraction, the so-called
quenching Q, is still unknown. Quenching acts by reducing the
signal, therefore, reported sensor metrics in x/γ-ray measurements
that are expected to degrade when used to study CE]NS. If Qperovskite

≈QGe, then the energy resolution Eres for nuclear and electron recoils
can be related by

Enuclear
res ≈ Eelectron

res × Qperovskite ≈ Eelectron
res /3 . (2)

Existing Eelectron
res measurements are presented in Figure 2. These

data were reported in 2021 using CsPbBr3 lead perovskite crystals at
room temperature [95]. A stable operation was achieved with them
for over 18 months. A fit to the data smoothly reproduces the trend.
Using the fit, we calculate that the energy resolution would get worse
than 100% for photon energies below 4.3 keV. Taking this value as a
reference to define an approximate detection threshold, Eq. 2
suggests that, if lead perovskite quenching is similar to that of

Ge, existing lead perovskite sensors could have a detection threshold
similar to 15 keV for nuclear recoils. Certainly, a definitive answer
requires an experimental determination of Qperovskite, a measurement
that we encourage for the first time in this study. It must be
emphasized that existing lead perovskite sensors are still far from
their ultimate energy resolution [95], and therefore, future sensors
should lead to even lower detection thresholds. Room for
improvement ranges from an increase in the detected signal, e.g.,
reducing crystal defects [96] and improving the electrode contacts
[97, 98], to a decrease in noise, e.g., passivating the sensor surfaces
[99], using dopant compensation [100, 101], or operating at
cryogenic temperatures. In this way, even if future measurements
show that Qperovskite > QGe, current data and sensor improvement
trends suggest that reaching O (10) keV nuclear recoil detection
thresholds will likely be possible in the near future.

6 Prospects as CE]NS detectors

Producing low-activity lead perovskites should be readily
possible, e.g., CsPbI3 consists of Cs and I, both used in the first
historical detection of CE]NS [3], and archaeological Pb has
recently been demonstrated to be adequate for CE]NS detection
[102]. Moreover, CsPbI3 and other lead perovskites are made up of
strikingly heavy elements, significantly advantaging the CE]NS
interaction cross section of mainstream alternative materials and,
in particular, that of Ge. However, the maximum recoil energy
decreases linearly withmN, and therefore, the ability of the detector
to identify the recoiling nucleus needs to be considered. To account
for it, we define the effective cross section, σeff, as a figure of merit,
defined as

σeff ≡ ∫Emax
R

Erecoil
threshold

dσ

dER
ϵ dER (3)

which can be calculated from Eq. 1 if the detector efficiency, ϵ, is
specified. Using it, in Figure 3 CsPbI3 and Ge targets2 are directly
compared for some neutrino energies, assuming a detector with
perfect (null) efficiency above (below) a certain energy recoil
threshold, Erecoil

threshold.
If, as suggested in the previous section, Erecoil

threshold ≈15 keV in
existing lead perovskite sensors, studying 30–50 MeV neutrinos
could be readily possible. Interestingly, this neutrino energy
range overlaps with the energy spectrum of neutrinos produced
in pion decay at rest (π-DAR) neutrino sources [103, 104]. π-
DAR neutrinos have been used in the only two CE]NS
measurements so far, using 14.6 kg of CsI [3] and 24 kg of
argon [4]. Building and operating similar masses of lead
perovskite poses no apparent impediment, with the driving
cost being the number of electronic channels. If sensor
masses similar to 1 g are deployed, a reasonable and
potentially scalable O (104) number of electronic channels
would be needed to set up the experiment. CE]NS
experiments at π-DAR sources are primarily counting

FIGURE 2
Fit to the energy resolution measured for single photons using a
CsPbBr3 perovskite at room temperature. Data from [95]. The best
parameters are A, B, and C = {4.95, −1098.24, and 189690.18}.

2 For CsPbI3, the weighted average (Cs + Pb+3I)/5 is used in the result
of Eq. 3.
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experiments that observe the event rate variation induced by
switching on and off the neutrino beam, allowing to characterize
the background levels and cancel out effects related to the
detector efficiency. Neutrino energy is not reconstructed.
Instead, the measurement observable is directly the

reconstructed signal distribution above the detection
threshold (see, for instance, [3]). Signal interactions are
contained in individual sensors, and therefore, no spatial
resolution is needed. If the detector is deployed as a dense
array of lead perovskite sensors, identifying nearby sensor

FIGURE 3
CE]NS interaction cross section per nucleus, σ, multiplied by the detector efficiency, ϵ, as a function of the recoil energy threshold, Erecoil

threshold. Solid
(dashed) lines correspond to CsPbI3 (Ge).

FIGURE 4
The color map depicts the ratio of σCsPbI3eff /σGeeff as a function of the neutrino energy, E], and the recoil energy threshold, Erecoil

threshold. A ratio value of zero
indicates that Erecoil

threshold is above the necessary level to observe any recoil in CsPbI3. To help the visualization, values of some particular integer ratios are
highlighted by color lines.
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coincidences could be used to assist auxiliary veto modules to
reject the background.

The comparison between CsPbI3 and Ge in Figure 3 reflects that
for a given fixed neutrino energy, lead perovskites require a smaller
Erecoil
threshold to observe CE]NS. However, if the detection threshold is

achieved and mildly lowered, it results in a large enhancement of the
interaction cross section. This trade-off is characterized by the ratio
σCsPbI3eff /σGeeff presented in Figure 4. For Erecoil

threshold ≈15 keV, as
previously suggested, Ge and CsPbI3 would lead to similar event
rates for π-DAR neutrinos. However, although the fabrication and
operation of Ge sensors are nearly optimal, perovskite R&D shows
potential to lower its Erecoil

threshold in the next few years, resulting in an
up to six-fold event rate increase compared to Ge. Moreover, such a
detection improvement would also open the door to investigating
the use of lead perovskites to measure neutrinos from other sources,
e.g., supernova and reactor neutrinos. Lastly, perovskites are orders
of magnitude cheaper to manufacture and potentially operate3 than
existing alternatives, including HPGe.

7 Discussion and outlook

In just one decade, lead perovskites have been established as
novel materials with transformative potential as radiation detectors
due to their unique optoelectronic properties.

In this study, we highlight their potential as neutrino detector
targets and discussed, for the first time, their suitability for the study of
CE]NS. In particular, we note that existing x-ray data indicate that
current lead perovskites sensors might already be suitable to study π-
DAR neutrinos and discuss their implications. In general, with the
available data, no impediments are apparent that prevent further
development of the concept of lead perovskites for neutrino detection.
Nonetheless, we highlight the necessity of determining the quenching
fraction for recoiling the nucleus in lead perovskites to evaluate its
exact effect. In any case, to bring perovskites to their ultimate
detection potential and enable their full range of applications,
active R&D is required. In particular, efforts to optimize lead
perovskite sensors for the detection of single low-energy particles
would be significantly beneficial for the development of this
technology within the field of experimental neutrino physics.

Lastly, we note that CE]NS and some dark-matter models share
the same signal mechanism, i.e., the detection of nuclear recoils.
Therefore, any progress in this direction might benefit both the
neutrino and dark-matter research communities.
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